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Abstract

Freshwater fish present unique challenges when one attempts to understand the factors that determine the structure
of their populations. Habitat fragmentation is a leading cause of population decline that threatens ecosystems world-
wide. In this study, we investigated the conservation status of genetic variability in the Neotropical catfish (Pimelodus
maculatus). Specifically, we examined the structure and genetic diversity of this species in a region of the Upper Uru-
guay River fragmented by natural barriers and dams. There was no genetic structure among the four sites analyzed,
indicating the existence of only one population group. A combination of environmental management and genetic
monitoring should be used to minimize the impact of impoundment on panmitic populations of migratory fish species.
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Introduction

Investigations into the mechanisms involved in creat-

ing population genetic structure are an important aspect of

wildlife management because genetic variation is the

means whereby a given species responds and adapts to a

changing environment (Oliveira et al., 2009). One of the

primary impacts of many human activities is habitat frag-

mentation (Templeton, 2001), especially for rivers, in

which damming inhibits migratory behaviour and de-

creases environmental cues for spawning, and can lead to

substantial reductions in gene flow within and between

some river systems (Yamamoto et al., 2004; Dudgeon et
al., 2006; Helfman, 2007; Barletta et al., 2010; Coleman et
al., 2010; Hugueny et al., 2011).

The hydropower potential of Brazilian rivers is large

and currently includes more than 988 hydroelectric dams

(ANEEL, 2012). Dams restrict the free movement of

aquatic animals by preventing them from reaching up-

stream habitats (Benke, 1990; Dynesius and Nilsson, 1994)

and by interfering with the migratory behavior of freshwa-

ter fishes (Pringle et al., 2000). Such interference can lead

to a reduction in population size and increase the probabil-

ity of differentiation because of genetic drift (Heggenes and

Røed, 2006; Dehais et al., 2010).

The structuring of populations in reduced and some-

times isolated groups has an impact on the erosion of ge-

netic variation and increased inbreeding, which are factors

of paramount importance in conservation programs (Fran-

kham et al., 2002; Allendorf and Luikart, 2007). In popula-

tions with restricted gene flow, the changes in allele

frequencies due to genetic drift are inversely related to pop-

ulation size and are compounded by the number of genera-

tions of isolation (Falconer, 1989). In river systems, fish

can form a panmictic population or genetically differenti-

ated populations with sufficient gene flow to maintain the

integrity of the metapopulation (Piorski et al., 2008).

McGlashan and Hughes (2000) identified freshwater fish

with high levels of genetic differentiation among popula-

tions from different river systems. For many freshwater

fish, physical barriers (natural or man-made), reproductive

behavior and ecological characteristics exert a large influ-

ence on genetic structuring (Avise and Felley, 1979; Hol-

deregger and Wagner, 2006; Barthem et al., 1991; Godinho

et al., 2007a; Vergara et al., 2008).

The family Pimelodidae is one of the largest families

of Neotropical catfish (Pinna, 1998). This family includes

the yellow-mandi catfish, or mandi-pintado (Pimelodus
maculatus), which is a small abundant catfish that is impor-

tant in regional fishing (Zaniboni-Filho and Schulz, 2003).
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The Upper Uruguay River has its headwaters in the Serra

Geral mountains near the southern coast of Brazil, where it

is known as the Pelotas River, and continues along the bor-

der between the Brazilian states of Santa Catarina and Rio

Grande do Sul. The Upper Uruguay River is formed from a

series of pools and rapids that become an obstacle to fish

movement during periods of drought (Eletrosul/CNEC,

1990). These rapids were flooded by the reservoir created

by the Itá hydroelectric dam in 1999 (Zaniboni-Filho and

Schulz, 2003). Since then, four additional hydroelectric

dams have been constructed on the Upper Uruguay River,

bringing the current total to five dams.

Many studies have suggested that anthropogenic

disturbances that cause habitat fragmentation are respon-

sible for genetic variation among and within populations

of freshwater fish (Neraas and Spruell, 2001; Pamponet et
al., 2008; Esguícero and Arcifa, 2010). Such variation has

been studied by a variety of techniques, including micro-

satellites, which have become one of the most popular

markers for making inferences on population genetics be-

cause they are abundant, widely distributed in the genome

and highly polymorphic (O’Connell and Wright, 1997;

DeWoody and Avise, 2000; Wu and Drummond, 2011).

The aim of this study was to investigate the genetic

diversity in P. maculatus in the Upper Uruguay River with

particular reference to the genetic differentiation among

populations resulting from natural barriers and isolation by

hydroelectric dams.

Materials and Methods

Sampling and DNA extraction

The Upper Uruguay River is formed by rapids, with

the Augusto César Gorge (1,493 km from the river mouth)

located just below the confluence with the Peixe River be-

ing an important obstacle; in this stretch, the river drops 8 m

in only 7 km (Eletrosul/CNEC, 1990). Several hydroelec-

tric dams have been constructed on this river, including the

Itá dam (built in 2000, with a flooded area of 141 km2) in

the middle section of the river, the Machadinho dam (built

in 2002, with a flooded area of 56.7 km2), upstream of Itá

dam in the middle segment of the river, and the Barra

Grande dam (built in 2005, with a flooded area of 94 km2)

located at the head of the river.

Two hundred and ten specimens of P. maculatus were

collected from 2007 to 2009 at different locations along the

Upper Uruguay River during all seasons (Figure 1). All

samples were collected after construction of the dams and

were obtained from four sites: BG – upstream of the Barra

Grande dam (n = 51), MA – downstream of the Barra

Grande dam and upstream of the Machadinho dam (n = 60),

IT – downstream of the Machadinho dam and upstream of

the Itá dam (n = 48) and DI – downstream of the Itá dam

(n = 51) (Table 1). Genomic DNA was extracted from fin

clips using the proteinase K/phenol-chloroform protocol

(Sambrook et al., 2001).
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Figure 1 - Samples were obtained from four regions in Upper Uruguay River Basin: BG – upstream of the Barra Grande dam (sites 1-3; n = 52), MA –

downstream of the Barra Grande dam and upstream of the Machadinho dam (sites 4-5; n = 60), IT – downstream of the Machadinho dam and upstream of

the Itá dam (sites 7-9; n = 48) and DI – downstream of the Itá dam (sites 10 and 11; n = 50).



Microsatellite amplification and genotyping

Eight polymorphic loci (Pmac01, Pmac02, Pmac03,
Pmac06, Pmac07, Pmac08, Pmac10 and Pmac11) were se-

lected from 11 previously reported microsatellites (Paiva

and Kalapothakis, 2008). PCR amplifications of each mi-

crosatellite locus were done using an MJ Research PTC-

100 thermal cycler with the assay conditions described by

these authors for each locus. The PCR products were sepa-

rated by electrophoresis in 4% polyacrylamide gels with a

10-bp DNA ladder (Gibco BRL) and stained with silver

(Creste et al., 2001). DNA fragments stained with silver

were illuminated with a white light transilluminator and an-

alyzed manually twice. All gels were documented with a

scanner.

Data analysis

Prior to statistical analyses, Micro-Checker (Ooster-

hout et al., 2004) was used to test for scoring errors due to

null alleles, stuttering or large allele dropout. Genetic di-

versity was measured by the number of alleles per locus

(A), observed heterozygosity (Ho) and expected hetero-

zygosity (He) and assignment tests were calculated with

GenAlex 6.41 (Peakall and Smouse, 2006). Allelic richness

(RA) and inbreeding coefficient (FIS) were calculated with

FSTAT 2.9.3 (Goudet, 2002). Departures from Hardy-

Weinberg equilibrium expectations (HWE), genotypic

linkage disequilibrium and the number of migrants per gen-

eration (Nm) were calculated with GenePop (Barton and

Slatkin, 1986).

The occurrence of genetic structuration among

groups was investigated with pairwise FST (Weir and

Cockerham, 1984) in FSTAT. However, since the tradi-

tional FST may have undesirable attributes in some situa-

tions when estimated from highly polymorphic markers

such as microsatellites (Jost, 2008; Heller and Siegismund,

2009) we also calculated a recently developed alternative

measure, DEST (Jost, 2008), using the software SMOGD

1.2.5 (Crawford, 2010).

Two contrasting Bayesian clustering methods were

used to examine population genetic structure without allo-

cating individuals to populations prior to analysis:

STRUCTURE ver. 2.2 (Pritchard et al., 2000) and

SAMOVA ver. 1.0 (Dupanloup et al., 2002). Based solely

on genetic data, STRUCTURE identifies the number of dis-

tinct clusters, assigns individuals to clusters and identifies

migrants and admixed individuals. To determine the num-

ber of populations (K) within the complete data set, two in-

dependent simulations for K = 1-6 with 100,000 burn-in it-

erations and 500,000 data iterations were run. Analysis was

done using the admixture model of population structure

(i.e., each individual derives some fraction of its genome

from each of the K populations) and allele frequencies cor-

related among populations (i.e., allele frequencies in the

different populations are likely to be similar due to factors

such as migration or shared ancestry) (Pritchard et al.,
2000). The estimation of K based on maximum posterior

likelihood ln (K) is an approximation and, in many empiri-

cal data sets, may continue to increase once the true number

of populations is reached; therefore, an alternative method

to estimate K based on the change in likelihood (�K) was

also applied (Evanno et al., 2005).

By using genetic data and geographic coordinates,

SAMOVA (spatial analysis of molecular variance) defines

groups of populations that are geographically homogenous

and maximally differentiated from each other (Dupanloup

et al., 2002). To determine the number of groups within the

complete data set, 100 simulated annealing processes for

each K = 1-11 (sample sites; Table 1) were run on a sum of

square size differences distance matrix.

The genetic structure and the possible existence of

natural groups of populations beyond the molecular parti-

tions between and within sites, as well as variations among

individuals, were examined through analysis of molecular

variance (AMOVA) performed with ARLEQUIN version

3.11 (Excoffier et al., 2005), with 1,023 permutations to

test for significance. The analysis of the four groups was
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Table 1 - Sampling sites for Pimelodus maculatus, including sample sizes per site (N) and localization.

Study site ID Specific collecting location N Localization

BG 1 Pelotas River 23 28°16’05.25” S 50°41’47.34” W

2 Downstream Vacas Gordas River 6 28°02’28.54” S 50°28.71” W

3 Immediately upstream of Barra Grande dam 22 27°57’58.54” S 51°01’59.14” W

MA 4 Downstream of Barra Grande dam 20 27°32’16” S 51°51’24” W

5 Downstream Canoas River 23 27°35’59,7” S 51°23’28,9” W

6 Immediately upstream of Machadinho dam 17 27°31’25” S 51°47’05” W

IT 7 Downstream Machadinho dam 21 27°31’37” S 51°47’06” W

8 Itá reservoir 13 27°22’43” S 51°59’18” W

9 Immediately upstream of Itá dam 14 27°17’10” S 52°20’27” W

DI 10 Immediately downstream of Itá dam 12 27°05’54” S 53°01’02” W

11 Downstream Chapecó River 39 27°06’10” S 53°24’07” W



defined based on the fragmentation caused by the dams

(Table 1).

Results

Genetic variability

All of the microsatellites analyzed were highly poly-

morphic and the number of alleles per locus ranged from five

(Pmac8) to 25 (Pmac2) (mean = 15.81). The expected and

observed heterozygosities ranged from 0.629 (Pmac8) to

0.948 (Pmac2) and from 0.385 (Pmac8) to 0.978 (Pmac7),

respectively. All populations exhibited high levels of allelic

richness (RA) that ranged from 4.98 (Pmac8) to 24.0

(Pmac2) (Table 2). There was no linkage disequilibrium for

the pairs of loci analyzed, indicating that the observed fre-

quency of the combination of alleles for a pair of loci was

similar to the expected frequency. The FIS index suggested a

heterozygote deficiency in the four populations analyzed

(Table 2). Significant departures from Hardy-Weinberg

equilibrium (p < 0.0055, adjusted using the Bonferroni cor-

rection) were detected at the population level for 11 loci. Es-

timates of the occurrence of null alleles, as checked with the

program Micro-Checker, indicated that null alleles might be

present at nine cases in which departure from Hardy-

Weinberg equilibrium was identified (Table 2).

Population genetic structure

The average differentiation among the study popula-

tions was low for FST (0.0229) and moderate for DEST

(0.255). The genetic differentiation among populations es-

timated by the FST pairwise comparisons index ranged from

0.004 to 0.0352; these values were not significant, indicat-

ing the absence of genetic differentiation among the groups

analyzed (Table 3). The differentiation index DEST had the

highest values, which ranged from 0.129 (between BG and

DI) to 0.3307 (between MA and IT).

The values for the gene flow parameter Nm, which

was measured based on the observed private alleles (Barton

and Slatkin, 1986), were high, with an average of 2.86 mi-

grants per generation. Determination of the distribution of

molecular variation by AMOVA revealed that most of the

total genetic variance was also found within individuals

(Table 4). SAMOVA revealed that there was no genetic

structure among the individuals of P. maculatus from the

Upper Uruguay River. Analysis of the entire dataset using

STRUCTURE indicated that the most likely value for K = 2

based on the highest mean estimated log probability (Prit-

chard et al., 2000). However, with the Evanno correction,

the highest value of �K for the entire data set revealed a

lack of structure among the groups (�K = 1) (Figure 2).

Discussion

Microsatellite analysis

The overall genetic variation in P. maculatus of the

Upper Uruguay River basin was high (He = 0.629 to 0.948)
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Table 2 - Genetic variation in populations of Pimelodus maculatus.

Allele Parameter Collection site

BG MA IT DI

Pmac1 N 51 60 47 50

A 14 15 15 16

HO 0.653 0.766 0.680 0.659

HE 0.877 0.849 0.8572 0.881

RA 13.142 13.721 14.414 14.433

FIS 0.264 0.106 0.216 0.245

HWE 0.0000*+ 0.1206 0.0154 0.0003*+

Pmac2 N 48 58 37 41

A 21 17 25 23

HO 0.787 0.948 0.902 0.837

HE 0.937 0.920 0.934 0.945

RA 20.138 15.844 22.211 24.000

FIS 0.171 -0.021 0.047 0.101

HWE 0.0000*+ 0.7254 0.051 0.0083

Pmac3 N 51 59 46 50

A 17 15 17 17

HO 0.820 0.877 0.911 0.755

HE 0.9178 0.891 0.916 0.933

RA 16.056 13.732 17.145 18.529

FIS 0.117 0.025 0.017 0.201

HWE 0.0073 0.3877 0.432 0.0000*

Pmac6 N 51 59 42 49

A 19 17 18 19

HO 0.787 0.903 0.857 0.846

HE 0.925 0.907 0.926 0.919

RA 18.161 15.215 18.215 17.538

FIS 0.160 0.014 0.085 0.092

HWE 0.0011*+ 0.0982 0.0213 0.0009*

Pmac7 N 51 60 48 48

A 18 20 20 19

HO 0.961 0.775 0.88 0.977

HE 0.914 0.896 0.924 0.928

RA 16.988 16.202 17.893 19.290

FIS -0.042 0.147 0.058 -0.068

HWE 0.8721 0.0156 0.1373 1.000

Pmac8 N 51 60 48 48

A 6 5 6 6

HO 0.384 0.650 0.617 0.500

HE 0.6280 0.678 0.693 0.636

RA 5.692 4.976 5.977 5.995

FIS 0.396 0.05 0.122 0.192

HWE 0.000*+ 0.2129 0.1007 0.0007*

Pmac10 N 51 60 47 50

A 20 19 21 21

HO 0.862 0.758 0.729 0.829

HE 0.924 0.898 0.912 0.932

RA 16.459 15.947 18.583 19.865

FIS 0.077 0.164 0.211 0.121

HWE 0.0971 0.0008*+ 0.000*+ 0.000*+

Pmac11 N 51 60 48 50

A 10 10 12 12

HO 0.826 0.666 0.760 0.702

HE 0.834 0.833 0.854 0.867

RA 9.565 9.590 11.764 11.456

FIS 0.019 0.208 0.12 0.201

HWE 0.6216 0.007 0.0025*+ 0.0075

A, mean number of alleles per locus; FIS, coefficient of inbreeding shown

for individual loci and null allele (+); HO and HE, observed and expected

heterozygosities, respectively; HWE, Hardy-Weinberg equilibrium; RA,

allelic richness. *Significant deviations from Hardy-Weinberg equilib-

rium (Bonferroni correction: 0.0055 < � < 0.05).



when compared with other with other species of Siluri-

formes (He = 0.055 to 0.861 (Abreu et al., 2009) and 0.310

to 0.942 (Pereira et al., 2009)). The loci investigated

showed a high level of polymorphism (15.81 alleles/locus).

Genetic diversity was high and similar to that commonly

found in wild fish populations (Martins et al., 2003; Pereira

et al., 2009; Garcez et al., 2011).

Tests for stutter miscall and allelic dropout in

MICROCHECKER were not significant in any of the sam-

ples. The occurrence of null alleles seen here is a common

problem with microsatellite markers and may be explained

by the low efficiency of hybridization of the primers used to

amplify some loci, possibly because of point mutations in

one or more annealing sites of these primers (Callen et al.,
1993; O’Connell and Wright, 1997; Dakin and Avise,

2004) or because of failures associated with manual geno-

typing.

Population structure

Our analysis revealed high genetic diversity and no

population structuring. Estimates of population differentia-

tion are crucial for understanding the connectivity among

populations and provide an important tool for developing

conservation strategies (Balloux and Lugon-Moulin,

2002). The populations of P. maculatus showed extremely

high levels of diversity, with low FST values (mean =

0.0229) (Table 3). The low FST values and individual-based

Bayesian clustering seen here did not detect any genetic

structure among the four populations. An equivalent com-

parison done with the estimator of actual differentiation

DEST indicated a higher level of differentiation among these

populations (0.129 to 0.3307).

DEST is considered to be particularly suitable for esti-

mating population structure with microsatellites markers,

especially in situations where within-locus genetic diver-

sity is high, as is often the case for highly polymorphic

microsatellite data (Hedrick, 2005; Jost, 2008). In general,

DEST estimates tend to be 3-4 times higher than their FST

equivalents, with a near-perfect correlation between both

estimates (Ensing et al., 2011). According to Jost (2008),

FST statistics tend to underestimate true levels of population

differentiation compared to Jost’s D and related statistics

because they detect smaller levels of genetic differentiation

in relation to DEST. Bird et al. (2011) recommended that re-

searchers apply both a xation index and an index of genetic

differentiation to their datasets. Our data set provides an op-

portunity to compare those two statistics.

Habitat fragmentation is one of the most common

outcomes of environmental changes induced by human ac-

tivities (Frankham et al., 2002; Fabry et al., 2008; Tuo-

mainen and Candolin, 2011). However, our analysis of the

genetic structure of populations of P. maculatus revealed

that despite the existence of seasonal natural barriers, the

methods used were unable to differentiate the populations

of P. maculatus genetically. AMOVA has been widely

used for hierarchical analysis of the genetic differentiation

among populations (Dupanloup et al., 2002; Pereira et al.,
2009; Coleman et al., 2010; Wollebaek et al., 2011). Here,

AMOVA indicated that the vast majority of variance oc-

curred within populations and not between them. These re-

sults agree with those obtained by Population Assignment
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Figure 2 - STRUCTURE results for maximum likelihood ln K (•) and �K
(–), for one to six populations (K). Maximum peaks in K were at K = 1.

Table 3 - Values of FST (below diagonal) and D (above diagonal) for

pairwise comparisons of the four sites sampled.

BG MA IT DI

BG - 0.2723 0.2686 0.1293

MA 0.0300 - 0.3307 0.2611

IT 0.0294 0.0352 - 0.2383

DI 0.0040 0.0231 0.0150 -

Significance level: 0.05.

Table 4 - Uruguay River AMOVA summaries under the standard model followed by the microsatellite model (SMM), as implemented in Arlequin

3.1.0.2 (Excoffier et al., 2005). The data show the degrees of freedom (df), sum of squared deviation (SSD), variance component estimates, the percent-

age of total variance that each component contributed, the fixation index and the probability of obtaining by chance alone a more extreme variance com-

ponent than the observed values (p-value). The p-values were derived from significance tests (1023 permutations) calculated with the distance method

(FST) in Arlequin 3.11.

Source of variation df SSD Variance component Percentage variation Fixation index p-value

Among groups 3 37.657 0.0521 1.44 0.0144 0.030

Among populations within groups 4 26.724 0.0539 1.49 0.0151 0.000

Within individuals 210 620.000 2.9523 97.07 0.1777 0.000

Total 419 1.504.44 361.213



using GenAlex which, based on individuals of known ori-

gin, found that many individuals belonging to a given popu-

lation were attributed to other populations that were

different from the previously established one. SAMOVA

and STRUCTURE established that the populations were

genetically homogeneous. The absence of genetic structure

in a population has also been observed for pacu (Piaractus
mesopotamicus) (Calcagnotto and DeSalle, 2009; Iervolino

et al., 2010) and the genus Prochilodus (Sivasundar et al.,
2001).

High levels of genetic diversity are often observed in

migrating fish with large populations because, in large pop-

ulations, high rates of migration minimize the effects of ge-

netic drift (Santos et al., 2007). Pimelodus maculatus is a

lateral migratory species that leaves the main river to spawn

in tributaries (Zaniboni-Filho and Schulz, 2003). However,

there are reports of migrations occurring over long dis-

tances. The reproduction of Neotropical migratory fish

occurs during the rainy season, when the fish travel to tribu-

taries to spawn (Agostinho et al., 2003), and these migra-

tions can be regarded as a homogenizing agent among pop-

ulations (Turner et al., 2004). Pimelodus maculatus
produces small floating eggs that can be passively carried

to the main channel, thereby mixing larvae from different

tributaries. In addition, during the rainy season, natural bar-

riers are frequently submerged by the high water level, thus

facilitating the migration of fishes.

The level of gene flow was high, with an average of

2.86 migrants per generation, indicating that some gene ex-

change occurred among all of the sampled populations be-

fore construction of the dams. According to Nei (1987), Nm
values above 1 indicate that genetic flow constitutes a posi-

tive factor against genetic differentiation among popula-

tions (Spieth, 1974). These results are consistent with the

values found by Pereira et al. (2009). When populations of

Pseudoplatystoma corruscans in the La Plata Basin were

analyzed, these authors found Nm = 2.65 and the occur-

rence of low to moderate genetic structure. In contrast,

Abreu et al. (2009) reported Nm = 0.841 for this same spe-

cies, with pronounced genetic differentiation. The gene

flow data observed here for P. maculatus were supported

by the FST, AMOVA and STRUCTURE analyses, with no

significant differences among the populations. Another im-

portant factor related to the homogeneity of these fish pop-

ulations could be the ability of some individuals to migrate

further than others. The unique reproductive characteristics

of these fish affect the potential for gene flow among popu-

lations because of the possibility of contact among different

regions; this contact involves crossing physical barriers

that in turn facilitates genetic exchange among populations.

High gene flow has previously been reported for pop-

ulations of P. maculatus from the lower and middle Tietê

River (6.480), the lower and upper Tietê River (4.596) and

the middle and upper Tietê River (4.332), with important

differences among the populations of these three regions

(Almeida and Sodré, 1998). However, Almeida et al.
(2003) found structuring among populations in the upper,

middle and lower Paranapanema River, with gene flow es-

timates of 4.464, 2.173 and 1.877, respectively. According

to these authors, the differentiation of P. maculatus popula-

tions in the Paranapanema River most probably reflected

the existence of many waterfalls, some of which are more

than 60 m in height. The level of gene flow may be the most

important determinant of population structure because it

defines the extent to which each local population is an inde-

pendent evolutionary unit (Slatkin, 1995).

According to Zaniboni-Filho and Schulz (2003), be-

fore the construction of dams, the Upper Uruguay River

had a bed composed of a sequence of pools and rapids that,

in periods of drought, became an obstacle for fish to swim

through. However, we found no significant differences be-

tween individuals from below and above the Augusto César

gorge. Currently, the population of P. maculatus in the Up-

per Uruguay River basin is separated by five hydroelectric

dams, with no possibility for interaction among the popula-

tions. Given the natural isolation imposed by rivers and the

small size of most populations, freshwater fish species

would be expected to show higher levels of subdivision and

genetic differentiation among populations (Ward et al.,
1994; Neraas and Spruell, 2001). However, high levels of

gene flow ensure short genetic distances and help to main-

tain homogenous populations; this results in limited evolu-

tionary differences between regions while promoting

relatively high genetic variability. Ramella et al. (2006) re-

ported high genetic diversity among individuals of P.
maculatus based on an analysis using RAPD markers.

The Upper Uruguay River is continually being frag-

mented by the construction of hydroelectric dams, resulting

in the isolation of different populations of fish species.

Yamamoto et al. (2004) reported that habitat fragmenta-

tion, such as caused by dams, can altering the genetic vari-

ability of many freshwater fish species in which the effects

of isolation on genetic variation and population differentia-

tion have been studied (Hansen and Mensberg, 1998, Ne-

raas and Spruell, 2001). The risks associated with popula-

tion fragmentation are directly associated with the level of

gene flow among the fragmented populations (Frankham et
al., 2002), such that the lower the flow between populations

the greater the risk of losing variability.

The ability to identify and define biological popula-

tions is crucial for taking informed decisions on conserva-

tion and management (Waples and Gaggiotti, 2006). The

results described here provide important information for

the conservation management of P. maculatus populations,

for which we found that a naturally occurring obstacle and

the time of isolation since construction of the dams were

not sufficient to result in genetic differentiation of the pop-

ulations in the Upper Uruguay River. Future studies may

provide additional information on the magnitude of the im-
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pact caused by hydroelectric dams on the genetic structure

of this species.

In populations with a restricted gene flow, changes in

the allele frequencies caused by genetic drift are inversely

related to population size and can be compounded by the

number of generations of isolation (Falconer, 1989). Con-

sequently, migration corridors between populations sepa-

rated by dams may be valuable for sustaining their

evolutionary potential (Wollebaek et al., 2011).

The effects of existing dams on the fish community

need to be understood in order to make better informed de-

cisions about future projects. Pimelodus maculatus is an

abundant migratory species in which genetic flow main-

tains the samples in panmixy, including geographically dis-

tant populations. Because the genetic effects of population

isolation may be similar across species the results from this

study should prove useful to a variety of ecosystem manag-

ers. Studies of the genetic structure of freshwater fish

should be requested by IBAMA, the Brazilian federal envi-

ronmental agency, as a prerequisite before the construction

of dams in Brazilian rivers.
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