
Competitive Decision Algorithm for the Rooted Delay-constrained Minimum Spanning
Tree

Xiaohua Xiong

College of Computer and Information
Shanghai Second Polytechnic Univ.

Shanghai, China
xhxiong@sspu.cn

Xuemin Chen
Dept. of Engineering Technology

Texas Southern University
Houston, USA

chenxm@tsu.edu

Aibing Ning
 School of Management

University of Shanghai for Science
and Technology, Shanghai, China

nab@ usst.edu.cn

Abstract— In this paper, we investigate a rooted delay-
constrained minimum spanning tree (RDCMST) problem.
RDCMST seeks to find a minimum spanning tree in which no
path from a specified root node to any other nodes may exceed
a given delay bound. RDCMST is a NP-hard combinatorial
optimization problem arising both in scientific research and
practical engineering. Competitive decision algorithm (CDA) is
a newly proposed meta-heuristic algorithm for solving complex
combinatorial optimization problems. A new CDA algorithm
for RDCMST problem is proposed in this paper. Restricted
candidate list (RCL) and randomly choosing resource are
introduced in CDA for the first time. We reduce the search
space based on the mathematical properties of RDCMST. To
evaluate the algorithm, numerical computational experiments
are performed.

Keywords-competitive decision algorithm; spanning tree;
rooted delay constrained; competitiveness function; Decision
function

I. INTRODUCTION
Rooted delay-constrained minimum spanning tree

(RDCMST) problem is a combinatorial optimization
problem. The task is to find a spanning tree for a given graph
in which the edges have cost and delay [1]. No path from a
specified root node to any other nodes may exceed a given
delay bound, and the total costs shall be a minimum. More
formally, we are given a graph G=(V, E) with a set of n
nodes V, a set of m edges E, a cost function , a
delay function , a fixed root node

+→ REc :
+→ REd : Vs∈ and a

delay bound . An optimal solution to the RDCMST
problem is a spanning tree , with

minimum cost , subject to

, where P(s, v) denotes the unique path

from the specified root node s to a node

0>B
EEEVT ⊆= '),',(

∑ ∈
=

'
)()(

Ee
ecTc

∑ ∈
≤

),(
)(

vsPe
Bed

Vv∈ . The
RDCMST problem is NP-hard because a special case called
hop-constrained minimum spanning tree problem,
where , , is NP-hard [2]. 1)(=ed Ee∈∀

RDCMST problem arises in a number of application
scenarios, such as in network design and transportation
design. An example would be a shipment organization with a
central storage depot providing its customers with goods

within a given period of time, i.e. perishable products.
Another example is real-time central broadcasting service
that is required to transmit its information to all receivers
with a certain delay boundary. Real-time traffic is usually
bandwidth-intensive and requires quality of service (QoS)
guarantees from the underlying network. The delay
constraint is an important QoS requirement because most
real time applications are delay sensitive.

In the recent papers, the researches about solving
methods of RDCMST problem developed rapidly [3-9].
Exact approaches to RDCMST problem have been examined
by Gouveia et.al. in [3], but it only can solve small graphs
with less than 100 nodes. A constructive heuristic was
presented in [4] based on Prim’s algorithm to find a
RDCMST. The performance will affected greatly by the
cheap cost edge with large delay. So a more de-centralized
constructive heuristic approach by applying the basic
concept of Kruskal’s algorithm was presented in [5]. And
some meta-heuristic approaches based on greedy randomized
adaptive search procedure (GRASP) and variable
neighborhood were presented to solve RDCMST problem
[6-9].

In this paper, we propose a competitive decision
algorithm (CDA) to solve the RDCMST problem. CDA is a
newly meta-heuristic algorithm for solving complex
optimization problems. The principle and main common
process of algorithm has been showed in [10]. CDA has
already been proved to be an effective algorithm to solve
some constrained spanning tree problems, for example,
degree-constrained minimum spanning tree [11], multi-
object minimum spanning tree [12] and minimum ratio
spanning tree [13]. But till now, CDA hasn’t been applied to
solve the RDCMST problem.

The rest of the paper is organized as follows. In section 2,
a general introduction of CDA is presented. In section 3, a
competitive decision algorithm for RDCMST will be
discussed in detail. Numerical illustrations are demonstrated
in section 4 and conclusions follow in the final section.

II. THE COMPETITIVE DECISION ALGORITHM

A. Algorithm Introduction
Nature is the source of inspiration. Applying the

characteristics and mechanism from nature into solving the
practical problems has turned out to be a successful way.

International Conference on Artificial Intelligence and Software Engineering (ICAISE 2013)

© 2013. The authors - Published by Atlantis Press 82

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357196542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Many heuristic algorithms have shown to be perfect
examples, such as ant-colony algorithm, particle swarm
algorithm and genetic algorithm.

Competitive decision algorithm is a newly proposed
meta-heuristic algorithm for solving combinatorial
optimization problems [10-19]. It analogizes the natural
selection process in the real world by recognizing that an
entity with more resource will have a high chance to survive.
Specially, the algorithm considers multiple competitors and
a common resource. Each competitor has a competitiveness
function (CF) where a large CF implies a high chance of
gaining more resource. There is a decision function (DF)
that assigns resources to the competitors. In the algorithm,
resources will be assigned and reallocated among the
competitors through multiple iterations where a strong
competitor may deprive another weak competitor of some
resource. Any status of resource assignment represents a
solution of the problem, and the equilibrium status without
any further resource transfer will be the final solution.

CDA has been shown effective in a broad range of
optimization problems, especially those NP-hard problems,
for example, large-scale traveling salesman problem [15], 0-
1 knapsack problem and its variants [16-18], and vehicle
routing problem and its variants [14, 19].

B. Basic Concepts of CDA
Let one or multiple competitor(s) to enter for the

competition of resources. According to the decision
making principle, some competitor(s) obtain resources
and increase their strength, some become weak, or even
die because lose their resource. The main factors
influencing the result of CDA are:
(1) Initial layout

It is the status of resource assignment among all the
competitors before each round of competition.
(2)Competitiveness function (CF)

It stands for the competitiveness of the competitor on
resource. Generally speaking, a larger value CF means
more liable to possess resource.
(3) Decision function (DF)

 It acts like a referee. The role of it is to assign
resource.
(4)Resource exchange rule

 When competition enters in equilibrium status,
resource exchange rule will deprive some resource from
one or some competitor(s) and assign the resource to
other competitor(s). The process will make the
competition entering a new non-stable status.

III. CDA FOR RDCMST

A. Property of RDCMST
Property 1: All the edges with a delay higher
than the delay bound B can not be part of a feasible solution.

Ee∈)(ed

It is easy to prove that any edge with a higher delay than
delay bound will not be included in any feasible solution of
RDCMST. Otherwise it will violate the delay constraint.
Using Property 1 can discard these edges safely to reduce
the search space.

Property 2: Edges Ejie ∈=),(which satisfy these
conditions:

BedjsdBedisd >+∧>+)(),()(),(minmin ,
would exceed the bound in all possible trees and can not be
included in any feasible solution where

Vvedvsd
vsPevsp ∈∀= ∑ ∈

,)(min),(
),(),(min .

It is easy to prove that edges satisfying these condition
can not included in any feasible solution because there isn’t
any path can arrive at node i or node j with less than or
equal to the delay bound. Using Property 2 these edges can
be discarded safely to reduce the search space further.

Property 3: For a node Vv∈ , if then there is
no feasible solution for RDCMST.

Bvsd >),(min

For a given node v, if there isn’t any path can arrive at it
with less than or equal to delay constraint, then node v can
not be included in any spanning tree. So the entire problem
has no feasible solution.

B. Notations
The following notations will be used to formulate the

CDA for RDCMST problem.
),(vsparent : parent node of node v upstream to root node s.

),(vsd : sum of all the edges’ delay in unique path from the
specified root node s to node . v

)(vaysubtreedel : delay caused by sub-tree rooted at node v.
),(min vsd : the shortest delay path from the specified root

node s to node . v
),(jiarrive : bool value of the adjacent relationship between

node i and node j. If edge (i, j) is included then
=true, otherwise = false.),(jiarrive),(jiarrive

),(_ jiarrivet ： the transitive, symmetric closure [1] of
arrive. indicates whether there has a path
from node i to node j in current solution.

),(_ jiarrivet

flag(i): a bool value identifying node i in or not in the tree.
L(i)：all the edges incident to node i and can be formulated
as:

})(
),(_),(|),{()(

truejflag
falsejiarrivetEjijiiL

=∧
=∧∈=

dw(i): the edge in L(i) with the minimal sum value of cost
and delay.

dw_j(i)： the node incident to edge dw(i).
power(i)： the CF value on the edges incident to node i.

83

RDCMST is a connected sub-graph of original graph
with n nodes and n-1 edges and it contains no cycle. All the
edges in original graph can be treated as resources. There is
only one competitor, namely C, which is the graph with all
the nodes and no edges on it. So when the algorithm begins,
the virtual competitor N occupies all the resources.
Competitor C will try to get n-1 edges from N according to
competitive force function and decision function. During the
process of adding edge to competitor C, there should be no
cycle in C. And the initial layout competitor C hasn’t any
edge. At the end of one competition, there will be n-1 edges
on C without violating the delay bound.

C. Competitiveness Function
In an attempt to estimate how promising an edge is, it is

more likely that an edge with comparatively low cost and
low delay is part of an optimal solution than an edge with
very low cost but high delay. So the CF is defined as:

⎩
⎨
⎧

∞−
=<=+−

=
otherwise

idwjBjidisdidw
ipower

)(,),(),()(
)(

D. Decision Function
There are two kinds of decision function.
In previous works about CDA, CDA always is a

deterministic algorithm. Decision function always chooses
the node with the biggest power(i). This is a greedy policy
and the result of CDA is deterministic no matter how much
times running the algorithm.

In order to extending the search space, a restricted
candidate list (RCL) and randomly choosing resources are
first introduced in CDA. First, all the nodes are sorted by
power(i). Then construct the RCL from the first k elements
whose power(i) is greater than −∞ . k is set no more than 5.
Finally randomly choose one node from the RCL. The
effect of deterministic DF and random DF will be evaluated.

E. CDA for RDCMST
From the above analysis, the competitive decision

algorithm for RDCMST problem may be sketched as:

Algorithm: CDA-RDCMST
Step 1: Pre-process procedure

Construct the shortest delay path of each node.
Discard those edges satisfying conditions in Property 1

and 2.
If the shortest delay path from root to node v is greater

than delay bound, no feasible solution can be found and exit
the algorithm.
step 2: Competition and decision making

p_count=1; // number of competitiveness function
d_count=2; // number of decision function
la_count=1; //number of initial layout

for p=1 to p_count
for d=1 to d_count

for la =1 to la_count
 { Initialize arrive and t_arrive;

 Compute the dw(i,k), dw_j(i,k) of each node i
(31,1 ≤≤≤≤ kni);

Compute the power(i) according to the pth
competitiveness function;

Construct the RCL according the power(i);
 Random choose one node max_power_id from RCL;
 flag(s)=true; partent(s)=nil; d(s,s)=0;

 line_count=0；// the number of edges in current solution
Step 2.1: Phase of resource allocation
repeat

dot_1=max_power_id;
dot_2= dw _j(dot_1, 1);

 line_count= line_count+1;
arrive(dot_1, dot_2)= true; arrive(dot_2, dot_1)= true;
for i=1 to n
if (t_arrive (i, dot_1)=true) or(i=dot_1) then

for j=1 to n
 if (t_arrive(j, dot_2)=true) or(j=dot_2) then

if (i<>j) then
{ t_arrive(i, j)=true; t_arrive(j, i)=true;}

Update the information of node max_power_id,
including the parent, delay value from root node to
max_power_id.

Re-compute the competitiveness function for
according the pth competitiveness force function;
 Get the max_power_id according to decision function.

until (line_count=n-1) or no more node can be found;
Compute the sub-tree delay of each node.

Step 2.2: modify the solution to meet delay bound
If line_count < n-1 then call relaxDelay procedure.

Step 2.3: Phase of resource exchange
Call SwapEdge procedure.

Step 3. Output the optimal solution of RDCMST.

When the phase of resource allocation finish, if not all
nodes are included in the spanning tree it is because these
nodes can not be added without violating the delay
constraint. So the algorithm will resort to relaxDelay
procedure to relax delay.

RelaxDelay procedure can be outlined as follows:

Procedure RelaxDelay:
For a node v not in solution add the shortest delay path

of it to the tree. While adding each edge must make sure no
cycle in the tree. For an edge also in the tree, it will be no
problem. For an edge (i, j) not in the tree while j is already

84

in solution, deleting edge (parent(j),j) from tree then there
will be no cycle.

Repeat the procedure until all the nodes are in the tree.

Phase of resource exchange is used to improve the
feasible solution. The main idea of SwapEdge is changing the
tree-edge with non-tree edge without violating the delay
constraint to reduce the cost.

SwapEdge procedure can be outlined as follows:
Procedure SwapEdge:

For each edge (p, q) in tree where p is the parent of q
Find a non-tree edge (w, q) where

)(),()(),(qsubtreewBqwdqaysubtreedelwsd ∉∧<=++
and subtree(q) is a sub-tree rooted at node q.
If then this is a feasible change.

Among all the feasible changes choose the one with the
biggest reduction on cost.

),(),(qwcqpc >

Repeat the change until no more reduce on cost can get
from it.

IV. COMPUTATIONAL RESULTS
To evaluate the performance of the proposed CDA for

RDCMST, we implemented it in Delphi 7 and compared it
with constructive heuristic algorithm proposed in [5] and
meta-heuristic algorithm proposed in [8]. The instance sets
R100, R200, R300 and R1000 were introduced and contain
30 complete instances with 100, 200, 500 and 1000 nodes
respectively, and random integer edge costs and delays
uniformly distributed between 1 and 99. All the instances of
the benchmark have been tested by CDA. For reasons of
space and clarity we will only give 5 instances with 100 and
500 respectively and compare the results with other
approaches.

TABLE I. COMPARISON OF KBH, GVNS AND CDA ON RANDOM
INSTANCE SETS WITH 100 NODES (B: DELAY BOUND)

Due to the random choose node in RCL, the CDA for
RDCMST is non-deterministic. So 30 runs are performed for
every instance and best results are used for comparison with
KBH presented in [5] and GVNS presented in [8]. The

results as shown in Table I CDA is superior to the KBH and
GVNS approaches.

RCL do not solely choose the node with the greatest
value of power(i), it randomly chooses from several most
promising node. RCL increases the search space and
prevents the solution from immersing to local optimum.
DETE is the result of CDA using deterministic DF. R_best
and R_avg are the best and average result of CDA using the
random DF. From the results shown in Table II, we know
both the best value and average value of the random DF are
better than the greedy deterministic approach.

TABLE II. COMPARISON OF DETE, R_BEST AND R_AVG RESULTS OF
CDA ON RANDOM INSTANCE SETS WITH 500 NODES (B: DELAY BOUND)

V. CONCLUSIONS
In this paper, we studied the rooted delay-constrained

minimum spanning tree problem. RDCMST problem is NP-
hard problem and can be applied into many practical
engineering applications. We developed a new meta-
heuristic algorithm based on CDA to solve the problem. In
designing the CF the edge with comparatively low costs and
low delays were considered more promising than edges with
low cost but high delay. Both deterministic and random
strategies were used to test the performance of algorithm for
designing the decision function. Deterministic one could get
fairly good result in short time while random one could get
better result when the running times was 30. Computational
results also indicated that CDA is better than other heuristic
algorithms.

ACKNOWLEDGMENT
The research is supported by Shanghai Leading Academic

Discipline Project (No. XTKX2012).

REFERENCES
[1] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows, Prentice Hall,

Englewood Cliffs NJ, 1993.
[2] G. Dahl, L. Gouveia,etc. On Formulations and Methods for the Hop

Constrained Minimum Spanning Tree Problem. In: handbook of
optimization in telecommunications. Springer science,2006,pp.493-
515.

[3] L. Gouveia, A. Paias, D. Sharma,: Modeling and Solving the Rooted
Distance-Constrained Minimum Spanning Tree Problem. Computers
and Operations Research vol 35 ,2008, pp.600–613.

 B KBH[5] GVNS[8] CDA
1 20 2348 2171 2103
 25 1795 1681 1607
 30 1460 1355 1348
2 20 2761 2753 2016
 25 2032 1773 1746
 30 1430 1396 1358
3 20 2403 2053 2045
 25 1543 1539 1538
 30 1310 1261 1260
4 20 2651 2078 2066
 25 1952 1689 1668
 30 1701 1529 1498
5 20 2416 2053 1859
 25 1840 1538 1516
 30 1421 1291 1258

 B DETE R_best R_avg
1 20 4173 3590 3840.6
 50 1361 1181 1194.5
 100 766 738 746.67
2 20 3438 3153 3185.4
 50 1364 1167 1211.23
 100 825 725 736.67
3 20 3644 3607 3618.9
 50 1281 1173 1181.23
 100 757 736 747.07
4 20 2886 2826 2886
 50 1315 1091 1110.03
 100 774 704 709.5
5 20 3623 2676 2831.3
 50 1195 1068 1119.5
 100 761 695 701.7

85

[4] H. F. Salama,D.S.Reeves,Y. Viniotis,An Efficient Delay-Constrained
Minimum Spanning Tree Heuristic. In: Proceedings of the 5th
International Conference on Computer Communications and
Networks, 1996.

[5] M. Ruthmair, G. R. Raidl. A Kruskal-based Heuristic for the Rooted
Delay-constrained Minimum Spanning Tree Problem. Computer
Aided Systems Theory - EUROCAST 2009 Lecture Notes in
Computer Science Volume 5717, 2009,pp.713-720.

[6] N. ghaboosi, A.T. Haghighat. A Path Relinking Approach for Delay-
constrained Least-cost Multicast Routing Problem. 19th IEEE
International conference on tools with artifical
intelligence,2007,pp.383-390.

[7] N. Skorin-kapov, M. Kos. A GRASP heuristic for the delay-
constrained multicast routing problem. Telecommunication System ,
vol. 32,2006,pp.55-69.

[8] M. Ruthmair, G.R. Raidl,:Variable Neighborhood Search and Ant
Colony Optimization for the Rooted Delay-Constrained Minimum
Spanning Tree Problem.Schaefer, R., et al. (eds.) PPSN XI, Part II.
LNCS, Springer ,vol. 6239, 2010, pp. 391–400.

[9] M. Berlakovich, M. Ruthmair, G.R. Raidl. A Multilevel Heuristic for
the Rooted Delay-constrained Minimum Spanning Tree Problem.
Computer Aided Systems Theory – EUROCAST 2011 Lecture Notes
in Computer Science,vol. 6927, 2012,pp. 256-263.

[10] A. B. Ning,B. Wang,X. H. Xiong,L. Ma, Principles and Applications
of Competitive Decision Algorithm, Journal of University of
Shanghai for Science and Technology(in Chinese),vol. 30, 2008, pp.
369-373.

[11] A. B. Ning, L. Ma, Competitive Decision Algorithm for the degree-
constained minimum spanning tree, Journal of System Engineering(in
Chinese), vol. 20, 2005 , pp. 630-634.

[12] X. H. Xiong, L. Ma, A. B. Ning, Competitive Decision Algorithm for
Multiple-objective Minimum Spanning Tree, System Engineering(in
Chinese), vol.28, 2010, pp. 89-93.

[13] X. H. Xiong, A. B. Ning, Competitive decision algorithm for
minimum ratio spanning tree,Computer Engineering and
Application(in Chinese), vol.48, 2012, pp. 47-51.

[14] A. B. Ning, L. Ma, Competitive Decision Algorithm and its
application to vehicle routing problem, Journal of Management
Sciences in China(in Chinese), vol. 8, 2005 , pp. 10-18.

[15] A. B. Ning, L. Ma, Competitive Decision Algorithm for large-scale
TSP, Computer Engineering(in Chinese), vol. 31, 2005, pp. 23-26.

[16] X. H. Xiong, A. B. Ning, L. Ma, Competitive Decision Algorithm for
Multidimensional Knapsack Problem based on Multi-exchange
Neighborhood Search, System engineering theory and practice(in
Chinese), vol.30, 2010, pp. 1448-1456.

[17] X. H. Xiong, L. Ma, A. B. Ning, Competitive Decision Algorithm for
Multiple-choice Knapsack Problem based on Reduction, International
Conference on Computer Modeling and Simulation, IEEE, Sanya,
China, 2010, pp. 344-348.

[18] X. H. Xiong, A. B. Wang, A. B. Ning, Competitive Decision
Algorithm for 0-1 Multiple Knapsack Problem, International
Workshop on Education Technology and Computer Science, IEEE,
Wuhan, China, 2010, pp. 253-255.

[19] K. F. Wang, C. M. Ye, The Competitive Decision Algorithm for the
Vehicle Routing Problem with Simultaneous Delivery and Pickup,
Journal of Computational Information System, vol. 8, 2013, pp.3189-
3198.

86

http://link.springer.com/book/10.1007/978-3-642-27549-4
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://www.ilib.cn/A-ISSN%7E1000-3428(2005)09-0023-04.html
http://www.ilib.cn/A-ISSN%7E1000-3428(2005)09-0023-04.html
http://www.ilib.cn/A-ISSN%7E1000-3428(2005)09-0023-04.html
http://www.ilib.cn/A-ISSN%7E1000-3428(2005)09-0023-04.html
http://www.ilib.cn/A-ISSN%7E1007-9807(2005)06-0010-09.html
http://www.ilib.cn/A-ISSN%7E1007-9807(2005)06-0010-09.html

	I. Introduction
	II. the Competitive Decision algorithm
	A. Algorithm Introduction
	B. Basic Concepts of CDA
	III. CDA for RDCMST
	A. Property of RDCMST
	B. Notations
	C. Competitiveness Function
	D. Decision Function
	E. CDA for RDCMST

	IV. computational results
	V. Conclusions
	Acknowledgment
	References

