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Abstract 

Inflammation is a key physiological response to infection and injury and while usually beneficial it can also 

be damaging to the host. The liver is a prototypical example in this regard because inflammation helps 

resolve liver injury but it also underlies the etiology of pathologies such as fibrosis and hepatocellular 

carcinoma. Cells sense their environment, including the inflammatory environment, through the activities 

of receptor-mediated signal transduction pathways. These pathways are organized in a complex inter-

connected network, and it is becoming increasingly recognized that cellular adaptations result from the 

quantitative integration of multi-pathway network activities, rather than isolated pathways causing 

particular phenotypes. Therefore, comprehending liver cell signalling in inflammation requires a scientific 

approach that is appropriate for studying complex networks. Here we review our application of systems 

analyses of liver cell signalling in response to inflammatory environments. Our studies feature broad 

measurements of cell signalling and phenotypes in response to numerous experimental perturbations 

reflective of inflammatory environments, the data from which are analyzed using Boolean and fuzzy logic 

models and regression-based methods in order to quantitatively relate the phenotypic responses to cell 

signalling network states. Our principal biological insight from these studies is that hepatocellular 

carcinoma cells feature uncoupled inflammatory and growth factor signalling, which may underlie their 

immune evasion and hyperproliferative properties. 
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Introduction 1	
  

Inflammation is a mechanism for preserving homeostasis in response to noxious stimuli such as infection 2	
  

and injury. Cells of the innate immune system drive the inflammatory response, which typically begins 3	
  

when proinflammatory stimuli activate macrophages residing in the affected tissue to produce 4	
  
chemoattractants that recruit neutrophils to the site of inflammation. Neutrophils are white blood cells that 5	
  

sense and eliminate pathogens. They carry out their functions in part by release of oxygen radicals and 6	
  

degradative enzymes whose leakage can cause collateral tissue damage [1]. Once the inflammatory 7	
  

stimulus is cleared, the inflammatory response is damped by a process called resolution, which is marked 8	
  

by the transition from neutrophil to monocyte recruitment. Monocytes are blood-borne macrophages that 9	
  

differentiate into macrophages once inside tissue. They serve to clear debris and promote tissue repair. 10	
  

The inflammatory response is therefore characterized by processes that cause both damage and repair. 11	
  

The damaging processes must be sufficiently strong to eliminate the inflammatory stimulus but not too 12	
  
strong so as to cause excess tissue damage. A maladapted inflammatory response can lead to chronic 13	
  

inflammation, which is a hallmark of many complex diseases such as cancer, fibrosis, cardiovascular 14	
  

disease and diabetes. A better understanding of inflammation could therefore improve therapeutic 15	
  

approaches to acute and chronic diseases. 16	
  

 17	
  

The liver plays a central role in maintaining homeostasis through its functions in metabolism, 18	
  

detoxification and inflammation. The liver is a key participant in the initial systemic response to 19	
  

inflammation, called the acute phase response, because it synthesizes acute phase proteins such as C-20	
  
reactive protein, serum amyloid A and fibrinogen [2]. Conversely, components of the inflammatory 21	
  

response are important in liver physiology and pathophysiology. The cytokine interleukin-6, for example, 22	
  

serves to protect the liver when it is injured and promotes liver regeneration [3]. Inflammation can 23	
  

contribute to pathological states of the liver, perhaps best exemplified by chronic inflammation due to viral 24	
  

infection (e.g., hepatitis B and C), toxic substance exposure (e.g., aflatoxin-B1), or steatosis serving as a 25	
  

precursor to hepatocellular carcinoma [4]. Hepatocellular carcinoma is the fifth most prevalent cancer 26	
  

worldwide and is notoriously difficult to treat, which underlies its status as the third most lethal type of 27	
  
cancer [5]. The considerable burdens of liver disease and diseases linked to chronic inflammation 28	
  

emphasize the need for investigating the interplay between the liver and inflammation. 29	
  

 30	
  

Cells adapt to their environments by the activities of receptor-mediated signalling pathways. The 31	
  

biochemical activities of these signalling pathways regulate gene expression, metabolism and/or cell 32	
  

structure in order to modify cell physiology. For example, in the case of hepatocytes during the acute 33	
  

phase response, IL-6 released by macrophages and stromal fibroblasts at the site of inflammation acts 34	
  

hormonally on hepatocytes by binding and activating a receptor complex leading to phosphorylation and 35	
  
dimerization of the signal transducers and activators of transcription 3 (STAT3) [6, 7]. STAT3 is a 36	
  

transcription factor that regulates the transcription of a number of genes including many involved in the 37	
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acute-phase response. The communication between cells acting at the site of inflammation and those of 38	
  

the liver exemplify how the cells of multi-cellular organisms communicate in order to maintain 39	
  

homeostasis. 40	
  

 41	
  
The activities of individual pathways such as IL-6-STAT3 have been well studied in liver cells. However, 42	
  

studies of isolated pathways have limited applicability to the in vivo situation in which cells are continually 43	
  

exposed to multiple extracellular molecules leading to the simultaneous activity of many signalling 44	
  

pathways. In inflammation, for example, cells are exposed to multiple pro- and anti-inflammatory 45	
  

cytokines (e.g., tumour necrosis factor-α (TNF-α), interleukin-1 (IL-1), IL-4, IL-10, etc.), growth factors, 46	
  

hormones and other molecules. Intracellular signalling pathways crosstalk with each other, effectively 47	
  

forming a network, but it is poorly understood how intracellular signalling networks processes the 48	
  

combinatorial action of multiple environmental cues. Making progress in this area will improve our 49	
  
understanding of complex physiological responses such as inflammation and help guide the development 50	
  

of better therapeutics. Here we review our studies of the intracellular signalling systems of hepatocytes 51	
  

and hepatoma cells in response to inflammatory environments using a systems approach. We begin by 52	
  

explaining what a systems approach to biology means followed by reviewing three studies in which we 53	
  

used this approach to investigate liver cell signalling and physiology in inflammatory contexts. 54	
  

 55	
  

Scientific approach: Cue-signal-response experiments and mathematical modelling 56	
  

A hallmark of engineering practice is applying a systems approach to the design process. In this context, 57	
  
a “systems approach” denotes studying a system by applying diverse inputs to the system and measuring 58	
  

the outputs. Mathematical models are then used to model the relationship between input and output. The 59	
  

parameters of the mathematical model are tuned such that the desired outputs are obtained from the 60	
  

inputs expected under operating conditions. The engineer then modifies the design to reflect these 61	
  

optimal parameter values. 62	
  

 63	
  

We adopt a similar engineering approach in investigating biological systems, with a difference being that 64	
  
we seek to “reverse engineer” the system by using input-output relationships and selected measurements 65	
  

of the system to constrain a model of the intracellular signalling network. We implement an experimental 66	
  

paradigm called “cue-signal-response” that reflects this input-system-output relationship [8]. The input 67	
  

consists of molecules in the cell’s environment, the system is the cell signalling network and the output is 68	
  

the behaviour that the cell executes to adapt to the input. In practice, a cue-signal-response paradigm 69	
  

applied to hepatocyte physiology during inflammation involves applying inflammatory cytokines and 70	
  

growth factors (cues) to cultured hepatocytes or hepatoma cells, perturbing intracellular signalling by 71	
  

inhibiting kinases with small-molecule inhibitors, assessing intracellular signalling by multiplexed 72	
  
measurement of phospho-protein levels (signals), and measuring the secretion of cytokines (responses). 73	
  

Specific cues include inflammatory cytokines such as IL-6 and IL-1 and inhibitors target kinases such as 74	
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mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK), 75	
  

phosphoinositide 3-kinase (PI3K) and p38 MAPK. The cells are lysed at specific time points and 76	
  

multiplexed bead-based flow cytometric immunoassays based on Luminex xMAP technology are used to 77	
  

measure the levels of ~15 phosphorylated proteins including Akt, ERK and signal transducer and 78	
  
activator of transcription 3 (STAT3). Similar assays are also used to measure the levels of ~50 secreted 79	
  

proteins in the cell culture media.  80	
  

 81	
  

The resulting dataset features thousands of data points, which makes it challenging to interpret. 82	
  

Mathematical tools are therefore used for downstream analyses. Classically, ordinary-differential-83	
  

equations have been the method of choice for analyzing cell signalling systems because they make direct 84	
  

use of biochemical rate equations that describe the kinetics of enzyme-catalyzed reactions, protein-85	
  

protein interactions and transport processes. Disadvantages of ODE models include their critical 86	
  
requirement for firm specification of network topological interactions, and their reliance on adjustable 87	
  

parameters that must be robustly estimated in order to effectively represent the system. As the size of the 88	
  

model grows, so does the uncertainty in the topology and the corresponding number of parameters, 89	
  

which in turn increases the demand for more comprehensive biological knowledge and intensive 90	
  

experimental data (as well as computational power, although that is a lesser challenge at this point). 91	
  

While studying signalling from one or two pathways with ODEs is feasible, the networks that we study are 92	
  

too uncertain and large for ODEs to be practically useful. We therefore use modelling techniques that 93	
  

represent the system in a coarser grained fashion. In doing so, we require less data to obtain quantitative 94	
  
insight into the system, albeit less than could be obtained with ODEs. 95	
  

 96	
  

Our studies feature two types of mathematical frameworks, regression-based methods and logic-based 97	
  

methods. Our implementation of these techniques has been reviewed in detail elsewhere [9-11]. Briefly, 98	
  

regression models, such as multiple linear regression and partial-least-squares regression (PLSR), are 99	
  

useful for quantifying the correlation between variables in context of one another. Regression models do 100	
  

not incorporate information beyond the data itself, except that the variables included in the model are 101	
  
specified by the modeller. This prior specification makes the models supervised but they are also strictly 102	
  

empirical. Logic modelling, by contrast, involves translating prior knowledge or hypotheses about the 103	
  

system structure or function into computable language. In this way, logic models are capable of bringing a 104	
  

network diagram to operational function. We investigate cell signalling networks using logic modelling by 105	
  

first constructing a diagram of the network based on published data (which we call a “prior knowledge 106	
  

network”, or PKN), then collecting a cue-signal-response dataset devoted to perturbing and measuring 107	
  

aspects of the network, followed by using optimization algorithms to identify and quantify the connections 108	
  

in the hypothetical network that are most important for explaining the data (Figure). The resulting fitted 109	
  
models can then be used for simulation or analysis purposes. Irrespective of the modelling approach, 110	
  

model predictions are experimentally validated. We have used this workflow to obtain considerable 111	
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insights into the systems-level operation of cell signalling networks in effecting phenotypic responses in 112	
  

diverse contexts, which we discuss in the following section. 113	
  

 114	
  

Liver cell information processing during inflammation 115	
  

We applied our interdisciplinary approach to the issue of epithelial cell signalling in inflammation by 116	
  

devising logical and statistical modelling methods and applying them to data from cultured liver cells 117	
  

exposed to inflammatory conditions. In the first paper from these studies, Saez-Rodriguez et al. extended 118	
  

Boolean logic methods previously used to study biological networks from a theoretical standpoint to allow 119	
  

the model to directly interface with experimental data [12]. Specifically, their algorithm translates a prior 120	
  

knowledge network, in this specific example a database-derived PSN map, into a Boolean logic model 121	
  

and optimizes the model topology to best fit experimental data. In this example, the data comprised 122	
  

phospho-protein levels of intracellular signalling intermediates in HepG2 cells exposed to inflammatory 123	
  
cytokines and inhibitors of several kinases. Interestingly, they found the resulting optimal models 124	
  

consisted of substantially fewer connections than found in the PKN. Remarkably, an empty model, that 125	
  

contained nodes but no edges connecting them, fit the data better than the PKN [12]. This result implies 126	
  

that the comprehensive protein-protein interaction network maps and PSNs commonly used to depict 127	
  

biological networks do not necessarily reflect networks operating in a specific cell type under specific 128	
  

conditions. This lack of predictivity stems from two apparently paradoxical sources: 1) The networks 129	
  

include too many interactions, presumably because they are typically curated from multiple sources, cell 130	
  

types, time points and experimental conditions and 2) The networks lack interactions that are present and 131	
  
functional in the network under study due to imperfect databases or incomplete understanding of the 132	
  

biology. Indeed, by examining the data points that the original optimal model failed to adequately fit, 133	
  

Saez-Rodriguez et al. tested new interactions to see which ones best improved the fit [12]. The existence 134	
  

of two candidate interactions, one linking TNF-receptor associated factor 6 and MEK and another linking 135	
  

ERK and insulin receptor substrate-1, was supported by published evidence. 136	
  

 137	
  

An alternative modelling approach was used by Alexopoulos et al., who performed a comparative 138	
  
analysis of the intracellular signalling networks of healthy and cancerous liver cells [13]. A cue-signal-139	
  

response dataset was generated in which inflammatory cytokines and growth factors were applied to 140	
  

primary human hepatocytes and HepG2 hepatocellular carcinoma cells in concert with small-molecule 141	
  

inhibitors targeting seven kinases from different signalling pathways. Multiple linear regression analysis 142	
  

was used to estimate the strength of relationships between the cytokines and signals, the inhibitors and 143	
  

signals, and the signals and secreted cytokines. The networks were defined by the relationships featuring 144	
  

the highest regression coefficient magnitudes. The networks for the primary hepatocytes and the HepG2 145	
  

cells were then compared, revealing that HepG2 cells displayed reduced responsiveness to inflammatory 146	
  
stimuli but increased responsiveness to progrowth stimuli, relative to the primary hepatocytes. In 147	
  

particular, alterations of NF-κB signalling in HCC cells had profound phenotypic consequences because 148	
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primary hepatocytes secreted a number of cytokines that the HCC cells did not. These cytokines are 149	
  

thought to be involved in recruiting cells of the innate immune system, which implies that HCC cells 150	
  

modify the secretion patterns in order to avoid detection and elimination by the immune system. 151	
  

 152	
  
The above studies clearly demonstrate the utility of Boolean logic and regression methods in exploring 153	
  

how normal and healthy liver cells differentially process environmental information. However, both 154	
  

modelling methods have important limitations. Specifically, Boolean logic describes the activity of each 155	
  

node as either “on” or “off”, which ignores potentially important graded activity, and regression models do 156	
  

not incorporate potentially valuable prior knowledge. Morris et al. addressed these limitations by 157	
  

developing a novel logic-based modelling method called “constrained fuzzy logic” (cFL), which 158	
  

incorporates prior knowledge in the same manner as Boolean logic but also models quantitative 159	
  

behaviour [14]. Specifically, this method converts an input value from an upstream node into a continuous 160	
  
value between 0 and 1 for the downstream node through a sigmoidal transfer function [14]. This capability 161	
  

facilitates the ability of the resulting trained models to fit weak responses. The quantitative relationships 162	
  

between proteins are also estimated, allowing for modelling of dose-response data, which could prove 163	
  

valuable for pharmacological applications. 164	
  

 165	
  

CFL was applied to the same dataset to which the BL approach had been previously applied [12]. CFL 166	
  

was able to capture interactions that were missed by BL [14]. This included the moderate levels of 167	
  

phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun by TGF-α stimulation. This interaction was 168	
  
the only instance of growth factor pathway crosstalk with inflammatory pathways observed in 169	
  

measurements of HepG2 cells, which the previous studies failed to detect [12, 13]. Furthermore, 170	
  

stimulating HepG2 cells with IL-6 led to moderately increased phosphorylation of several species, 171	
  

including Akt, MEK and p70 S6 kinase, in addition to strong phosphorylation of its canonical downstream 172	
  

STAT3 pathway [14]. The PKN did not include links from the IL-6 receptor that allowed for the observed 173	
  

moderate phosphorylation levels [14]. In the case of BL, the resulting lack of fit of these data points did 174	
  

not adversely affect the overall fit, presumably because a similar absolute deviation resulted between the 175	
  
intermediate levels of the measured phosphorylations and the model outputs of 0 or 1. In contrast, the 176	
  

cFL model was sufficiently sensitive to this error that the model was deemed to inadequately fit this data 177	
  

[14]. Morris et al. followed up this result by seeking to distinguish the pathway that most likely caused the 178	
  

phosphorylations. To do so, they tested PKNs with new interactions either between the IL-6 receptor 179	
  

(IL6R) and PI3K or IL6R and Ras. Most of the resulting fitted models contained the IL6R-Ras link, thus 180	
  

indicating that the Ras-Raf-MEK pathway and not a PI3K-downstream pathway likely mediated the 181	
  

phosphorylations [14]. This result was validated with dedicated experiments. 182	
  

 183	
  
Conclusions and future directions 184	
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We have performed a series of studies in which mathematical models of proteomic data revealed 185	
  

important insights into the signal transduction networks of healthy and cancerous liver cells in 186	
  

inflammatory environments. Our principal biological insight is that hepatocellular carcinoma cells feature 187	
  

both decreased responsiveness to inflammatory stimuli and increased responsiveness to growth factors 188	
  
relative to normal hepatocytes, which could promote immune evasion and increased proliferation. Our 189	
  

principal mathematical advances include devising methods for formally fitting Boolean logic models to 190	
  

data and creating a fuzzy logic method useful for making quantitative models. For relatively small 191	
  

networks such as the one studied here (i.e., downstream of ~5-7 receptors), cFL is a powerful approach. 192	
  

Given the higher computational burden of cFL, Boolean logic will still be needed to model larger networks 193	
  

until more efficient algorithms are developed. We note, however, that larger networks do not necessarily 194	
  

provide additional predictive power because maximal predictivity was observed with models featuring 195	
  

substantially reduced numbers of edges from the initial prior knowledge network. This finding supports the 196	
  
use of our functional biochemistry approach because it provides data on components of the system that 197	
  

actually carry out the cellular response. A distinctive feature of our approach is that it requires broad 198	
  

sampling of network states, which is achieved by applying diverse experimental conditions (in our case, 199	
  

cytokines and inhibitors, but could also include other treatments such as small interfering RNAs). 200	
  

Attempting to process samples from hundreds of independent experiments with other proteomic 201	
  

techniques such as mass spectrometry is currently unfeasible owing to technical limitations and time and 202	
  

fiscal costs. Our approach therefore represents a rational, efficient and informative means to elucidating 203	
  

epithelial cellular signalling and physiology in inflammatory contexts. 204	
  
 205	
  

Going forward, we emphasize that systems-level approaches can be effectively used in vivo. A recent 206	
  

study from our lab successfully extended previous systems-level analyses of data collected from colon 207	
  

cancer cells in vitro [15-17] by applying PLSR modelling to signalling measurements taken from the 208	
  

intestines of mice treated systemically with TNF-α [18]. Determining the biological effects of TNF-α is not 209	
  

straightforward because stimulation of TNF-α receptors increases the activity of multiple downstream 210	
  

signalling pathways, the quantitative integration of which determines the ultimate biological outcome. In 211	
  
the case of mouse intestinal epithelial cells in vivo, for example, TNF-α was found to promote apoptosis in 212	
  

cells of the proximal part of the small intestine, but not in the distal part, with the timing of apoptosis being 213	
  

dose-dependent [18]. TNF-α administration also affected cell proliferation in a region-specific manner. 214	
  

PLSR modelling of signalling and phenotype data revealed that the differential sensitivity of apoptosis 215	
  

was due to quantitative differences in MAPK signalling kinetics between the two intestinal regions and 216	
  

that growth arrest was related to c-Jun and activating transcription factor activation as well as MAPK 217	
  

signalling kinetics [18]. Subsequent experiments validated the hypotheses generated from the original 218	
  

dataset and model. This study demonstrates that our systems-level approach can be successfully applied 219	
  
to in vivo contexts, despite their added complexity compared to in-vitro-cell-culture-based experiments.  220	
  

 221	
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We contend that our approach works irrespective of the experimental system because cells integrate 222	
  

complex contextual information into biochemical activities of signalling pathways that form the basis for 223	
  

phenotypic decisions. The cell signalling network is complex but manageable such that by measuring 224	
  

selected nodes across this network and using mathematical models to infer the network output, we are 225	
  
able to predict the ultimate biological outcome. We therefore anticipate systems-level approaches 226	
  

becoming broadly applicable to the study of cellular signalling. 227	
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 278	
  

Figure legend 279	
  

Logic modelling workflow. A prior knowledge network is derived from literature, databases and/or existing 280	
  

data. Experiments are conducted to systematically perturb and/or measure nodes distributed throughout 281	
  

the network. The data is then used by a model optimization (i.e., data fitting) algorithm to tune the model 282	
  

topology and if applicable, the model parameters, to minimize the discrepancy between the model output 283	
  
and data. The resulting model is then analyzed to derive insight into the biology of the system. The figure 284	
  

is adapted from figures contained in reference [14]. 285	
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