
Quark and Leptonic Mixing Patterns from the Breakdown of a Common

Discrete Flavor Symmetry

Martin Holthausen∗ and Kher Sham Lim†

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

Assuming the Majorana nature of neutrinos, we recently performed a scan of leptonic mixing

patterns derived from finite discrete groups of order less than 1536. Here we show that the 3 groups

identified there as giving predictions close to experiment, also contain another class of abelian

subgroups that predict an interesting leading order quark mixing pattern where only the Cabibbo

angle is generated at leading order. We further broaden our study by assuming that neutrinos are

Dirac particles and find 4 groups of order up to 200 that can predict acceptable quark and leptonic

mixing angles. Since large flavor groups allow for a multitude of leading order mixing patterns, we

define a measure that is suitable to compare the predictivity of a given flavor group taking this

fact into account. We give the result of this measure for a wide range of discrete flavor groups and

identify the group (Z18×Z6)oS3 as being most predictive in the sense of this measure. We further

discuss alternative measures and their implications.

I. INTRODUCTION

With the discovery of a Higgs-like resonance at

126 GeV, the Standard Model appears to be com-

plete and from a purely phenomenological stand-

point no new physics seems to be required up to a

very large scale, e.g. up to the Planck scale. While

the description of gauge interactions in the Stan-

dard Model is quite economical (requiring only 3

parameters), the fact that there are three genera-

tions of fermions is not explained in the Standard

Model and necessitates the introduction of many

additional parameters into the model. Further-

more, these flavor parameters show certain struc-

tures that may suggest a deeper explanation: the

quark sector exhibits a strongly hierarchical mass

spectrum and small mixing angles while the lep-

ton sector is less hierarchical and has larger mixing

angles.

There have been many attempts in the literature

to try and explain these structures using symme-

tries that act on the different families. Here we

focus on models with non-abelian discrete flavor

symmetries, which are known to be able to de-

scribe the large mixing angles of the lepton sec-

tor. The general setup of such models is as fol-

lows: a discrete flavor group is broken to different

subgroups in the charged lepton and neutrino sec-
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tors and the mismatch between the two subgroups

allows one to predict the PMNS matrix (up to per-

mutations of rows and columns of the matrix) [1–

6]. It should be noted that these predictions will

in general be slightly perturbed by the inclusion of

higher dimensional operators and renormalization

group running of parameters, which we will sub-

sume under next-to-leading order (NLO) effects.

Recently, we performed a comprehensive scan of

leptonic mixing parameters that can be obtained

from remnant symmetries which form a group of

size smaller than 1536 [7]. We identified the groups

∆(6·102), (Z18×Z6)oS3 and ∆(6·162) as being the

only ones that may reproduce the experimentally

favored mixing angles. All three groups are either

of the form ∆(6 · n2) [8], or a subgroup of such a

group (see [9] for a recent study of these symmetry

groups).

In this work, we study the question if also the

quark mixing angles may be obtained to leading

order (LO) as a result of mismatched remnant

symmetries of non-abelian discrete groups. Since

the Cabibbo angle θc is roughly of similar size as

the reactor mixing angle

θ13 '
θc√

2
' 9.2◦

it would be interesting to obtain patterns in which

all leptonic plus the Cabibbo angle are produced

at leading order as a result of remnant symmetries.

Since the other angles are smaller, it is prudent to

assume them to be a result of NLO corrections. It
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Figure 1. Sketch of the setup considered in this paper.

Different subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

turns out that if one assigns the left-handed quarks

to the same 3-dimensional representations (of the

same groups) that were found to be interesting for

leptonic mixing, such an interesting quark mix-

ing pattern may be derived. Especially the group

(Z18×Z6)oS3 seems particularly promising, giv-

ing a Cabibbo angle of sin θc = 0.259. In this

setup the origin of the different patterns for the

leptonic and quark sectors thus stems from the

different remnant symmetries to which the origi-

nal group is broken in the respective sectors, as is

depicted in Fig. 1. The subgroups that give rise to

an acceptable LO Cabibbo angle can be system-

atically parametrized and we discuss some group

theoretical aspects of the remnant group structure.

We then broaden our discussion by giving up on

the assumption that neutrinos should be Majorana

particles, for which case we perform a scan of fi-

nite discrete groups up to the order of 200 with the

help of the computer algebra program GAP [10–13].

In the final chapter of the paper we discuss the

usefulness of large flavor groups more generally. It

should be clear that if one considers a very large

flavor group virtually any mixing pattern may be

realized. If one would break the group SU(3) down

to discrete remnant groups, for example, the re-

quirement of a breakdown to subgroups loses all

predictivity. The question one might now ask one-

self is the following: which setup is more predic-

tive, the case of a small group (such as A4 [14–

20] or S4 [1–3]) with large NLO corrections or a

larger group with smaller NLO corrections. Un-

der the assumption that NLO corrections are ran-

domly drawn (which seems fine for many models)

statistical arguments (à la anarchy) lead us to pro-

pose a measure of the predictive power of a chosen

group.

II. PMNS AND CKM MATRICES FROM

REMNANT SYMMETRIES

Here we briefly review the setup we are using to

obtain the mixing matrices from remnant symme-

tries.

Lepton mixing can be obtained from a flavor

symmetry group via its breaking to remnant sym-

metries in the charged lepton and neutrino masses

respectively. The CKM matrix can be derived in

an analogous way using this method. The only

difference is that usually different remnant sym-

metries are left of the up- and down-type quarks

mass matrices. This is usually achieved in con-

crete models via spontaneous symmetry breaking

of flavon fields in some vacuum alignment config-

urations. As in Ref. [7] we do not consider the

breaking mechanisms or models to achieve such

vacuum configuration, but rather we want to find

discrete symmetry groups that contain the residual

symmetry groups that can give rise to LO predic-

tion of PMNS and CKM matrices.

In this section we first assume that neutrinos are

Majorana particles. The PMNS and CKM matri-

ces are defined as

UPMNS = V †e Vν , UCKM = V †d Vu (1)

where the unitary matrices Vs and Vν diagonalize

the mass matrices

V Ts MsM
†
sV
∗
s = diag(m2

I ,m
2
II,m

2
III) (2)

and

V Tν MνVν = diag(m1,m2,m3). (3)

We denote the symbol s ∈ {e, d, u} and the nu-

meral I ∈ {e, d, u}, II ∈ {µ, s, c} and III ∈ {τ, b, u}.
The mass matrices are defined as L = eTMee

c +
1
2ν

TMνν + dTMdd
c + uTMuu

c. We assume that

there is a discrete symmetry groupGf under which

the left-handed lepton doublets L = (ν, e) trans-

form under a faithful unitary 3-dimensional repre-

sentation ρ : Gf → GL(3,C):

L→ ρ(g)L, g ∈ Gf . (4)

Analogue we assume that there is a discrete sym-

metry group GQ under which the left-handed

quark doublets Q = (u, d) transforms:

Q→ ρ(g)Q, g ∈ GQ. (5)
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Since all the quark and lepton masses are different,

these flavor symmetries has to be broken into two

set of different subgroups, i.e. {Ge, Gν} for the

leptonic sector and {Gd, Gu} for the quark sector.

In general the generators of Gd and Gu only gen-

erate the group GQ which is a proper subgroup of

Gf , hence we only consider a direct breaking of Gf
into residual symmetries Gd and Gu as we would

like to find a common discrete group Gf that can

simultaneously predict the LO PMNS and CKM

matrix1. Within a set of the residual subgroups

{Ge, Gν}, the intersection between the subgroups

in the set is trivial as we would like to predict 3

different mixing angles in the leptonic sector. This

condition is however relaxed for {Gd, Gu} as we do

not find any groups that predict 3 different quark

mixing angles at LO. Subgroups from different set,

e.g. Ge and Gd can have non-trivial intersection.

The mass matrix for each sector exhibits a residual

symmetry, satisfying

ρ(gs)
TMsM

†
sρ(gs)

∗ = MsM
†
s , gs ∈ Gs (6)

and

ρ(gν)TMνρ(gν) = Mν , gν ∈ Gν . (7)

The residual subgroups {Ge, Gν} and {Gd, Gu}
must be abelian due to the experimental fact that

all the masses of quarks and leptons are distin-

guishable. The 3-dimensional irreducible represen-

tation of the residual subgroups cannot be decom-

posed into three inequivalent 1-dimensional rep-

resentations had they possess a non-abelian char-

acter2. For Majorana neutrinos the residual sub-

group is given by the Klein group Z2 × Z2, while

Gs can be any abelian subgroups of Gf with order

n ≥ 3. Once the generators of all the subgroups

are specified in a certain representation, the mix-

ing pattern of quark sector and leptonic sector can

be determined via the unitary matrices Ωs and Ων
satisfying

Ω†s,νρ(gs,ν)Ωs,ν = ρ(gs,ν)diag. (8)

The unitary matrix Ωs and Ων are determined up

to permutations of columns and also a diagonal

phase matrix. The PMNS and CKM matrix are

then determined by

UPMNS = Ω†eΩν , UCKM = Ω†dΩu. (9)

1 This possibility is also briefly discussed in Ref. [5].
2 See Ref. [21] for the case where neutrinos masses are de-

generate.

which are unique up to the permutations of rows

and columns. The Dirac CP phases of the PMNS

and CKM matrices can also be determined from

this method.

III. MIXING PATTERN FROM COMMON

DISCRETE SYMMETRIES

As shown in Ref. [7], a scan of finite discrete

groups with order less than 1536 yields only 3 in-

teresting groups that give LO leptonic mixing pat-

terns which lie within 3-sigma of current best fit.

These 3 groups, namely ∆(6 ·102), (Z18×Z6)oS3
and ∆(6 · 162), provide a good starting point to

search for residual groups that can yield an accept-

able CKM matrix at LO. By searching the abelian

subgroups contained in these 3 groups, we obtain

the CKM matrix at LO in the following form:

UCKM =

 cos θ̃ sin θ̃ 0

− sin θ̃ cos θ̃ 0

0 0 1

 . (10)

The values of sin θ̃ are given in Table I and the

form may be compared to best fit values of the

CKM matrix [22]

UCKM '

 0.974 0.225 0.004

0.225 0.973 0.041

0.009 0.040 0.999

 , (11)

indicating that NLO corrections of the order of

Ucb ∼ λ2c ∼ 0.04 are needed, which is to be con-

trasted with the case of A4, for example, where

UCKM = 13 at LO and NLO corrections therefore

have to be of the size Ucs ∼ λc ≡ sin θc ∼ 0.22.

Since there is no mixing between all three genera-

tions in Eq. (10) the CKM CP phase in undeter-

mined in this setup and will be a result of NLO

corrections.

Before we discuss the results of Table I, it is

useful to recall [7] that the groups in Table I

may be defined as being generated by the gener-

ators S, T and U(n, k), using the faithful irrep

ρ : {S, T, U(n, k)} → {S3, T3, U3(n, k)} with

T3 ≡

 0 1 0

0 0 1

1 0 0

 , S3 ≡

 1 0 0

0 −1 0

0 0 −1

 (12)

and

U3(n, k) ≡ −

 1 0 0

0 0 zn,k
0 z∗n,k 0

 (13)
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n Gf GAP-Id sin θ̃ type

5 ∆(6 · 102) [600, 179] 0.156 A

0.309 B

9 (Z18 × Z6) o S3 [648, 259] 0.259 A

16 ∆(6 · 162) n.a. 0.195 A

Table I. LO Cabibbo angles sin θ̃ which are compatible

with experimental results generated by flavor groups

up to order 1536. Type A and B refers to different

residual symmetries (see text).

with zn,k = e2πik/n, n, k ∈ N. In the leptonic

sector if one uses Ge = 〈T 〉 ∼= Z3 and Gν =

〈S,U(n, k)〉 ∼= Z2×Z2 one gets the TM2-like mix-

ing matrix [7]

UPMNS = UHPSU13(θ =
1

2
arg(z)) (14)

with the 1-3 rotation matrix defined as

U13(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 . (15)

In the quark sector we found two different types

of solutions corresponding to different conserved

subgroups. From the form (10) of the LO CKM

matrix it is already clear that the intersection be-

tween Gu and Gd has to be non-vanishing, other-

wise there would be full 3 by 3 mixing (as in the

leptonic case). The generator of the intersection

can in principle be any generator, but we will al-

ways take S for concreteness. As a result of the

scan, we found 2 types of mixing patterns

• type A:

Gd = 〈S,U(n, p)〉 ∼= Z2 × Z2,

Gu = 〈(ST )2TU(n,m)〉 ∼= Z4

• type B:

Gd = 〈S,U(n, p)〉 ∼= Z2 × Z2,

Gu = 〈S, (U(n,m)T 2)2(U(n,m)T )2U(n,m)〉
∼= Z2 × Z2

Both left-handed quarks and leptons may be as-

signed to the same representation, which provides

a possibility for model building of flavor symmetry

in the context of Grand Unified Theories.

Let us first discuss the case of type A. The LO

CKM matrix of Eq. (10) results from the break-

down of Gf down to Gd = 〈S,U(n,m)〉 ∼= Z2×Z2

and Gu = 〈(ST )2TU(n, p)〉 ∼= Z4. Note that

((ST )2TU(n, p))2 = S is an element of both Gd
and Gu.

The generator of the group Gu is given by

R3(n, p) ≡ ρ((ST )2TU(n, p))

=

 1 0 0

0 0 −zn,p
0 z∗n,p 0

 (16)

with z defined in Eq. (13). Note that typically one

needs to choose a different n-th root in Eq. (13)

and Eq. (16) in order to obtain experimentally ac-

ceptable PMNS and CKM matrices. For example,

if we choose the m-th of n-th root z in Eq. (13)

and p-th of n-th root z in Eq. (16), the product of

the unitary matrix

Ωu =
1√
2

 0 0
√

2

ie2πip/n −ie2πip/n 0

1 1 0

 (17)

that diagonalizes R3(n, p) with the unitary matrix

Ωd =
1√
2

 0 0
√

2

e2πim/n −e2πim/n 0

1 1 0

 (18)

that diagonalizes S3 and U3(n,m) simultaneously

will generate LO CKM matrix

UCKM = Ω†dΩu (19)

=
1

2

 1 + ie−2πi(m−p)/n 1− ie−2πi(m−p)/n 0

1− ie−2πi(m−p)/n 1 + ie−2πi(m−p)/n 0

0 0 2


or

sin θ̃ =
1

2

√
2− 2 sin

(
2π(m− p)

n

)
(20)

The interesting cases quotes in Table I correspond

to (n = 5, p = 1,m = 2), (n = 9, p = 1,m = 4)

and (n = 16, p = 1,m = 2), respectively. Since Gu
and Gd have a non-trivial intersection, the group

generated by the elements of Gu and Gd is not the

full flavor group Gf . Rather it is a subgroup of

U(2), depending on the values of n, p and m. The

groups generated by these remnant symmetries are

isomorphic to (Z10 × Z2) o Z2, (Z6 × Z2) o Z2

and QD32 (the quasidihedral group of order 32),

respectively3.

3 See Ref. [23] for a review on the type of groups above.
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The case of type B is analogous and one finds

sin θ̃ =

∣∣∣∣cos

(
π(m− 4p)

n

)∣∣∣∣ , (21)

where the case quoted in Table I corresponds to

(n = 5, p = 1,m = 1), which generates D20, the

dihedral group of size 20. Dihedral groups of this

type have been considered before as an explanation

of the LO Cabbibo angle [24] as we will comment

on in more detail below.

To recapitulate: we have seen that the structure

of the LO CKM mixing (10) may be understood

as a result of symmetry breaking down to the sub-

groups of type A and type B. The groups ∆(6·102),

(Z18 × Z6) o S3 and ∆(6 · 162) are of the form

(Zn×Zn′)oS3, where Zn ∼= 〈(ST )2(U(n, 1)T )4T 〉,
Zn′ ∼= 〈STSU(n, 1)T 2U(n, 1)T 2U(n, 1)TU(n, 1)〉
and S3 = 〈R′, T 2R′TR′〉, where R′ is short for

R′ = (U(n, 1)T 2)2(U(n, 1)T )2U(n, 1), one of the

generators of Gu in type B. Using this structure,

the interested reader may figure out the origin of

the remnant symmetries for the general case. How-

ever, from the 3 concrete cases we have studied

in detail, we can infer the origin of subgroups of

type A and B from a group theoretical perspective.

The subgroups of type A and B consist of groups of

type (Zm×Zm′)oZ2, which are always subgroups

of (Zn×Zn′)oS3 with n(
′) ≥ m(′) (One of the Zm

can be trivial). Therefore the 1-2 mixing structure

of Eq.(10) is a by-product that we obtain for free

from the leptonic flavor symmetry. It is also inter-

esting to imagine the possibility that GQ is not a

subgroup of GL = 〈Ge, Gν〉 but that they rather

be subgroups of yet larger group Gf = 〈GQ, GL〉.
However from all the discrete groups that predict

the experimentally favored values, GQ is always a

subgroup of GL ≡ Gf , hence an extension to larger

group will not yield new interesting predictions.

In this study we only considered groups that are

interesting because they give a good LO descrip-

tion of leptonic mixing. If one does not require the

quark flavor group to be identical to the lepton fla-

vor group, one may search for a flavor group GQ
that predicts an adequate CKM matrix, indepen-

dent of the leptonic flavor group Gf [24–27].

As we have noted above, the group generated

by Gu and Gd is not the full flavor group Gf but

a smaller group GQ. The 3-dimensional represen-

tation 3 of Gf is decomposed into 3 = 2 + 1,

where the 2-dimensional representation 2 of GQ
generates the Cabibbo angle. This is very simi-

lar (at least for the symmetry breaking of type B)

to models where one assigns the first two quark

generations to a 2-dimensional representation of

a dihedral group Dn
4. One may therefore view

the groups discussed here as completions of groups

that only discuss the quark sector.

Let us recapitulate on the search for unified

discrete symmetry from the group theoretical ap-

proach. We started our scan for groups that can

yield sizeable leptonic mixing patterns with the as-

sumption of Majorana neutrinos. From over a mil-

lion groups, only groups of type (Zn × Zn′) o S3
are found to be interesting and such groups con-

tain subgroups, which allow for a decent descrip-

tion of quark mixing by generating the Cabibbo

angle at leading order. The symmetry breaking

pattern indicated here might provide an interest-

ing opportunity for model building.

IV. DIRAC NEUTRINOS AND THE

MIXING PATTERNS

In this section we assume that neutrinos are

Dirac particles and ask the question: What is the

smallest finite discrete group Gf that can predict

experimentally acceptable PMNS and CKM ma-

trix. The residual symmetry group of neutrino

masses is no longer restricted to be isomorphic to

the Klein group, but may be an arbitrary abelian

group. We scan all the abelian subgroups of every

discrete group Gf up to the size of 200. The two

smallest finite discrete groups that predict experi-

mentally acceptable entries for the quark and lep-

ton mixing angles are of the order of 150 and 162,

with the structure of the relevant remnant groups

given in Table II. An exact definition of the groups

in terms of 3-dimensional generators is provided in

Appendix A, where we restrict ourselves to listing

the smallest subgroups for {Ge, Gν} and {Gu, Gd}
that predict the given values for the PMNS and

CKM mixing parameters.

In our previous scan [7] we had assumed that

neutrinos are Majorana particles and found only

discrete groups with order of 600 and above that

can lead to acceptable leptonic mixing pattern. A

priori we have no evidence up till now that neutri-

nos are Majorana particles and by assuming that

neutrinos are Dirac particles, we found two dis-

crete groups that are relatively small in size which

4 The symmetry breaking of type A might be viewed as

a generalisation thereof if one replaces dihedral with the

involved groups, e.g. quasidihedral.
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Gf GAP-Id {Ge, Gν} {Gd, Gu} sin2(θ12) sin2(θ13) sin2(θ23) sin θ̃

∆(6 · 52) [150, 5] {Z10, Z3} {Z10, Z10} 0.3428 0.0289 0.6217 0.309

0.3428 0.0289 0.3794

Σ(3 · 33) o Z2 [162, 10] {Z6, Z9} {Z6, Z6} 0.3403 0.0202 0.6013 0.5

(Z9 × Z3) o S3 [162, 12] {Z18, Z9} {Z18, Z18} 0.3403 0.0202 0.3996

[162, 14] {Z18, Z3} {Z18, Z18}

Table II. Lepton mixing parameters and LO CKM entries predicted by finite discrete groups with order 150 and

162. The smallest generators for Ge, Gν and Gd, Gu that predict the quark and leptonic mixing angles on the

right columns are listed.

can predict experimentally acceptable LO mixing

angles for quarks and leptons, which from model

building perspective are more economical. The

CKM prediction can also be ignored if one only

looks for smallest discrete flavor group that can

yield the experimentally viable leptonic mixing an-

gles with the assumption of Dirac neutrinos.

To be concrete, we will discuss the group ∆(6×
52) here in some detail and will relegate the re-

maining groups to the appendix A.5 The group

∆(6× 52) may be viewed as generated by

A = (TU(5, 1))4T 2, B = (U(5, 1)T 2)2U(5, 1).

After symmetry breakdown to Ge = 〈A〉 ∼= Z3

and Gν = 〈B〉 ∼= Z10 the PMNS mixing angles of

the first line in Table II are realized. The CKM

predictions follow from breakdown to

Gd = 〈A2B3A2B2〉, Gu = 〈ABA2BA2B3A〉.

For a definition of the other groups in Table II, the

reader is referred to Appendix A.

From the definition of A and B in terms of gen-

erators of ∆(6·102) it is clear that ∆(6·52) is a sub-

group of ∆(6 · 102). Both groups predict the same

PMNS matrix, stemming from different remnant

symmetries. The group ∆(6 · 102) is the smallest

group that predicts LO leptonic mixing patterns

in 3-sigma region assuming Majorana neutrinos.

If we lift this requirement and allow for Dirac neu-

trinos, the size of Gf is reduced by a factor of 4.

This observation suggests that the leptonic mixing

pattern has no correlation with the nature of neu-

trinos (i.e. whether Z2×Z2 is a subgroup of Gf or

not) but rather the intrinsic representation of the

group generators, i.e. different subgroups can give

rise to the same mixing patterns, independent of

5 Note that the group ∆(6·52) is also discussed in Ref. [28],

however the author only searched for the subgroup Z2 in

∆(6 · 52), yielding another type of prediction.

the nature of neutrinos. The same argument also

applies for (Z9 × Z3) o S3 and Σ(3 · 33) o Z2 as

these groups are subgroups of (Z18×Z6)oS3. All

the interesting groups in Table II predict a triv-

ial Dirac CP phase in the leptonic sector, as in

Ref. [7].

Combining the argument above and the obser-

vation in Sec. III, we can draw a general conclu-

sion that only groups of type (Zn × Zn′) o S3 can

yield experimentally favored LO PMNS matrix if

the flavor symmetry group is broken in such a way

that residual symmetries of the leptonic masses are

still preserved, independent of whether neutrinos

are Dirac or Majorana particles. No other (small)

finite discrete groups can yield such an equally suc-

cessful prediction. In addition the LO CKM mix-

ing pattern can be obtained from group of type

(Zn × Zn′) o S3 if the size of the group is suffi-

ciently large, as we have pointed out in Sec. III.

V. TOWARDS QUANTIFYING THE

PREDICTIVE POWER OF DISCRETE

GROUPS

As mentioned in the introduction, large fla-

vor groups generically have many different abelian

subgroups and since in the setup we are consid-

ering here the LO mixing pattern is a result of

the mismatched remnant symmetries, this implies

that for very large flavor groups any mixing pat-

tern should be able to be reproduced. Heuristi-

cally, it is therefore clear that one should prefer

small flavor groups (which are also less cumber-

some from a model builder’s view point). How-

ever, we have seen from our scan that only groups

that are larger than the order of 100 predict ex-

perimentally favored PMNS and CKM mixing pat-

tern at LO. One may wonder what the difference

between such a large group and an anarchical [29–

31] drawing of three angular values from the Haar

6



(a) S4 (b) (Z18 × Z6) o S3

Figure 2. The distribution µ(Gf ) is plotted for groups S4(left) and (Z18×Z6)oS3(right). The width of Gaussian

Distribution σ in 1-sigma deviation is plotted in green. The blue (red) region represents the 3-sigma global fit

region for the leptonic (quark) mixing pattern.

measure.6

In this section we aim to give a quantita-

tive measure of the predictivity of discrete flavor

groups. The scenario we have in mind is the fol-

lowing: we assume the LO quark and/or lepton

mixing to be determined from mismatched rem-

nant symmetries, where we take each possible LO

mixing pattern to be equally likely. We further as-

sume that NLO corrections are randomly scattered

around the LO values. This seems to be well mo-

tivated from a model-building perspective as quite

often there are a multitude of higher-dimensional

operators contributing at NLO order.7 We dis-

card the comparison of CP phases as the Dirac CP

phase in the leptonic sector is not known while the

CKM CP phase in general is not predicted in our

approach.

We will work in the coordinates c413 ≡ cos4 θ13,

s212 ≡ sin2 θ12 and s223 ≡ sin2 θ23 for which the

6 See also Ref. [32, 33] for a critical take on anarchy in the

lepton sector.
7 Since in typical models (e.g. [19, 20, 34, 35]) these higher

dimensional operators do not respect any remnant sym-

metries this agnostic approach seems warranted. How-

ever, it should be stressed that this does not apply for all

models and in a particular model the structure of NLO

corrections might very well be predictive [36]. Such se-

tups usually forbid higher dimensional operators in the

superpotential; care has to be taken to keep Kähler cor-

rections under control [37].

invariant Haar measure of SU(3) is flat. Under

the anarchy hypotheses, in this space each point

is equally likely pdV = dc413ds212ds223. Without

NLO corrections, the discrete group would pre-

dict a sum of Delta functions pdV =
∑
i δ

(3)(~x −
~xi)dc

4
13ds212ds223 centered about the possible LO

predictions ~xi = (c413, s
2
12, s

2
23)T . Since we ex-

pect the NLO corrections to be anarchically dis-

tributed around the LO predictions, we smear

out the Delta functions to 3-dimensional gaussians

p
(i)
f = exp(~x−~xi)2/σ2 centered around the i-th LO

mixing with variance given by

σ2 = Min(σ2
CKM) + Min(σ2

PMNS) (22)

the quadratic sum of the shortest distance between

the best fit CKM angles ~xCKM and PMNS angles

~xPMNS to a LO prediction of the group

Min(σCKM/PMNS) ≡ inf
i
|~xi − ~xCKM/PMNS|. (23)

The total normalized distribution pf of a discrete

group Gf is given by the sum of all the p
(i)
f . For

illustration in Fig. 2 we show the pf distribution

in the space of (c413, s
2
12, s

2
23) for the group S4 and

(Z18×Z6)oS3. The group (Z18×Z6)oS3 predicts

more mixing patterns than S4 with smaller covari-

ance σ2, as its predicted PMNS matrix values are

more accurate at LO.

As a measure of predictivity we now propose the

integration of pf within the 3-sigma region from

7
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Figure 3. The goodness of prediction µ(Gf ) for discrete flavor symmetry groups Gf is plotted. The goodness of

prediction for anarchy is represented by a black square in the plot. Groups that are relevant for our analysis are

highlighted. See main text for more explanation.

global fits

µ(Gf ) ≡
∫
Vexp

pf (c413, s
2
12, s

2
23) dc413ds212ds223, (24)

which we interpret as a proxy for the goodness of

the mixing angle prediction up to the NLO cor-

rection by a particular flavor symmetry group.

For example we have µ(S4) = 1.8 × 10−3 and

µ((Z18 × Z6) o S3) = 4× 10−3. The larger group

that needs smaller NLO corrections therefore beats

the smaller group with larger NLO corrections –

a result that should not come as a surprise to the

reader, who has followed us thus far.

We can go a step further and apply the measure

to anarchy and obtain

µ(anarchy) =

∫
Vexp

1[0,1]3 dc413ds212ds223

= 3.22× 10−4, (25)

which might be interpreted as the least predictive

theory. Any flavor theory should certainly be more

predictive than anarchy.

The result of µ(Gf ) for each discrete group up

to the order 200 and some of interesting groups

identified by us in Ref. [7] are plotted with blue

points in Fig. 38. By this measure the group

(Z18×Z6)oS3 therefore wins the title of the most

predictive group smaller than 1536.

Note that the absolute value of µ(Gf ) alone has

no intrinsic meaning, rather it is used to com-

pare the goodness of prediction for different flavor

groups. A higher value of µ(Gf ) implies a more

accurate prediction of mixing angles with smaller

size of the group. Groups that do not predict ex-

perimentally favored values have smaller values of

µ(Gf ). Even though a larger group tends to pre-

dict more accurate values of mixing angles, its siz-

able order would in general reduce the value of

µ(Gf ). From Fig. 3 we observe that ∆(6 · 162)

yields a lower µ(Gf ) value than (Z18 × Z6) o S3
and ∆(6 · 102), despite that ∆(6 · 162) predicts a

more accurate mixing pattern. Ignoring the CKM

contributions we can also obtain a similar plot in

Fig. 4 by choosing σ2 = Min(σ2
PMNS). The re-

sult of µ(Gf ) for each flavor groups contains the

same trend as in Fig. 3. One should note that

that by combining the different subgroups of Gf in

8 Some of the higher order groups that yield the same

µ(Gf ) as the lower order group contain the same lower

order group as their subgroup. For instance the group

S4 × Z2 and S4 × Z3 yields the same order of µ(Gf ) as

the group S4.
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Figure 4. The goodness of prediction µ(Gf ) for discrete flavor symmetry groups Gf is plotted, with only the

leptonic mixing patterns considered.

pairs, we essentially give up the information of the

assumption that neutrinos are Majorana, as one

needs to pair up only a Klein group with another

abelian subgroup if this additional assumption is

made.

The width of the Gaussian distribution defined

in Eq. (22) is only one of the possibilities that we

can choose. It is believed that the NLO correc-

tion of the leptonic mixing angle has to be of the

order of Cabibbo angle squared σ = λ2C or the

fourth power of Cabibbo angle σ = λ4C . We also

plotted the result of µ(Gf ) obtained with these as-

sumptions and the only significant change in Fig. 3

and Fig. 4 comes from the group S4, ∆(6 · 42),

∆(6 · 52), (Z9×Z3)oS3 and Σ(3 · 33)oZ2. These

changes can be understood as the result of higher

volume covered by the integration due to more nar-

row Gaussian width. With σ = λ2C , the spread of

the Gaussian distribution is larger, hence smaller

groups tend to yield higher values of µ(Gf ). On

the contrary the Gaussian width is too narrow for

σ = λ4C , hence only groups that predict very ac-

curate LO PMNS matrix will generate a higher

µ(Gf ). In fact, µ(Gf ) from anarchy is higher than

certain groups, particularly S4 and ∆(6 · 42). The

decreasing value of µ(Gf ) with respect to the in-

creasing size of the group agrees with our naive

expectation that higher order groups tend to yield

lower value of µ(Gf ) due to more possible combi-

nations of the mixing patterns.

VI. CONCLUSION

In summary, we have extended our search for

discrete symmetry groups that can give an experi-

mentally favored LO prediction for the PMNS and

the CKM matrix. With the assumption of Majo-

rana neutrinos, we obtain sizable prediction of LO

CKM matrix from groups that predict PMNS ma-

trix in 3-sigma region, as shown in Ref. [7]. We

found a group theoretical reason that explains the

emergence of such LO Cabibbo angle, mainly it is

due to the structure of (Zm × Zm′) o Z2 which is

a generic subgroup of (Zn × Zn′) o S3. By relax-

ing the condition of Majorana neutrinos, we per-

formed a scan of all discrete symmetry groups up

to the order of 200 and obtain 3 groups that pre-

dict acceptable LO PMNS and CKM matrix. All

3 groups are subgroups of the groups found in the

Majorana case, indicating that mixing pattern pre-

dictions are independent of whether neutrinos are

Dirac or Majorana particles. We extrapolated our

result and concluded that only groups that are of

the type (Zn × Zn′) o S3 can give experimentally

favored values of PMNS (and CKM) matrix, which

can provide a new starting point for model build-

ing.

The groups we have found are generally large

and prompting us to define a measure to quantify

the predictivity of a given flavor group taking into

9



account the size of the group. Our measure µ(Gf )

rewards the smallness of a group while punishing

large groups that give many different predictions,

depending on the breaking pattern. While this

measure is non-unique, it is (to our knowledge)

first attempt to quantify more sociological ways

of distinguishing fruitful starting points for model

building.

Appendix A: Definition of Subgroups

In Table III we define the generators for groups

found in Table II.
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Gf GAP-Id Generators of subgroups

∆(6 · 52) [150, 5] 〈Ge, Gν〉 =

〈 0 −(−1)3/5 0

0 0 − 5
√
−1

− 5
√
−1 0 0

 ,

 (−1)3/5 0 0

0 0 5
√
−1

0 5
√
−1 0

〉

〈Gu, Gd〉 =

〈 (−1)3/5 0 0

0 0 −(−1)2/5

0 −1 0

 ,

 (−1)3/5 0 0

0 0 (−1)3/5

0 −(−1)4/5 0

〉

Σ(3 · 33) o Z2 [162, 10] 〈Ge, Gν〉 =

〈 0 0 −1

0 − 3
√
−1 0

−1 0 0

 ,

 0 0 (−1)2/3

(−1)2/3 0 0

0 − 3
√
−1 0

〉

〈Gu, Gd〉 =

〈 0 0 −1

0 − 3
√
−1 0

−1 0 0

 ,

 0 0 3
√
−1

0 −1 0

−1 0 0

〉

(Z9 × Z3) o S3 [162, 12] 〈Ge, Gν〉 =

〈 0 0 (−1)5/9

0 (−1)8/9 − (−1)5/9 0

(−1)5/9 0 0

〉
,

〈 0 0 (−1)5/9 − (−1)8/9

−(−1)5/9 0 0

0 −(−1)5/9 0

〉

〈Gu, Gd〉 =

〈 0 0 (−1)5/9

0 (−1)8/9 − (−1)5/9 0

(−1)5/9 0 0

〉
,

〈 0 0 (−1)8/9 − (−1)5/9

0 (−1)8/9 − (−1)5/9 0

−(−1)8/9 0 0

〉

(Z9 × Z3) o S3 [162, 14] 〈Ge, Gν〉 =

〈 0 0 (−1)5/9

0 −(−1)8/9 0

(−1)5/9 0 0

〉
,

〈 0 9
√
−1− (−1)4/9 0

0 0 (−1)4/9

9
√
−1− (−1)4/9 0 0

〉

〈Gu, Gd〉 =

〈 0 0 (−1)5/9

0 −(−1)8/9 0

(−1)5/9 0 0

〉
,

〈 0 0 −(−1)8/9

0 −(−1)8/9 0

(−1)8/9 − (−1)5/9 0 0

〉

Table III. Generators for {Ge, Gν} and {Gd, Gu} that predicts the experimentally favored mixing angles in Table

II.
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