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Abstract—We address the problem of motion deblurring using coded exposure.

This approach allows for accurate estimation of a sharp latent image via well-

posed deconvolution and avoids lost image content that cannot be recovered from

images acquired with a traditional shutter. Previous work in this area has used

either manual user input or alpha matting approaches to estimate the coded

exposure Point Spread Function (PSF) from the captured image. In order to

automate deblurring and to avoid the limitations of matting approaches, we

propose a Fourier-domain statistical approach to coded exposure PSF estimation

that allows us to estimate the latent image in cases of constant velocity, constant

acceleration, and harmonic motion. We further demonstrate that previously used

criteria to choose a coded exposure PSF do not produce one with optimal

reconstruction error, and that an additional 30 percent reduction in Root Mean

Squared Error (RMSE) of the latent image estimate can be achieved by

incorporating natural image statistics.

Index Terms—Coded exposure, motion deblurring, blur estimation, computational

photography.
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1 INTRODUCTION

MOTION blur adversely impacts aesthetics and reduces the utility
of images for automated analysis. Many algorithms mitigate the
effects of motion blur in traditionally acquired images, but
fundamental limits to the quality of the reconstruction are imposed
by the use of a traditional shutter. Techniques that hallucinate or
otherwise use information (priors, etc.) from outside of the image
may produce visually pleasing images, but have little value for
forensic applications, e.g., biometrics, where knowledge about the
true scene texture is required.

Introducing coded exposure photography, Raskar et al. [1]

point out that the lost frequencies introduced by traditional

imaging of moving objects can be avoided by fluttering the shutter

in order to capture an image with a motion blur PSF that can be

removed by well-posed deconvolution. This improves the perfor-

mance of forensic image exploitation, but requires new techniques

for automated processing of coded exposure images.
Using natural image statistics, we introduce a blur estimation

technique in Section 6 for automated analysis and deblurring of

coded exposure images. Our approach uses the telltale inflection

points of coded exposure Modulation Transfer Functions (MTFs)

which appear in the amplitude spectra of captured images. Using

this approach, we avoid specialized assumptions about the spatial

content of images and demonstrate estimation of a wider range of

motions. We also use natural image statistics in Section 5 to select

coded exposure PSFs providing lower reconstruction error than
the existing method.

In regions of uniform blur (such as a translating planar surface
seen from a stationary camera), we model the blurred image I by
convolution as

I ¼ J � Bþ �; ð1Þ

where J is the latent sharp image, B is the blur PSF, and � is
imaging noise. As with other work using this model, we are
limited to blurred images with spatially invariant PSFs unless
motion segmentation [2] is performed as a preprocess. In addition,
we are limited to motions with linear trajectories or to those such
as harmonic motion that can be linearized. As such, our methods
are intended to capture moving objects from stationary cameras,
not for camera motion producing 2D PSFs.

2 RELATED WORK

Our work is an extension of the coded exposure technique
proposed in [1]. Though the original work depended on manual
blur estimation by a user, Agrawal and Xu [3] address coded
exposure blur estimation for constant velocity based on alpha
matting, and choose exposure sequences for both invertibility and
ease of blur estimation. As compared to [1] and [3], we improve the
selection of the coded exposure PSF, and propose a Fourier-
domain blur estimation technique which avoids the alpha matting
assumption that there exists a high-contrast edge between moving
and stationary objects. Coded exposure is an example of
computational photography, where image capture and postpro-
cessing are codesigned to improve image quality. Zhou and Nayar
provide an excellent survey in [4].

Since most images are captured using traditional cameras,
numerous blind deconvolution methods [5] help mitigate the
effects of blur in traditional images. Spatially varying blur has
attracted attention recently, with methods by Whyte et al. [6] and
Gupta et al. [7]. Other methods assume constant velocity motion of
planar surfaces along a straight line, in which case the PSF is a
spatially invariant 1D box filter. Levin [2] examines the effects of
such PSFs on image statistics to segment and deconvolve blurred
regions. Where box PSFs lose certain spatial frequencies, outside
information in the form of gradient or edge priors [8], [9], [10], [11],
[12] help derive visually pleasing images.

Whether for deblurring, motion recovery, or depth recovery
[13], estimating a blur PSF is critical to many methods. PSF
estimation from a single image being ill posed, methods make it
tractable in different ways. Some operate on multiple images taken
with different settings, e.g., [13]. Others make assumptions about
the scene, relying on priors such as color or strong edges [14], [15],
[16]. Still others constrain the solution space to constant velocity,
e.g., Cepstrum methods [17], [18], characterize the motion by the
number and position of zeros in an image’s power spectrum. These
methods cannot be applied to coded exposure images that are
acquired specifically to avoid such zeros. As in [3], Dai and Wu
[19] treat motion blur as an alpha matte for estimating the PSF and
implicitly assume the existence of high-contrast edges in the latent
sharp image. Moreover, since matting only estimates the blur
extent, it cannot distinguish motion direction or the infinite number
of velocity/acceleration combinations that might produce that
extent, which our method provides.

3 CONVENTIONS AND NOTATION

Since a fluttering shutter is closed for part of the capture time, we
distinguish between the exposure time (how long the shutter is open
during capture) and the capture time (from the first shutter open to
the last shutter close, including closed shutter periods). Though the
exposure and capture times of a traditional shutter are equal, the
flutter shutter’s capture time is often twice the exposure time.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. X, XXXXXXX 2012 1

. S. McCloskey is with Honeywell ACS Labs, 1985 Douglas Drive North
#112A, Golden Valley, MN 55422.
E-mail: scott.mccloskey@honeywell.com.

. Y. Ding is with Epson Research and Development, Inc., 214 Devcon Drive,
San Jose, CA 95112. E-mail: yding@erd.epson.com.

. J. Yu is with the Department of CIS, University of Delaware, 101 Smith
Hall, Newark, DE 19716. E-mail: yu@eecis.udel.edu.

Manuscript received 3 Oct. 2011; revised 27 Jan. 2012; accepted 30 Apr. 2012;
published online 8 May 2012.
Recommended for acceptance by C.-K. Tang.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2011-10-0703.
Digital Object Identifier no. 10.1109/TPAMI.2012.108.

0162-8828/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357195909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


When comparing traditional and flutter shutter images, we present

images with equal exposure times.
Latent image estimates presented here have been deblurred

using the reference code from [1]. We refer to the coded PSF given

in [1] as Raskar’s sequence.
By common convention, we denote image domain quantities

(e.g., the blur PSF) as characters such as B and Fourier domain

quantities (e.g., the blur Optical Transfer Function) as the

corresponding character with a hat, such as B̂. Of particular

interest is the MTF, denoted jB̂j, with optional parameter jB̂ðkÞj,
denoting a particular spatial frequency k.

4 NATURAL IMAGE STATISTICS

Van der Schaaf and van Hateren [20] have shown that the power

spectrum for a natural image J (without motion blur) falls off with

absolute frequency. Thus, if we parameterize jĴ j in polar

coordinates ð!; �Þ (where ! is the frequency magnitude and � is

the angle), then average jĴj over �, the resulting circularly

averaged spectrum circ!ðjĴ jÞ � C
!m , where m and C are constants.

Assuming every frequency to be independent and identically

distributed, the expected value of jĴðu; vÞj is

E½jĴðu; vÞj� ¼ C

ðu2 þ v2Þm=2
: ð2Þ

Fig. 1a shows circular spectra of (and fits to) five images from the

Berkeley Segmentation Data set (BSD) [21].

Because we consider 1D blur due to linear motion, we replace

circular power spectrum statistics with linear statistics. Specifically,

we project the 2D amplitude spectrum onto a line l in the motion

direction by rotating the spectrum so that l is aligned with the u-axis

and integrating over v. In the discrete case, we compute

Ru½jĴ j� ¼
1

V

XV
v¼0

jĴðu; vÞj; ð3Þ

where V is the v-dimension resolution. Ru½jĴj� represents the

horizontal power spectrum statistics and can be approximated

using (2) as

Ru½jĴ j� � E
1

V

XV
v¼0

jĴðu; vÞj
" #

¼ 1

V

XV
v¼0

C

ðu2 þ v2Þm=2
: ð4Þ

Fig. 1 shows that this linear model (b) has similar accuracy to the

circular model (a).

5 DETERMINING THE SHUTTER SEQUENCE

In this section, we demonstrate that natural image statistics can be

used to select a PSF which provides better latent image estimates

than the criteria used to find Raskar’s sequence. The flutter shutter

objective is to acquire images of moving objects that, while blurred,

have a motion blur PSF which is invertible by deconvolution.

While it is known that lost spatial frequencies are problematic, we

must choose between those PSFs that avoid lost frequencies.
In [1], random PSFs are sampled, and one is chosen to have its

Fourier transform (the MTF) satisfy argmaxB minkkB̂ðkÞk.1 We

demonstrate the inadequacy of this max-min criterion using

750 equal exposure PSFs: a traditional shutter PSF with 42 open

shutter chops and 749 random permutations thereof. For each of the

750 PSFs, we synthetically blurred the 100 test images from the BSD,

added noise (Gaussian with � ¼ 1 relative to intensities in [0, 255]),

deblurred, and computed the RMSE versus the original image. Fig. 2

shows the histogram of mean RMSE values for these PSFs, and

illustrates two important points. First, even a random coded exposure

PSF will give much lower RMSE than a traditional shutter. Second, it

shows that the max-min criterion is insufficient, as the PSF satisfying

it produces an RMSE 30 percent worse than the optimal, comparable

to random selection.

5.1 Natural Image Criteria

The failure of the max-min criterion to produce the best PSF can be

understood by recalling that natural images have rapidly

diminishing power in higher spatial frequencies. The max-min

criterion selects for a contrast-preserving PSF without differentiating

based on the absolute frequency corresponding to the minimum, despite
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Fig. 1. Power spectrum statistics of five natural images (c). (a) The circular power spectrum versus the spatial frequency magnitude ! in a log-log scale. The red lines

show the fits of the 1=!-exponent model. (b) The linear statistics along v versus u in a log-log scale. The red curves show our estimated linear statistics from the circular

statistics. For clarity, traces in both plots are shifted �1, �2, �3, and �4 log units.

1. Per the code available here: www.umiacs.umd.edu/~aagrawal/
MotionBlur/SearchBestSeq.zip.

Fig. 2. RMSEs of latent image estimates using different PSFs. The histogram

shows the average RMSE over 100 images using the traditional shutter

(RMSE ¼ 75) and 749 equal exposure coded PSFs. The PSF satisfying the

max-min criterion has RMSE ¼ 16 (red dashed line), about 30 percent worse than

the best.



natural images having highly uneven power distribution. Since

natural images have more power in low frequencies, we improve

RMSE performance by finding PSFs which preserve higher

contrast in low frequency bands.
In addition to the MTF minimum, we computed a number of

other metrics on the 750 PSFs. The complete list of metrics

collected is

. Number of open shutter periods m1,

. MTF Minimum m2 ¼ minkjB̂ðkÞj,

. MTF Mean m3 ¼ meankðjB̂ðkÞjÞ,

. MTF Variance m4 ¼ varkðjB̂ðkÞjÞ,

. Prior-weighted mean m5 ¼ meank jB̂ðkÞjkþ1 ,

. Number of lost frequencies

m6 ¼ kfk where jB̂ðkÞj < 10�10gk,
. Weighted lost frequencies m7 ¼

P
k
�ðkÞ
kþ1 , where

�ðkÞ ¼ 1() jB̂ðkÞj < 10�10.

The correlations between these metrics and the PSF’s mean RMSE

(over the 100 images) are shown in Table 1. In order to use these

metrics to find the optimal PSF, we learn a function mapping a

vector of the metrics to average RMSE. With the metrics and RMSE

computed for the 750 PSFs, we use multiple regression (Matlab’s

n operator) to find weights w such that the quantity

X7

i¼0

wimi; ð5Þ

best fits the mean RMSE, with m0 ¼ 1 included to provide an

offset term.2 Our weights are given in Table 1, and w0 ¼ 1;446.

The resulting weighted combination of metrics improves on the

base metrics, providing a slightly higher correlation of 0.4408 to

RMSE. While this appears to be a modest improvement, we will

demonstrate in the next section that even such a weakly

predictive projection can be used to select a PSF that provides

near-optimal RMSE.

5.2 PSF Design Algorithm

Given the experiments presented in the previous section, we

propose to use a combination of natural image-weighted metrics

and synthetic blurring/deblurring to choose a PSF that provides

low reconstruction RMSE. The high-level steps of our algorithm

are as follows:

1. First, we find the actual RMSE for a small number of PSFs
over a representative set of images.

2. Using these actual RMSEs and computed metrics on the
PSFs, we determine weights by regression.

3. We then use that weighting and (5) to project the RMSEs
from the metrics of a large number of other randomly
sampled PSFs, of which we retain those candidates with
the lowest projected RMSEs.

4. Finally, we find the actual RMSEs over the images for the
PSFs in the small set of candidates, and choose the one
with the lowest actual RMSE.

In order to evaluate this algorithm’s effectiveness, we selected
an additional 7,500 equal-exposure PSFs. For each, we find both
the metrics listed above and the ground truth RMSE over the
100 BSD images.3

From this data, we simulate 1,000 runs of our algorithm. For
each, we randomly select 5,000 of the 7,500 PSFs as the search
space and use our method to find the best one. We compare the
actual RMSE of that PSF to the one with the ground truth optimal
RMSE in the space. Ideally, the difference would be 0, indicating
that we found the best PSF of those in the search space. Fig. 3
shows a plot of this difference as a function of the size of the
candidate set. Over the 1,000 trials, the average RMSE of the best
PSF was 12.00 and the average RMSE of the PSF with the best
weighted combination of metrics was 12.74 (difference of 0.74 or
6.2 percent), indicating that, while the weighted metrics outper-
form the max-min criterion, the projection does not generally
produce the optimum PSF. When the 1 percent of the PSFs with the
best projected RMSE are evaluated to find their actual RMSE, the
difference narrows to 0.26 (2.2 percent), and the difference is
further reduced as the candidate set is enlarged (the blue curve).
For comparison, we show that if the candidate set is comprised of
randomly selected PSFs instead of using our metric weighting, the
comparable algorithm would produce the green curve. Likewise, if
the candidate set were formed using the max-min criterion, the
algorithm would produce the red curve. Our algorithm produces
an actual RMSE that is closer to that of the optimal PSF,
significantly improving on [1].

6 CODED EXPOSURE BLUR ESTIMATION

In this section, we motivate and develop a method to estimate the
PSF from a single coded exposure image. To handle both
accelerated and harmonic motion, we must estimate more than
just the width of a motion-blurred edge since, for example, there
are infinitely many pairs of starting velocities and accelerations
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TABLE 1
Correlations between Computed Metrics and Observed RMSE

of Deblurred Images

The center column shows the probability that the correlation results from random
chance; values less than 0.05 are generally considered to indicate a significant
effect. The right column shows the weight used in (5).

Fig. 3. With natural image statistics, we select a PSF providing near-optimal

reconstruction while finding the actual RMSE on a small subset of the search

space. As compared to chance and max-min sampling, the proposed algorithm

produces significantly better results. Note: The leftmost points lie at 1
50 , not 0.

2. In our experiments, we found that including second-order products
occasionally provided a slight benefit; higher-order products of the metrics
do not improve the quality of the fit.

3. Note that this takes approximately 1 CPU week, limiting the number
of PSFs used in our experiment. At this rate, exhaustively searching all
potential PSFs would take more than 109 years.



that will produce a given width. Because of this, and to avoid
assuming that the scene contains a high-contrast edge between the
moving object and background, we do not base our approach on
alpha matting. Instead, we assume that the image contains only the
motion-blurred object4 with texture obeying a natural image prior.
Relative to such a prior, we note that the local minima and maxima
of a coded exposure MTF introduce features in the image’s
amplitude spectrum that can be used to estimate motion
parameters. Before presenting our method, however, we first
quantify the sensitivity of coded exposure deblurring to errors in
PSF estimation.

6.1 Sensitivity to Blur Estimation Error

Fig. 4 shows latent image estimation RMSE as a function of the
accuracy of PSF length estimates for both traditional and coded
exposure images. We synthesized traditional and coded exposure
motion blur in 10 randomly selected images from the BSD, and
added Gaussian noise � with � ¼ 1. After deblurring, we take the
mean RMSE of the 10 images. The plot shows that coded exposure
deblurring, whose RMSE rises sharply around the minimum, is
more sensitive than traditional imaging to errors in blur estima-
tion. The rapid RMSE increase for coded exposure deblurring
makes image quality a good proxy for PSF accuracy, which is
important because establishing ground truth is difficult for real
moving objects. When blur estimation error is more than
�5 percent, latent images estimated from traditional shutters are
quantitatively better than those using coded exposure.

We stress that the quantitative results shown in Fig. 4 should
only serve as a rough guide to the differences between traditional
and coded exposure imaging. At points where the red and blue
curves intersect, differences in the MTFs will result in significant
qualitative differences. Fig. 5 shows estimated latent images
having nearly identical RMSEs, but notable qualitative differences:
The coded exposure images are sharp but noisy, whereas the
traditional shutter images have soft focus but low noise.

6.2 PSF Modeling

The unit-area PSF BðxÞ describes how long each pixel x is exposed
to a moving scene point. It is a function of both the binary shutter
sequence SðtÞ and the object motion �, which we measure in units
of pixels, e.g., velocity as pixel/sec. A pixel x is exposed to a
moving point with duration wðxÞ inversely proportional to velocity
�ðxÞ as

wðxÞ ¼ 1

�ðxÞ : ð6Þ

It is natural to describe the velocity and displacement in terms

of time t, so we rewrite wðxÞ ¼ 1
�ðtðxÞÞ , where tðxÞ is the inverse of

the displacement function xðtÞ. We assume that xðtÞ is monotonic

throughout the shutter sequence, i.e., there is no back and forth

motion.
We combine the shutter sequence and the exposure wðxÞ to

compute the unnormalized PSF B0ðxÞ as

B0ðxÞ ¼ SðtðxÞÞwðtðxÞÞ ¼
SðtðxÞÞ
�ðtðxÞÞ : ð7Þ

B0ðxÞ is then normalized to the unit-area PSF BðxÞ. Equation (7)

indicates that the PSF can be viewed as an envelope of wðxÞ
sampled by the shutter pattern SðtÞ, as shown in Fig. 6. To derive

the PSF for arbitrary motions, we simply need to derive tðxÞ. Fig. 6

shows tðxÞ for the three types of motion considered here.

6.3 Recovering Motion PSFs

Having shown that many commonly observed motions have

closed-form PSFs, we recover B from the amplitude spectrum of a

blurred image. Recalling the convolution blur model of (1), the

image’s amplitude spectrum is

jÎj ¼ jĴB̂j þ j�̂j ¼ jĴkB̂j þ j�̂j: ð8Þ

Since �̂ has constant expected amplitude at all frequencies, noise is

an offset in the frequency domain and can be ignored in our

analysis of relative spectral power.
Our goal is to use natural image statistics to recover the PSF

from the blurred image I. We assume the motion type (constant

velocity, acceleration, etc.) is known and we focus on recovering its

corresponding motion parameters �. We can apply the Ru operator

to (8):

Ru½jÎj� ¼
XV
v¼0

jĴðu; vÞkB̂ðuÞj ¼ jB̂ðuÞj � Ru½jĴ j�: ð9Þ

Equation (9) allows us to separate Ru½jĴ j� and jB̂j. We can further

take the log of (9) as:

logðRu½jÎj�Þ ¼ logðjB̂jÞ þ logðRu½jĴ j�Þ: ð10Þ

6.4 Motion Estimation Algorithm

Fig. 7 illustrates our motion estimation algorithm. We first

determine the motion direction and align it with the u-axis. For

every candidate motion parameter �, we compute its PSF B�

and MTF jB̂�j, and estimate the latent image amplitude

spectrum jĴ�j ¼ jÎj=jB̂�j. We then compute the linear statistics

Ru½jĴ�j� and Ru½jÎj�. Finally, we compute the match score �

between logðjB̂�jÞ and logðRu½jÎj�Þ � logðRu½jĴ�j�Þ. Our estimated

motion parameter � is that which maximizes the match score �.
Estimating the motion direction. Similarly to [22], we find the

direction with most muted high frequencies by inspecting the

Radon-power spectrum of I in all directions and choosing the one

with the maximal variance. This assumes that the latent sharp

image is roughly isotropic, i.e., the power spectrum has similar

characteristics (variance, mean values) in all orientations.
Computing linear statistics of jĴ�j. A crucial step in our motion

estimation algorithm is to derive the linear statistics of jĴ�j ¼
jÎj=jB̂�j from the circular statistics. When J� is motion blur free, its

circular statistics should follow 1=!-exponent distribution. To

estimate C and m, we compute the discrete circular averaged

power spectrum and apply line fitting between logðcirc!½jĴ�j�Þ and

logð!Þ. We then approximate the linear statistics Ru½jĴ�j� using (4).
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4. Alternately, the method can be applied to motion-blurred regions that
have been segmented from the background, as in [2].

Fig. 4. Latent image estimation RMSE as a function of blur estimation error. (Blue)

RMSE for deblurred coded exposure images. (Red) RMSE for deblurred traditional

shutter images.



Matching log-linear statistics. Recall that our ultimate goal is

to match f1 ¼ logðjB̂�jÞ and f2 ¼ logðRu½jÎj�Þ � logðRu½jĴ�j�Þ under

a metric �. A naive � is to measure the squared difference at

sampled points on f1 and f2. Since the power spectra of images

generally have much smaller values in high frequency, directly

computing the correlation between the estimate f1 and f2 results in

unequal contributions from different frequencies.
Instead, we employ a metric based on the signs of the function

derivatives to equally treat all frequencies. Specifically, we use a

derivative sign function �ð�Þ:

�ðfðuÞÞ ¼ 1; df
du � 0

�1; df
du < 0;

(
ð11Þ

where f is a 1D function on u. We sample f1 and f2 at discrete

points u1, u2, . . . , un, and compute

�ðf1; f2Þ ¼
Xn
i¼1

�
�
f1ðuiÞ

�
�
�
f2ðuiÞ

�
: ð12Þ

This functional measures the agreement between the positions of

inflection points in f1 and f2.

7 PSF ESTIMATION RESULTS

We have applied our technique to the images from [1] and get

high-quality reconstructions from estimates within 1 pixel of

ground truth. In order to test other motions (acceleration,

harmonic) handled by our method, we have acquired additional

test images using a Point Gray Flea2 camera. To deconvolve our

estimated B, we use the linear system solution [1] for constant

velocity motions and the Gaussian-derivative-prior method [23]

for constant acceleration and harmonic rotation motions.
Constant velocity. Fig. 8 shows iris and bar code images

captured under constant velocity. The motion is from left to right,

giving the flutter shutter images Figs. 8a and 8d. We measure the

ground truth using a step edge target and find its blurred width in

an image with known exposure time. We estimate motion direction

within 1 degree of ground truth, and the matching metric � has
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Fig. 5. Comparison of poorly reconstructed coded exposure and traditional images. (Left) Estimated latent image for a 4 percent underestimate of coded exposure blur,

with an RMSE of 12.7. (Center) Estimate for a 4 percent underestimate of traditional motion blur, with RMSE 12.3. (Right) Ground truth. Despite similar RMSEs, there are

sharpness and noise differences between the estimates.

Fig. 6. PSFs of common motions: constant velocity (left), constant acceleration (middle), and harmonic motion (right). The top row shows the time-velocity function

sampled by the shutter (in red). The bottom row of figures shows the corresponding PSF.

Fig. 7. Steps of our statistical PSF estimation algorithm.



maxima at exactly the ground truth values (35 and 42 pixels,

respectively). Our latent image estimates Figs. 8c and 8f contain

sufficient detail to perform recognition: An iris template extracted

from Fig. 8c was successfully matched to another from the same

eye, and the barcode in Fig. 8f was successfully decoded. Neither

iris recognition nor barcode decoding were successful on Lucy-

Richardson [24] deblurred traditional images captured with the

same setup.
Constant acceleration. We capture accelerated motion images

using a toy car on an inclined track, where gravity provides
acceleration, and validate our motion estimation by the quality of
the deblurred results. Fig. 9a shows the coded exposure image.
Though the track is slanted at 55 degrees, the camera is rotated so
that the motion appears nearly horizontal. We first apply our
motion direction estimation algorithm, which produces an
estimate of 1 degree. Next, we determine the motion parameters,
shown in Fig. 9d. The deblurred result (Fig. 9f) and close-up
(Fig. 9h) show a significant amount of detail relative to the initial
blur. Readers should note that the shutter sequence used was
designed to produce an invertible PSF under constant velocity
motion, so invertibility with accelerated motion is not assured.
Artifacts in Fig. 9f are due to the stationary background’s intensity
interacting with the moving foreground object, and may be
reduced by applying motion segmentation. For comparison, we
present the deblurred result assuming constant velocity. As shown

in Figs. 9e and 9g, using the incorrect motion model results in
severe artifacts.

Harmonic rotation. As shown in Fig. 10a, we emulate harmonic

rotation by hanging a rigid object using two approximately rigid,

weightless cords connected to the same point. By swinging the

object back and forth freely within a plane, we synthesize a

periodic harmonic rotation. Note that the rotation gives spatially

varying blur kernels and that, like the previous example, the

shutter sequence will not produce an invertible PSF for all

velocities. We transform the harmonic rotation into a linear motion

by tracking feature points and estimating the rotation center using

least squares [12]. We then warp the image along the radial

directions to form a spatially invariant blur Fig. 10d. Our algorithm

recovers the harmonic motion parameters Fig. 10f and then deblurs

the image Fig. 10d to obtain Fig. 10e. Last, we unwarp the

deblurred image, giving the result in Fig. 10h.

8 CONCLUSION

We have demonstrated statistical blur estimation providing

accurate motion estimates for constant velocity, constant accelera-

tion, and harmonic rotation in real images. By matching inflections

in the image’s amplitude spectrum to modeled PSFs under

different motion parameters, we avoid assuming that the latent

image contains a strong edge separating foreground and back-

ground. However, our blur estimation method must be applied to

a region with a single motion, either a uniformly blurred image or

a region segmented by other means.
We have also improved the existing method for determining an

optimal coded exposure PSF. We show that the existing criteria

which maximizes the MTF minimum does not provide latent image

estimates with optimal RMSE. Using natural image statistics, we

demonstrate better estimation of the optimal PSF (in the sense of

RMSE) in the same amount of computing time. Though not the focus

of this work, we point out that this gain results in more than just

aesthetic improvements as coded exposure images have been

demonstrated to be more useful for both iris biometrics [25] and

barcode recognition [26]. While our PSF selection uses RMSE as the

objective function, we can substitute application-specific objectives

(e.g., equal error rate for iris recognition) for RMSE to address

application-specific optimization.
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Fig. 8. Results for constant velocity. Column 1: Input images. Column 2: Matching

metric versus velocity. Column 3: Deblurred results using our estimated velocity.

Fig. 9. Deblurring a toy car accelerating down a 55 degree incline. The camera is rotated, giving horizontal motion, and a target is attached to the car. (a) Input image. (c)/

(d) tðxÞ and corresponding PSFs for constant velocity/acceleration. (e) Deblurred result assuming constant velocity PSF. (f) Deblurred result using our estimated

acceleration. (b)/(g)/(h) are close-ups of (a)/(e)/(f).
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Fig. 10. Results on harmonic rotation (reference image in (g)). (a)-(c) The motion-blurred flutter shutter image. (d) The warped (b) under polar coordinates. (e) and (h)

The warped and unwarped version of our deblurred result. (i) A close-up view of the deblurred result. (f) tðxÞ and our recovered PSF.


