
Genetic Programming as Alternative for Predicting
Development Effort of Individual Software Projects
Arturo Chavoya*, Cuauhtemoc Lopez-Martin, Irma R. Andalon-Garcia, M. E. Meda-Campaña

Department of Information Systems, CUCEA, Universidad de Guadalajara, Zapopan, Jalisco, Mexico

Abstract

Statistical and genetic programming techniques have been used to predict the software development effort of large
software projects. In this paper, a genetic programming model was used for predicting the effort required in individually
developed projects. Accuracy obtained from a genetic programming model was compared against one generated from the
application of a statistical regression model. A sample of 219 projects developed by 71 practitioners was used for
generating the two models, whereas another sample of 130 projects developed by 38 practitioners was used for validating
them. The models used two kinds of lines of code as well as programming language experience as independent variables.
Accuracy results from the model obtained with genetic programming suggest that it could be used to predict the software
development effort of individual projects when these projects have been developed in a disciplined manner within a
development-controlled environment.

Citation: Chavoya A, Lopez-Martin C, Andalon-Garcia IR, Meda-Campaña ME (2012) Genetic Programming as Alternative for Predicting Development Effort of
Individual Software Projects. PLoS ONE 7(11): e50531. doi:10.1371/journal.pone.0050531

Editor: Richard James Morris, John Innes Centre, United Kingdom

Received October 27, 2010; Accepted October 4, 2012; Published November 30, 2012

Copyright: � 2012 Chavoya et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funds were provided by Consejo Nacional de Ciencia y Tecnologia (CONACYT) (http://www.conacyt.mx) and Programa para el Mejoramiento del
Profesorado (PROMEP) (http://promep.sep.gob.mx). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: achavoya@cucea.udg.mx

Introduction

The software process perspectives can be classified as follows

[1]: organizations, teams and people. The performance of a

software development organization is determined by the perfor-

mance of its engineering teams, which in turn is determined by the

performance of the team members, and the latter is, at least in

part, determined by the practices these engineers follow in doing

their work [2]. The levels of software engineering education and

training of each developer can be applied both to small and large

software projects [3]. Software development effort prediction is

one of the three main practices used for training developers at a

individual level; the other two are related to software defects and

software size [2]. Software development prediction techniques

could be classified into the following two general categories:

1) Expert judgment, which implies a lack of analytical

argumentation and aims at deriving estimates based on the

experience of experts on similar projects; this technique is

based on a tacit (intuition-based) quantification step [4].

2) A model-based technique that is based on a deliberate

(mechanical) quantification step; this category could be

divided into the following two subcategories:

a) Models based on statistics whose general form is a linear or

nonlinear statistical regression model [5].

b) Models based on machine learning techniques such as genetic

programming, case-based reasoning, artificial neural net-

works, decision trees, Bayesian networks, support vector

regression, genetic algorithms, and association rules. Among

these methods, the application of genetic programming

represents only the 3% of the techniques in the software

effort prediction field [6].

Based on the assumption that no single technique is the best for

all situations and that a careful comparison of the results of several

approaches is more likely to produce realistic estimates [5], this

study compares the accuracy of the following two models with

each other: one model based on statistical regression, and a model

based on genetic programming. The comparison against a

statistical regression model is made because a regression analysis

for selecting the significant variables should be done as the default

model construction method [7] and because statistical regressions

are the models most frequently compared with machine learning

models [6].

Those two models were generated from data obtained from

individually developed projects using practices of Personal

Software Process (PSP). The use of PSP has proven its usefulness

by thousands of practitioners when applied to individual projects

[2]. The models of this research were generated from a dataset of

219 projects developed by 71 practitioners from the year 2005 to

the year 2009. In order to validate these two models, they were

applied to predict the effort of a new dataset consisting of 130

projects developed by 38 practitioners through the first semester of

2010.

In this work the accuracies of these two models are compared.

This comparison is based upon the two following main stages

when an estimation model is used [8]: (1) the model adequacy

checking or model verification (estimation stage) must be

determined, that is, whether the model is adequate to describe

the observed (actual) data; if so then (2) the model is validated

using new data (prediction stage).

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e50531

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357196608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Genetic Programming Estimates Development Effort

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e50531

The hypothesis to be investigated in this paper is the following:

H1: Effort prediction accuracy of a model based on genetic

programming is statistically equal or better than that obtained by a

multiple linear regression, when new and changed code, reused

code, and programming language experience of developers data

obtained from individually developed projects with personal

practices are used as independent variables.

The foundation for predicting individual effort should be based

on the assumption that unless software engineers have the

capabilities provided by personal training, they cannot properly

support their teams or consistently and reliably produce quality

products. This assumption stems from the application of the

Personal Software Process (PSP), whose practices and methods

have been used by thousands of software engineers for delivering

quality products on a predictable schedule [2]. This study is based

upon the PSP practices described in the Methods section.

1.1 Genetic Programming
Genetic programming (GP) is a field of evolutionary computa-

tion that works by evolving a population of data structures that

correspond to some form of computer programs [9]. These

programs can typically be represented as trees varying in shape

and size, where the internal nodes correspond to functions and the

leaves represent terminals such as constant values and variable

names. The trees can be implemented as the list-based structures

known as S-expressions, with sublists representing subtrees.

Figure 1 presents the flowchart followed by a typical

implementation of the GP algorithm [9]. GP starts with a

population of M randomly generated programs consisting of

functions and terminals appropriate to the problem domain. If the

termination criterion has not been satisfied, each program is then

evaluated according to some fitness function that measures the

ability of the program to solve a particular problem. The fitness

Figure 1. Flowchart followed by a typical implementation of the GP algorithm. Symbols are as follows: Gen = Generation counter; i:
Individual counter; M: Population size; Pr: Probability of reproduction; Pc: Probability of crossover.
doi:10.1371/journal.pone.0050531.g001

Figure 2.Example of crossover between two parental trees showing the corresponding S-expressions. A) Before crossover. B) After
crossover. Arrows point at the root nodes of the subtrees that are to be exchanged. The subexpressions corresponding to the subtrees are shown in
boldface.
doi:10.1371/journal.pone.0050531.g002

Genetic Programming Estimates Development Effort

PLOS ONE | www.plosone.org 3 November 2012 | Volume 7 | Issue 11 | e50531

function typically evaluates a problem against a number of

different fitness cases and the final fitness value for the program is

the sum or the average of the values of the individual fitness cases.

GP normally works with a standardized fitness function in which

lower non-negative values correspond to better values, usually with

zero as the best value.

After all programs in the population have been evaluated, a

selection is made among the individuals in the population to

produce the next generation. This selection is usually made

proportionate to fitness so that programs with better fitness values

have a higher probability of being selected. The Darwinian

selection of the fittest individuals in the population is the biological

basis upon which the various evolutionary computation paradigms

are inspired. A number of operations can then be applied to

selected individuals to provide for variability in the new

generation. The reproduction operation consists of selecting a

fixed percentage of individuals to pass unchanged to the next

generation according to a certain probability of reproduction (Pr).

In the crossover operation, two individuals are selected according

to a probability of crossover (Pc) to function as parents to produce

two offspring programs. In each of the parents a node in the

corresponding trees is selected randomly to constitute a crossover

point. The subtrees that have the selected nodes as roots are then

exchanged generating two new individuals that are usually

different from their parents. Figure 2A shows an example of two

parental trees before crossover with the corresponding S-expres-

sion below each tree; arrows point at the root nodes of the subtrees

chosen to be exchanged, with the corresponding subexpressions

shown in boldface. Figure 2B presents the generated offspring trees

resulting from the exchange of the subtrees whose root node is

pointed at by an arrow. The exchange of subtrees corresponds to

the exchange of the sublists shown in boldface below each tree.

A fixed portion of the next generation is produced using the

crossover operation, having the possibility of forcing that a fixed

percentage of the selected nodes correspond to functions, whereas

the rest correspond to either functions or terminals. Unlike genetic

algorithms, the mutation operation is normally not necessary in

GP, as the crossover operation can provide for point mutation

when two nodes corresponding to terminals are selected for

exchange in the parents.

The process of evaluating, selecting and modifying individuals

to produce a new generation is continued until a termination

criterion is satisfied. The GP run usually terminates when either a

predefined number of generations has been reached or a desired

individual has been found.

1.2 Measurement of Software Projects
Source lines of code (LOC) represent one of the two main

measures for sizing software projects [10]. There are two measures

of source code size: physical source lines and logical source

statements. The count of physical lines gives the size in terms of

the physical length of the code as it appears when printed [11]. In

this study, two of the independent variables are New and Changed

(N&C) as well as Reused code and they were considered as

physical LOC. N&C is composed of added and modified code; the

added code is the LOC written during the current programming

process, whereas the modified code is the LOC changed in the

base program when modifying a previously developed program.

The base program is the total LOC of the previous project,

whereas the reused code is the LOC of previously developed

programs that are used without any modification [12]. A coding

standard should establish a consistent set of coding practices that is

used as a criterion when judging the quality of the produced code

[12]. Hence, it is necessary to always use the same coding and

counting standards. The software projects of this study followed

those two guidelines.

After product size, people factors –such as experience on

applications–, platforms, languages and tools have the strongest

influence in determining the amount of effort required to develop

a software product [5]. Programming language experience is used

in this study as a third independent variable, which was measured

in months as units. Development effort was measured in minutes.

1.3 Accuracy Criterion
Common criteria for the evaluation of prediction models have

been the Magnitude of Relative Error (MRE) and the Magnitude

of Error Relative to the estimate or MER [13]. MRE and MER

are defined as follows

MREi~
Actual Efforti�Predicted Efforti

�� ��
Actual Efforti

MERi~
Actual Efforti�Predicted Efforti

�� ��
Predicted Efforti

Table 1. MMER comparison.

Study
SS for
GM SS for VMTotal Best MMRE

SR GP

Burguess et al. [17] 63 18 81 0.46 0.45

Lefley et al. [18] 149 15 154 0.45 0.38

Shan et al. [20] 211 212 423 1.94 1.91

Dolado et al. [20] 33 15 48 0.30 0.34

SS: Sample size measured in number of projects; GM: Generation of Models; VM:
Validation of models; SR: Statistical regression; GP: Genetic programming.
doi:10.1371/journal.pone.0050531.t001

Table 2. Counting standard.

Count type Type

Physical/logical Physical

Statement type Included

Executable Yes

Non-executable

Declarations Yes (one per text line)

Compiler directives Yes (one per text line)

Comments No

Blank lines No

Delimiters

{ and} Yes

doi:10.1371/journal.pone.0050531.t002

Genetic Programming Estimates Development Effort

PLOS ONE | www.plosone.org 4 November 2012 | Volume 7 | Issue 11 | e50531

The MRE and MER values are calculated for each observation

i whose effort is predicted. The aggregation of MRE and of MER

over multiple observations (N) can be achieved through their mean

(MMRE and MMER) as follows:

MMRE~(1=N)
XN

i~1
MREi

MMER~(1=N)
XN

i~1
MERi

Intuitively, MER seems preferable to MRE since MER

measures the error relative to the estimate. Results of MMER in

[13] had better results than MMRE; this fact is the reason for

using MMER as our main criterion.

The accuracy of a prediction technique is inversely proportional

to its MMRE or MMER. In a number of papers, an

MMRE#0.25 has been considered as acceptable, however,

authors who have proposed this value [14] neither present any

reference to studies nor any argumentation providing evidence

[15]. On the other hand, a reference for an acceptable value of

MMER has not been reported.

1.4 Related Work
Genetic programming (GP) has already been applied to large

projects [16]. However, we did not find any study related to its

application for predicting the software development effort of

individually developed projects in laboratory learning environ-

ments, and whose independent variables had been related to the

three ones described in Section 1.2. Some of the methods reported

in previous publications resemble the approach taken in the

present work in which a mathematical model that best fits the data

is searched. The main difference of the present work with previous

reports lies in the genetic programming parameters they used and

the data on which they applied the genetic programming

algorithm. A GP algorithm was implemented in [17] having a

population size of 1000 individuals reproducing for 500 genera-

tions during 10 runs only. They used a dataset of 81 software

projects that a Canadian software company developed in the late

1980s. They suggested that the GP approach needed further study

to fully exploit its advantages. On the other hand, GP was used in

[18] with the goal of comparing the use of public datasets against

company-specific ones. The techniques they used (genetic

programming, artificial neural networks and multiple linear

regression) were slightly more accurate with the company-specific

database than with publicly available datasets. They used the same

genetic programming parameters as in [17]. They concluded that

companies should base effort estimates on in-house data rather

than on public domain data. GP was compared in [19] against

artificial neural networks and multiple linear regression using a

number of publicly available datasets. Using less individuals in the

GP population (from 25 to 50) than normally employed in the

typical implementation of the algorithm (several hundred), they

found that although GP was better at effort prediction than neural

networks and multiple linear regression with some datasets, in

general none of the techniques they tested rendered an appropri-

ate effort estimation model. These authors concluded that the

datasets used to build a prediction model had a great influence in

the ability of the model to provide adequate effort estimation. A

different approach was used in [20] with GP; instead of finding the

mathematical model that best fitted the data, they developed a

grammar-based technique they called Grammar Guided Genetic

Programming (GGGP) and compared it against simple linear

regression. They used the data of 423 software development

projects from a public repository and randomly divided them into

a training set of 211 projects and a test set of 212 projects. The

results obtained using the GGGP technique were not very

encouraging, as the effort prediction they found was not very

accurate.

Table 1 presents the accuracy by model from the mentioned

studies. These four analyses used more than one accuracy

criterion; the MMRE was always amongst them, whereas none

of them used MMER. The use of the ‘‘best’’ MMRE in Table 1 is

because the authors of [19] used five datasets, where one of them

was an approximation of the actual one; in contrast, Table 1

presents only the best MMRE of the others four datasets. In

Table 1, GP had the best MMRE in three of the four studies,

although the best of them had only a value of 0.34.

Finally, GP was also applied in [21] for predicting the effort of

large projects, and their results showed that GP was better than

case-based reasoning and comparable with statistical regression.

Methods

Experiments for this study were done within a controlled

environment having the following characteristics:

1. All of the developers were experienced and were working for

some software development company. However, none of them

had previously taken a course related to personal practices for

developing software at the individual level.

Table 3. ANOVA of Multiple Linear Regression Analysis.

Source Sum of squares Degrees of freedom Mean square F-ratio p-value

Model 124825 3 41608.5 74.99 0.000

Residual 119299 215 554.88

Total 244125 218

doi:10.1371/journal.pone.0050531.t003

Table 4. Individual analysis of parameters.

Parameter Estimate
Standard
error t statistic p-value

Constant 62.5307 4.68365 13.3509 0.0000

N&C 1.1025 0.0766589 14.3819 0.0000

Reused 20.189257 0.0623356 23.0361 0.0027

PLE 20.477072 0.102896 24.63644 0.0000

doi:10.1371/journal.pone.0050531.t004

Genetic Programming Estimates Development Effort

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e50531

2. All developers were studying a graduate program related to

computer science.

3. The kind of the developed projects had a similar complexity as

those suggested in [12]. From a set of 18 projects, a subset of

seven projects was randomly assigned to each of the

practitioners. Description of these 18 projects is presented in

[22].

4. Each developer wrote seven project assignments. Only the last

four of the assignments of each developer were selected for this

study. The first three projects were not considered because they

had differences in their process phases and in their logs,

whereas the last four projects were based on the same logs and

had the following phases: plan, design, design review, code,

code review, compile, testing and postmortem.

5. Each developer selected his/her own imperative programming

language whose coding standard had the following character-

istics: each compiler directive, variable declaration, constant

definition, delimiter, assign sentence, as well as flow control

statement was written in one line of code.

6. Since a coding standard establishes a consistent set of coding

practices that is used as a criterion for judging the quality of the

produced code [12], the same coding and counting standards

were used in all projects. The projects developed during this

study followed these guidelines. All projects adhered to the

counting standard shown in Table 2.

7. Developers had already received at least a formal course on the

object oriented programming language that they selected to be

used through the assignments, and they had good program-

ming experience in the chosen language. The sample for this

study only involved developers whose projects were coded in

C++ or JAVA. Comparisons for new and changed (N&C) and

effort (shown in Appendix S1) were done between the two

languages. The p-value for N&C was equal to 0.90, whereas

that for effort was 0.79, i.e., for these two variables there was

not a statistically significant difference between the two

programming languages at the 95.0% confidence level. The

assumptions of residuals were analyzed and achieved (inde-

pendent samples, equal standard deviations, and normal

populations).

8. Because this study was an experiment with the aim of reducing

bias, we did not inform the developers about our experimental

goal.

9. Developers filled out a spreadsheet for each project and

submitted it electronically for examination.

10. Each PSP course was taught to no more than fifteen

developers.

11. Developers were constantly supervised and advised about

their process.

12. The code written in each project was designed by the

developers to be reused in subsequent projects.

13. Data used in this study are from those practitioners whose

data for all seven exercises were correct, complete, and

consistent.

The following two subsections describe how the statistical

regression and genetic programming models were generated from

the actual data presented in Appendix S1. These models were

generated from a dataset of 219 projects developed by 71

practitioners from the year 2005 to the year 2009.

2.1 Multiple Linear Regression
The following multiple linear regression equation considering

New and Changed (N&C), Reused code and Programming

Language Experience (PLE) was generated:;

Figure 3. Tree representation of the LISP program corresponding to the best solution. Variables are as follows: X1 = New & Changed LOC,
X2 = Reused LOC, and X3 = Programming Language Experience in months. Constant values are as follows: A = 1.1211268, B = 1.5219285,
C = 23.4280592, and D = 59.091568.
doi:10.1371/journal.pone.0050531.g003

Table 5. MMER by model obtained from verification stage.

Model MMER

Multiple linear regression 0.25

Genetic programming 0.25

doi:10.1371/journal.pone.0050531.t005

Genetic Programming Estimates Development Effort

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e50531

Effort~62:5307z(1:1025�N C){(0:189257�Reused)

{(0:477072�PLE)

It has been suggested that an acceptable value for a coefficient

of determination is r2$0.5 when it comes to software development

effort estimation [12]. This equation had an r2 = 0.51. An analysis

of variance (ANOVA) for this equation (Table 3) shows a

statistically significant relationship between the variables at a

99% confidence level. In order to determine whether the model

could be simplified, a parameter analysis of the multiple linear

regression was done. Table 4 shows the results for this analysis; the

highest p-value on the independent variables is 0.0027, corre-

sponding to reused code. Since this p-value is less than 0.05,

reused code is statistically significant at a 95% confidence level.

Consequently, the independent variable of reused code was not

removed. Hence, this variable had to be considered for its

evaluation.

2.2 Genetic Programming Model
A LISP implementation of the GP algorithm was used for

generating a model to predict software development effort. The

following standard parameters were used on all runs [9]: the initial

population consisted of 500 S-expressions randomly generated

using the ramped half-and-half generative method. In this method,

an equal number of trees are created with a depth that ranges from

2 to the maximum allowed depth (6 in this work) for new

individuals. For each depth, half of the programs correspond to

full trees, and the other half consist of growing trees of variable

shape. Maximum depth for individuals after the application of the

crossover operation was 17. Reproduction rate was 0.1, whereas

crossover rate was 0.7 for function nodes and 0.2 for any node.

Finally, each GP run was allowed to evolve for 50 generations and

the individual with the best fitness value was selected.

The set of terminals was defined by the three independent

variables X1, X2 and X3 corresponding to New & Changed LOC,

Reused LOC, and Programming Language Experience in months,

respectively. Additionally, terminals also consisted of floating-point

constants randomly generated from the range [25, 5).

The set of functions consisted of the arithmetic operators for

addition (+), subtraction (2) and multiplication (*), along with the

following protected functions shown in prefix notation. To avoid

division by zero, the protected division % was defined as follows:

% x yð Þ~
1 y~0

x=y y=0

�

To account for non-positive variable values, the protected

logarithmic function RLOG was defined as:

RLOG xð Þ~
0 x~0

ln xj j x=0

�

Table 6. MER ANOVA (verification of models).

Source Sum of squares Degrees of freedom Mean square F-ratio p-value

Between groups 0.00029 1 0.00029 0.01 0.9176

Within groups 12.0371 436 0.02760

Total 12.0374 437

doi:10.1371/journal.pone.0050531.t006

Figure 4. Plots of MER ANOVA (verification stage). A) The residuals should fall roughly in a horizontal band centered and symmetrical about
the horizontal axis in the plot; GP: Genetic programming, MLR: Multiple linear regression. B) A normal probability plot of the residuals should be
roughly linear.
doi:10.1371/journal.pone.0050531.g004

Genetic Programming Estimates Development Effort

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e50531

Finally, the protected exponential function REXP was defined as:

REXP xð Þ~
0 xj j§20

ex xj jv20

�

where the boundary value 20 was arbitrarily chosen to avoid

over- and underflows during evaluation.

Since the standardized fitness function f is required to consist of

non-negative values, with zero as the best match, this function was

defined as

f ~
X

Actual Efforti{Predicted Effortij j

The MMER value was not considered an appropriate fitness

measure, as the denominator in the MER formula can give

negative values if the estimated effort is negative itself.

Results and Discussion

3.1 Genetic Programming Experiments
One hundred experiments each consisting of 1000 GP runs

were made. From each experiment, the run with the highest fitness

value (lowest f value) was selected and finally an individual

program from all experiments was selected according to how well

it predicted software development effort on both the verification

and validation datasets.

The selected program from the 100,000 runs is presented next

in LISP notation:

(+ (% (+ (% (+1.1211268 X2) (RLOG 24.5810513)) X3)

(+1.1211268 24.549186))

(+ (RLOG X1) (+ X1 (REXP 4.079088))))

After evaluation of constant subexpressions, the following

equivalent program was obtained:

(+ (% (+ (% (+1.1211268 X2) 1.5219285) X3)

23.4280592)

(+ (RLOG X1) (+ X1 59.091568)))

The tree representation of this program is shown in Figure 3.

3.2 Verification of Models
Once the multiple linear regression equation and the genetic

programming algorithm (presented in Sections 2.1 and 2.2,

respectively) were applied to the original dataset (see Appendix

S1), a MER by software project as well as a MMER by model was

then calculated. Table 5 presents the MMER by model once they

were generated and applied to the set of 219 projects.

The ANOVA for MER of the projects (Table 6) shows that

there is not a statistically significant difference amongst the

accuracy of prediction for the two models at the 95.0% confidence

level.

The following three assumptions of residuals for MER ANOVA

were analyzed:

1) Independent samples: in this study, practitioners separately

developed each software project; hence the data are

independent.

2) Equal standard deviations: In a plot of this kind the residuals

should fall roughly in a horizontal band centered and

symmetrical about the horizontal axis (as shown in

Figure 4A), and

3) Normal populations: A normal probability plot of the

residuals (the Shapiro-Wilk test) should be roughly linear (as

shown in Figure 4B).

3.3 Validation of Models
A second group involving thirty-eight practitioners developed

130 software projects through the first semester of 2010 based on

the same characteristics of the experiment described in the

Methods section. This new sample was used for validating the two

models. In Appendix S2, actual data from these projects are

presented. The MMER results by model are shown in Table 7. In

accordance with the ANOVA for MER models (Table 8), there is

not a statistically significant difference between the prediction

accuracy for the two models at the 95.0% confidence level.

Figures 5A and 5B show respectively that residuals related to equal

standard deviations as well as with normality data of this ANOVA

were met.

Conclusions
The levels of software engineering education and training can

be classified into small and large projects. This research focused its

interests on personal training based on individually developed

projects and using PSP whose practices and methods are used by

thousands of developers for delivering quality products on

predictable schedules.

Estimation and prediction of the software development effort

were done based on an accuracy comparison between the models

obtained with multiple linear regression (MLR) and genetic

programming.

Table 7. MMER by model obtained from the validation stage.

Model MMER

Multiple linear regression 0.22

Genetic programming 0.21

doi:10.1371/journal.pone.0050531.t007

Table 8. MER ANOVA (validation of models).

Source Sum of squares Degrees of freedom Mean square F-ratio p-value

Between groups 0.0006 1 0.00067 0.03 0.8631

Within groups 5.8732 258 0.02276

Total 5.8738 259

doi:10.1371/journal.pone.0050531.t008

Genetic Programming Estimates Development Effort

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e50531

The models used in this research were generated from a dataset

of 219 projects developed by 71 practitioners from the year 2005

to the year 2009 and then these two models were applied for

predicting the effort of a new dataset that consisted of 130 projects

developed by 38 practitioners through the first semester of 2010.

Three independent variables were used for generating the two

models; two of those variables were related to source code size and

the third one was related to the developers’ programming

language experience.

The accepted hypothesis was the following:

H1: Effort prediction accuracy of a model based on genetic

programming is statistically equal than that obtained by a multiple

linear regression, when new and changed code, reused code, and

programming language experience of developers data obtained

from individually developed projects with personal practices are

used as independent variables.

This hypothesis suggests that genetic programming could be

used for predicting the development effort of individual projects

when they have been developed using personal practices.

In this study, the GP technique used was proposed based on the

following reasons:

1) Software organizations involve teams of developers and the

performance of these teams is determined in part by the

performance of individuals. One of the main activities of a

developer is the prediction of his/her effort for developing

small projects, which will be part of a larger system. Most

previous studies involving GP have applied it for the

development effort prediction of large projects, whereas its

application to individual software projects has been limited.

2) It has been suggested that more than one technique should be

used for predicting software development effort [5].

3) GP is able to model non-linear behaviors, which are common

when independent variables are correlated to development

effort of software projects [23].

Although machine learning techniques have been receiving

increasing attention in software development effort prediction

research, empirical studies on the application of GP are still scarce

[6]. Furthermore, previous studies have been inconclusive in

judging whether or not GP is an effective technique for software

development effort prediction. The reasons for this are: (1) while

GP optimizes one accuracy measure, it degrades others, and (2)

the experimental procedures used among previous studies varied,

with different strategies used for sampling the training and the

testing sets [16].

In addition to the results obtained in [16], the use of GP as an

alternative could also be supported by the following reasons

obtained from a study where GP was compared to other machine

learning techniques, namely neural networks (NN), support vector

regression (SVR), case-based reasoning (CBR), decision trees (DT),

and Bayesian networks (BN) [6]:

1) GP showed acceptable prediction accuracy: it was only

outperformed by NN and SVR; it was equal in prediction

accuracy to CBR and DT, and it was better than BN.

2) GP had lesser variation in its prediction accuracy than NN,

SVR, CBR, DT and BN.

The small number of studies where comparisons between GP

and regression models have been done limits the generalization of

the comparison results [6] [16]; hence, this study contributes to

alleviate this problem.

Future research involves a predictive accuracy comparison

applying genetic algorithms as well as other optimization

techniques for data obtained from large systems built by teams

of developers.

Supporting Information

Appendix S1 Data of projects for generating and
verifying models.

(DOC)

Appendix S2 Data of projects for validating models.

(DOC)

Author Contributions

Conceived and designed the experiments: AC CL-M MEM-C. Performed

the experiments: AC CL-M. Analyzed the data: AC CL-M IRA-G. Wrote

the paper: AC CL-M IRA-G MEM-C.

Figure 5. Plots of MER ANOVA (validation stage). A) The residuals should fall roughly in a horizontal band centered and symmetrical about the
horizontal axis in the plot; GP: Genetic programming, MLR: Multiple linear regression. B) A normal probability plot of the residuals should be roughly
linear.
doi:10.1371/journal.pone.0050531.g005

Genetic Programming Estimates Development Effort

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e50531

References

1. Humphrey W (2002) Three Process Perspectives: Organizations, Teams, and

People. Journal of Annals of Software Engineering 14: 39–72. DOI: 10.1023/
A:1020593305601.

2. Rombach D, Münch J, Ocampo A, Humphrey WS, Burton D (2008) Teaching
disciplined software development. Journal of Systems and Software 81: 747–763.

DOI: 10.1016/j.jss.2007.06.004.

3. Bagert DJ, Hilburn TB, Hislop G, Lutz M, McCracken M et al. (1999)
Guidelines for Software Engineering Education. Carnegie Mellon University.

CMU/SEI-99-TR-032.
4. Jørgensen M (2007) Forecasting of Software Development Work Effort:

Evidence on Expert Judgment and Formal Models. Journal of Forecasting 23:

449–462.
5. Boehm B, Abts C, Chulani S (2000) Software development cost estimation

approaches: A survey. Journal of Annals of Software Engineering 10: 177–205.
DOI: 10.1023/A:1018991717352.

6. Wen J, Li S, Lin Z, Hu Y, Huang C (2012) Systematic literature review of
machine learning based software development effort estimation models.

Information and Software Technology 54: 41–59. DOI:10.1016/j.

infsof.2011.09.002.
7. Kitchenham BA, Mendes E, Travassos GH (2007) Cross versus Within-

Company Cost Estimation Studies: A Systematic Review. IEEE Transactions
Software Engineering 33: 316–329.

8. Montgomery DC, Peck EA, Vining GG (2012) Introduction to Linear

Regression Analysis. Wiley. 672 p.
9. Koza JR (1992) Genetic Programming: On the Programming of Computers by

Means of Natural Selection. The MIT Press. 840 p.
10. Sheetz SD, Henderson D, Wallace L (2009) Understanding developer and

manager perceptions of function points and source lines of code. The Journal of
Systems and Software 82: 1540–1549.

11. Park RE (1992) Software Size Measurement: A Framework for Counting Source

Statements. Software Engineering Institute, Carnegie Mellon University.
12. Humphrey WS (1995). A Discipline for Software Engineering. Addison Wesley. 816 p.

13. Foss T, Stensrud E, Kitchenham B, Myrtveit I (2003) A Simulation Study of the
Model Evaluation Criterion MMRE. IEEE Transactions on Software

Engineering 29(11): 985–995.

14. Conte SD, Dunsmore HE, Shen VY (1986) Software Engineering Metrics and

Models. Benjamin/Cummings Pub Co. 403 p.

15. Jørgensen M (2007) A Critique of How We Measure and Interpret the Accuracy

of Software Development Effort Estimation. In: The First International

Workshop on Software Productivity Analysis and Cost Estimation (SPACE’07).

Information Processing Society of Japan, 15–22.

16. Afzal W, Torkara R (2011) On the application of genetic programming for

software engineering predictive modeling: A systematic review. Journal of Expert

Systems with Applications 38: 11984–11997. DOI: 10.1016/j.eswa.2011.03.041.

17. Burguess CJ, Lefley M (2001) Can genetic programming improve software effort

estimation? A comparative evaluation. Journal of Information and Software

Technology 43: 863–873.

18. Lefley M, Shepperd M (2003) Using genetic programming to improve software

effort estimation based on general data sets. In: Lecture Notes In Computer

Science. Springer, 2477–2487. DOI: 10.1007/3-540-45110-2_151.

19. Dolado JJ, Fernández L (1998) Genetic Programming, Neural Networks and

Linear Regression in Software Project Estimation. In: International Conference

on Software Process Improvement, Research, Education and Training. British

Computer Society, 157–171.

20. Shan Y, McKay RI, Lokan CJ, Essam DL (2002) Software project effort

estimation using genetic programming. In: Proceedings of the IEEE 2002

International Conference on Communications, Circuits and Systems, volume 2,

1108–1112.

21. Ferrucci F, Gravino C, Oliveto R, Sarro F (2010) Genetic Programming for

Effort Estimation: An Analysis of the Impact of Different Fitness Functions. In:

The Second International Symposium on Search Based Software Engineering,

89–98.

22. Lopez-Martin C (2011) A fuzzy logic model for predicting the development

effort of short scale programs based upon two independent variables. Journal of

Applied Soft Computing 1(1): 724–732. DOI: 10.1016/j.asoc.2009.12.034.

23. Hsu CJ, Huang CY (2011) Comparison of weighted gray relational analysis for

software effort estimation. Software Quality Journal 19(1): 165–200.

DOI:10.1007/s11219-010-9110-y.

Genetic Programming Estimates Development Effort

PLOS ONE | www.plosone.org 10 November 2012 | Volume 7 | Issue 11 | e50531

