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Abstract

Corneal grafts for Descemet’s Stripping Automated Endothelial Keratoplasty are commonly prepared using
mechanical microkeratomes. However, the cuts produced in such way render corneal lenticules that are thinner
centrally than peripherally, thus inducing a hyperopic shift. Here we describe a novel device for preparing donor
corneal grafts, in which a single low-energy femtosecond laser system is used as both a light source for optical
coherence tomography and for cutting the graft illuminating from the endothelial side. The same laser is first utilized
to obtain three-dimensional optical coherence tomography images of the donor tissue for guiding the dissection and
obtaining grafts of uniform thickness with no applanation or contact. This device allows an optimal procedure for
preparing consistently thin posterior grafts for transplantation.
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Introduction

The newer techniques that have been developed for corneal
transplantation are limited to grafting only the diseased layers,
while leaving the host’'s healthy corneal layers untouched.
Descemet’'s Stripping Automated Endothelial Keratoplasty
(DSAEK) [1,2] recently became the gold standard technique for
endothelial keratoplasty. The host cornea is prepared using a
standardized microkeratome to cut the anterior cornea and
retain the posterior stroma with Descemet’s Membrane and the
Endothelium.

The functional outcome of DSAEK is partly limited by sub-
optimal optical results, which are directly related to the shape
of the graft. Grafts routinely prepared with mechanical
microkeratomes are typically thinner centrally than peripherally,
yielding a hyperopic shift (negative lens effect) that
necessitates additional optical correction in the spectacles of
the operated eye. The mean postoperative hyperoptic shift is
+1.25D, with inter-subject variability in refraction in the order of
4.0 to 5.0 D [3-12]. In order to obtain more uniform and ultra-
thin DSAEK lenticules, double-pass microkeratome cuts have
been proposed, where the second cut starts from the end of
the first cut [13]. This technique, however, is still overshadowed
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by a non-negligible rate of microkeratome-related
complications (7.2 %) occurring during donor tissue preparation
[14].

In an attempt to further improve the optical quality of the
grafted eye, Descemet’'s membrane endothelial keratoplasty
(DMEK)[15] was proposed, a surgical variant where the corneal
endothelium along with its Descemet’'s membrane are manually
detached from the donor cornea and transplanted. DMEK
provides better visual outcome than DSAEK, but it is
technically more challenging, even in the hands of the most
experienced surgeons [16]. There is no clear consensus on the
optimal thickness of the endothelial graft since there is a
tenuous relationship between the graft thickness and visual
acuity [17-19]. Femtosecond lasers have been used to prepare
corneal grafts by making planar cuts in the cornea [20], which
leads to graft of uneven thickness, i.e. thicker at the edge and
thinner in the center. A technique for preparing uniform
thickness graft using a femtosecond laser (FSL) has also been
described [21] in which the cornea is applanated from its
endothelial side.

The ideal endothelial graft must have a uniform profile to
avoid aberrations and should be thick enough to ease
manipulation [22]. We propose here a new instrument for

December 2013 | Volume 8 | Issue 12 | e83185


http://creativecommons.org/licenses/by/3.0/

Cornea

Optisol Reference

mirror

S,
S
<
40X, NA=0.8,
W ater

. ) WBS
immersion

~
3

Mirror

Z
Mai Tai, 68 fs, 3.25 W
800 nm

Spectrometer

Figure 1. Schematic of the optical system used for corneal
dissection and imaging. The abbreviated components are:
movable lens (ML), polarization maintaining fiber (PMF),
collimator (C1, C2), transmission diffraction grating (TDG),
achromatic lens (ACL), wedge beam splitter and charged
coupled device camera (CCD camera) .

doi: 10.1371/journal.pone.0083185.9001

preparing such donor corneal grafts, in which a low-energy FSL
system is used as both a light source for optical coherence
tomography (OCT) [23-25] and for cutting the graft illuminating
from the endothelial side. In our technique, the same laser is
utilized to obtain three-dimensional (3D) OCT images of the
donor tissue for guiding the dissection and obtaining grafts of
uniform thickness with no applanation or contact. We believe
this device allows an optimal procedure for preparing
consistently thin posterior grafts for transplantation.

Materials and Methods

All experiments were conducted in accordance with the
Declaration of Helsinki. The schematic of the experimental
system used in this work is shown in Figure 1. The beam of a
non-amplified femtosecond laser (Mai Tai, Newport) operated
at 800 nm wavelength was divided using a wedge beam
splitter. The reflected and transmitted beams were directed
towards a reference mirror and the cornea, respectively. The
same laser system was operated in two modes: OCT imaging
mode [25-27] and corneal photo-disruption mode, by only
varying power.

In imaging mode, the laser beam was focused at the cornea
placed in a glass-bottom petri dish filled with Optisol-GS
(Bausch and Lomb, Rochester, NY), through the combination
of a removable lens (RL, f=100 mm) and a high numerical
aperture (NA=0.8, working distance = 3.3 mm) water
immersion objective (Olympus, Tokyo, Japan). The removable
lens was sometimes used to increase the overall depth of focus
at the cornea (depending on sample curvature) and placed 10
cm before the objective. In this configuration, the objective
received a diverging beam that is focused beyond its natural
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working distance. The laser power at the sample in imaging
mode was set 100 mW after the objective. Laser light reflected
by the reference mirror and backscattered from the cornea
were combined using a fiber collimator (C1) and directed
towards a custom made spectrometer using a polarization
maintaining fiber (PMF). The spectrometer simply consisted of
a collimator (C2), a transmission diffraction grating (1600 lines/
mm), an achromatic lens (AC lens, f=200 mm) and a linear
CCD camera (CCD1000, Entwicklungsbuero Stresing, Berlin,
Germany) with 2048 pixels and operated at 3 kHz line scan
rate. A Fast Fourier transform (FFT) was performed on the
spectrometer data to obtain the axial scan of the cornea. The
data points in the Fourier transformed data (axial scan) do not
have real distance units and thus the system was calibrated in
order to obtain the distance per point in the Fourier transform
[28]. The calibration of the system was performed by replacing
cornea with a mirror and moving it in steps of 100 ym and the
corresponding FFT peak position was tracked. Three-
dimensional volumetric Fourier-Domain OCT images of the
cornea were acquired by raster scanning the cornea using
motorized stages. Using these posterior illumination OCT
images, the corneal endothelium was segmented by locating
the first maxima of the intensity derivative in the axial direction.
These values were used to extract the 3D-curvature of the
corneal endothelium by fitting a second order polynomial for
every two dimensional set of axial scans (B-Scan), and stored
for later use during the dissection.

In photo-disruption mode, the lens (RL) was removed from
the beam path so that the objective receives a parallel laser
beam allowing achieving the minimum possible laser focal
volume after the objective. The laser was focused in cornea
solely by the objective and the power was increased. The laser
power and the pulse duration after the objective were
measured to be 400+3 mW and 148+2 fs respectively. The
movement of the two-axis motorized stage (Thorlabs, Newton,
NJ) holding the cornea and the motorized z-axis holding the
objective along the 3D surface determined from the OCT
images was controlled using LabView (National Instruments,
Austin, TX) so that the focal volume was maintained at a
constant user-defined depth from the endothelial surface. The
OCT system was calibrated using Optisol.

Corneas unsuitable for transplantation in humans were
obtained within 12 hours after death (Quebec Eye Bank,
Montreal, QC, Canada), preserved in Optisol-GS at 4°C, and
used within two weeks after death [29,30]. The mean
standard deviation donor age was 71+11 years and the male to
female ratio was 1:1.2. The corneas were cut with a 9-mm
circular trephine (Weck; Solan Medtronics, Jacksonville, FL)
and were placed in petri dishes filled with Optisol, endothelial
side down with no applanation. The corneas were trephined so
that the height of the central cornea fall within the working
distance of the objective. Fixation to the petri dish was not
required and laser cuts were performed up to the edge of the
corneal buttons. Stromal lamellar dissections were performed
with a posterior approach (i.e. illuminating from the endothelial
side), focusing the femtosecond laser at different intended
depths, either in steps (200 — 150 — 100 - 50 ym) or in a
continuous mode, from zero (intraendothelial central photo-
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Figure 2. Photo-disruption depth accuracy. (A) The photo-
disruption was set at 50 uym from the endothelial surface and
the mean (tstandard deviation) measured distance was 5013
pm throughout the 9 mm dissection (B) This micrograph
illustrates the ability to vary the photo-disruption depth along
the cornea. From left to right, the photo-disruption depth was
set at 50 ym, 100 ym, 150 ym, 200 uym from the endothelial
surface.

doi: 10.1371/journal.pone.0083185.g002

disruption) to 200 ym. High-resolution images and thicknesses
were obtained later with a spectral radar OCT (Thorlabs).
Corneal buttons were stained with trypan blue (vital stain)
and alizarin red S (Sigma, Oakville, ON, Canada)[31] and
photographed (SteREO Discovery V12, Carl Zeiss Canada,
Toronto, ON, Canada). Dead endothelial cells appeared in blue
and an image analysis algorithm was designed for
quantification. The blue component of all pixels of the RGB
images was extracted and an automated threshold based on
inter-class variance[32] was applied to create binary image
where background pixels represented dead cells and
foreground pixels, healthy areas. Endothelial integrity was
assessed for various dissection depths. Corneal grafts thicker
than 50 ym were separated using two fine forceps and the
endothelial integrity was assessed after graft separation.

Results

Stromal dissections were performed with this instrument, and
their photo-disruption depth accuracy and optimum depth for
endothelial cell death was analyzed. Figure 2A shows an OCT
image of a 50 pm deep pre-Descemet dissection of a
representative corneal sample.

When 50 ym was set as intended depth, the meantstandard
deviation photo-disruption depth obtained was 50+4 microns
along the sample (n=9). The sample shown in Figure 2B
illustrates our capability to perform dissections at specific
arbitrary depths, and even to change it during the procedure.
Non-overlapping cuts performed in the same cornea at 50 um,
100 pm, 150 pym and 200 um from the endothelial surface are
shown.
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Figure 3. Endothelial cell death above photo-disrupted
(PD) and non-photo-disrupted (A) Bright field

stereomicroscopy image of the cornea containing both the
photo-disrupted and non-photo-disrupted sections. From
the image, photo-disrupted and non-photo-disrupted areas can
not be identified. (B) Dark field image of the same section of
the cornea where focus was adjusted to observe the presence
of the photo-disrupted area. (C) The ratio of healthy cell areas
to total area analyzed is plotted in the region where we
performed the laser treatment at 50 ym depth and an equally
big region beside. No significant difference was observed
between the two ratios (p=0.34, t-test). The data was tested for
normality using Shapiro-Wilk test and was found to be with
normal distribution.

doi: 10.1371/journal.pone.0083185.g003

Endothelial integrity, assessed as described above, revealed
no significant differences between laser-treated and untreated
regions for a photo-disruption depth of 50 um. Figure 3
illustrates the comparison between two adjacent regions within
each cornea, one treated (1x9 mm strips of photo-disruption at
a depth of 50 ym) and the other untreated (n=7 corneas).
Similar percentages of healthy endothelial cells were
documented in both regions.

December 2013 | Volume 8 | Issue 12 | e83185



Corneal grafts separation after photo-disruption was easy
and induced no significant folding or rolling of the grafts after
detachment. Measured endothelial cell death after separation
was less than 4%.

One key parameter investigated was the minimum safe
photo-disruption depth, i.e. the smallest distance between the
endothelial cell layer and the laser focal volume, such that no
significant endothelial cell death could be observed. To quantify
this, we performed planar (flat) cuts for which we intentionally
focused the laser within the endothelial cell layer at the center
of cornea. Due to the curvature of the cornea and the planar
nature of the cut performed, the depth of the photo-disruption
was minimum in the center (laser focussed into the
endothelium) and increased towards the periphery. After photo-
disruption, corneas were stained and quantified for cell death
(n=6) as described above. In this case, a rectangular region of
interest (1000x250 um) was selected (beginning at the center
of the cornea where damage to endothelial cells was evident)
and displaced in steps of 10 um towards the periphery, which
corresponded to increased dissection depth. The ratio of
healthy to total area is shown in Figure 4 for the individual
samples and their average. The mean survival ratio was found
to increase from 0% for intraendothelial photo-disruption, to
50%, for a photo-disruption depth of 27 um, and more than
99% at a depth of 34 um from the posterior surface.

Discussion and Conclusion

Femtosecond lasers have been widely used in preparation of
corneal flaps in LASIK [33] where applanation of the epithelial
side of cornea and shallow laser dissections are routinely
obtained. Furthermore, they have been widely used for
penetrating keratoplasty [34], both for patient and donor tissue
[35]. However, this functionality cannot easily be extended to
prepare grafts for Endothelial Keratoplasty (EK) [20,36-38].
Firstly, corneal hydration and the subsequent scattering
represent a major obstacle for deep penetration of
femtosecond pulses, which can hardly be focused as depth
increases. This fundamental issue has forced technology
developments to switch to more infrared wavelengths for
minimizing scattering. This change requires a completely
different laser technology, which is not readily available in the
market, and despite recent impressive progress in this new
field, it is still a laboratory methodology [39]. Secondly, the use
of applanation can be problematic. When applied on the
epithelium, it creates distortions and ripples in the inner layers
of the cornea [40] that would render non-uniform grafts after
planar cuts. Furthermore, applanation and contact to the
corneal endothelium require greater care, otherwise it can
provoke endothelial cell death, which is critical for the post-
operative visual outcome and long-term graft survival.

This new device we propose is based on a non-contact
posterior approach; OCT images are utilized to obtain a 3D
representation of the sample once placed on the holder. This
information allows a uniform dissection at very shallow depths,
thus avoiding scattering effects. Furthermore, non-amplified
femtosecond lasers focused with high NA optics have proven
to yield significantly smaller cavitation bubbles, which is
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Figure 4. Endothelial cell death as a function of photo-
disruption depth. Planar cuts in which we intentionally
focused the laser within the endothelial cell layer in the center
of cornea were performed. Due to the curvature of the cornea
and the planar cut performed, the depth of the photo-disruption
was minimum at the center (where cell death is observed) and
increased towards the periphery (where no cell death is
observed). After dissection, corneas were stained with trypan
blue and alizarin red S and photographed. The ratio of the
number of pixels in a region of interest that belong to healthy
cells to the total number of pixels is plotted. The colored
symbols represent the data for six different samples and their
average represented by black solid line. The healthy ratio
increased to 50% at a photo-disruption depth of 27 ym and to
more than 99% at a depth of 34 ym.

doi: 10.1371/journal.pone.0083185.g004

essential to dissect the corneal stroma a few microns away
from the fragile endothelial cells. Moreover we showed that the
same laser source also provides enough bandwidth for low-
coherence interferometry imaging. Using the same laser
source for both imaging and dissecting allows perfect matching
of focusing, while minimizing calibrations, optical design and
cost.

The thickness of the grafts could be controlled with
approximately 5 ym accuracy along 9 mm diameter cuts with
our prototype, and no significant damage to the endothelial
cells was found for photo-disruption depths beyond 34 pm.
Furthermore, we have shown that the dissection depth can be
varied within a sample, which allows to tailor the grafts as
desired and seek refractive compensation. Previous studies
where femtosecond lasers were used for preparing endothelial
grafts reported interface haze [21] and a lower visual acuity
[20] than that usually seen after penetrating keratoplasty or
DSAEK. This can be attributed to the distortion of the inner
corneal layers caused by the applanation of the front corneal
surface during the cutting procedure [41]. Wound healing of the
posterior stromal lamellae after femtosecond laser dissection
might also be different from that of the anterior layers. The
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grafts prepared in our study were not transplanted in patients,
precluding our ability to assess postoperative visual acuity.

Overall, our proof-of-concept experiments demonstrate that
this instrument could be particularly useful in eye-bank setups
where the ability to produce precut tissue of customized shape
can render a significant improvement in quality. Hence, grafts
of constant thickness within few microns will minimize optical
aberrations, thus optimizing visual outcome.
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