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Abstract

We model a “one-shot learning” situation, where very few observations
y1, ..., yn ∈ R are available. Associated with each observation yi is a very high-
dimensional vector xi ∈ Rd, which provides context for yi and enables us to pre-
dict subsequent observations, given their own context. One of the salient features
of our analysis is that the problems studied here are easier when the dimension
of xi is large; in other words, prediction becomes easier when more context is
provided. The proposed methodology is a variant of principal component regres-
sion (PCR). Our rigorous analysis sheds new light on PCR. For instance, we show
that classical PCR estimators may be inconsistent in the specified setting, unless
they are multiplied by a scalar c > 1; that is, unless the classical estimator is ex-
panded. This expansion phenomenon appears to be somewhat novel and contrasts
with shrinkage methods (c < 1), which are far more common in big data analyses.

1 Introduction

The phrase “one-shot learning” has been used to describe our ability – as humans – to correctly
recognize and understand objects (e.g. images, words) based on very few training examples [1, 2].
Successful one-shot learning requires the learner to incorporate strong contextual information into
the learning algorithm (e.g. information on object categories for image classification [1] or “function
words” used in conjunction with a novel word and referent in word-learning [3]). Variants of one-
shot learning have been widely studied in literature on cognitive science [4, 5], language acquisition
(where a great deal of relevant work has been conducted on “fast-mapping”) [3, 6–8], and computer
vision [1, 9]. Many recent statistical approaches to one-shot learning, which have been shown to
perform effectively in a variety of examples, rely on hierarchical Bayesian models, e.g. [1–5, 8].

In this article, we propose a simple latent factor model for one-shot learning with continuous out-
comes. We propose effective methods for one-shot learning in this setting, and derive risk approx-
imations that are informative in an asymptotic regime where the number of training examples n
is fixed (e.g. n = 2) and the number of contextual features for each example d diverges. These
approximations provide insight into the significance of various parameters that are relevant for one-
shot learning. One important feature of the proposed one-shot setting is that prediction becomes
“easier” when d is large – in other words, prediction becomes easier when more context is provided.
Binary classification problems that are “easier” when d is large have been previously studied in
the literature, e.g. [10–12]; this article may contain the first analysis of this kind with continuous
outcomes.

The methods considered in this paper are variants of principal component regression (PCR) [13].
Principal component analysis (PCA) is the cornerstone of PCR. High-dimensional PCA (i.e. large
d) has been studied extensively in recent literature, e.g. [14–22]. Existing work that is especially
relevant for this paper includes that of Lee et al. [19], who studied principal component scores in
high dimensions, and work by Hall, Jung, Marron and co-authors [10, 11, 18, 21], who have studied
“high dimension, low sample size” data, with fixed n and d→∞, in a variety of contexts, including
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PCA. While many of these results address issues that are clearly relevant for PCR (e.g. consis-
tency or inconsistency of sample eigenvalues and eigenvectors in high dimensions), their precise
implications for high-dimensional PCR are unclear.

In addition to addressing questions about one-shot learning, which motivate the present analysis,
the results in this paper provide new insights into PCR in high dimensions. We show that the clas-
sical PCR estimator is generally inconsistent in the one-shot learning regime, where n is fixed and
d→∞. To remedy this, we propose a bias-corrected PCR estimator, which is obtained by expand-
ing the classical PCR estimator (i.e. multiplying it by a scalar c > 1). Risk approximations obtained
in Section 5 imply that the bias-corrected estimator is consistent when n is fixed and d→∞. These
results are supported by a simulation study described in Section 7, where we also consider an “ora-
cle” PCR estimator for comparative purposes. It is noteworthy that the bias-corrected estimator is an
expanded version of the classical estimator. Shrinkage, which would correspond to multiplying the
classical estimator by a scalar 0 ≤ c < 1, is a far more common phenomenon in high-dimensional
data analysis, e.g. [23–25] (however, expansion is not unprecedented; Lee et al. [19] argued for
bias-correction via expansion in the analysis of principal component scores).

2 Statistical setting

Suppose that the observed data consists of (y1,x1), ..., (yn,xn), where yi ∈ R is a scalar outcome
and xi ∈ Rd is an associated d-dimensional “context” vector, for i = 1, ..., n. Suppose that yi and
xi are related via

yi = hiθ + ξi ∈ R, hi ∼ N(0, η2), ξi ∼ N(0, σ2), (1)

xi = hiγ
√
du+ εi ∈ Rd, εi ∼ N(0, τ2I), i = 1, ..., n. (2)

The random variables hi, ξi and the random vectors εi = (εi1, ..., εid)
T , 1 ≤ i ≤ n, are all assumed

to be independent; hi is a latent factor linking the outcome yi and the vector xi; ξi and εi are
random noise. The unit vector u = (u1, ..., ud)

T ∈ Rd and real numbers θ, γ ∈ R are taken to be
non-random. It is implicit in our normalization that the “x-signal” ||hiγ

√
du||2 � d is quite strong.

Observe that (yi,xi) ∼ N(0, V ) are jointly normal with

V =

(
θ2η2 + σ2 θη2γ

√
duT

θη2γ
√
du τ2I + η2γ2duuT

)
. (3)

To further simplify notation in what follows, let y = (y1, ..., yn)
T = hθ + ξ ∈ Rn, where h =

(h1, ..., hn)
T , ξ = (ξ1, ..., ξn)

T ∈ Rn, and let X = (x1, ...,xn)
T = γ

√
dhuT + E, where E =

(εij)1≤i≤n, 1≤j≤d.

Given the observed data (y, X), our objective is to devise prediction rules ŷ : Rd → R so that the
risk

RV (ŷ) = EV {ŷ(xnew)− ynew}2 = EV {ŷ(xnew)− hnewθ}2 + σ2 (4)

is small, where (ynew,xnew) = (hnewθ + ξnew, hnewγ
√
du + εnew) has the same distribution as

(yi,xi) and is independent of (y, X). The subscript “V ” inRV andEV indicates that the parameters
θ, η, σ, τ, γ,u are specified by V , as in (3); similarly, we will write PV (·) to denote probabilities with
the parameters specified by V .

We are primarily interested in identifying methods ŷ that perform well (i.e. RV (ŷ) is small) in
an asymptotic regime whose key features are (i) n is fixed, (ii) d → ∞, (iii) σ2 → 0, and (iv)
inf η2γ2/τ2 > 0. We suggest that this regime reflects a one-shot learning setting, where n is small
and d is large (captured by (i)-(ii) from the previous sentence), and there is abundant contextual
information for predicting future outcomes (which is ensured by (iii)-(iv)). In a specified asymptotic
regime (not necessarily the one-shot regime), we say that a prediction method ŷ is consistent if
RV (ŷ)→ 0. Weak consistency is another type of consistency that is considered below. We say that
ŷ is weakly consistent if |ŷ − ynew| → 0 in probability. Clearly, if ŷ is consistent, then it is also
weakly consistent.
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3 Principal component regression

By assumption, the data (yi,xi) are multivariate normal. Thus, EV (yi|xi) = xTi β, where β =

θγη2
√
du/(τ2 + η2γ2d). This suggests studying linear prediction rules of the form ŷ(xnew) =

xTnewβ̂, for some estimator β̂ of β. In this paper, we restrict our attention to linear prediction rules,
focusing on estimators related to principal component regression (PCR).

Let l1 ≥ · · · ≥ ln∧d ≥ 0 denote the ordered n largest eigenvalues of XTX and let û1, ..., ûn∧d de-
note corresponding eigenvectors with unit length; û1, ..., ûn∧d are also referred to as the “principal
components” of X . Let Uk = (û1 · · · ûk) be the d × k matrix with columns given by û1, ..., ûk,
for 1 ≤ k ≤ n ∧ d. In its most basic form, principal component regression involves regressing y

on XUk for some (typically small) k, and taking β̂ = Uk(U
T
k X

TXUk)
−1UTk X

Ty. In the problem
considered here the predictor covariance matrix Cov(xi) = τ2I + η2γ2duuT has a single eigen-
value larger than τ2 and the corresponding eigenvector is parallel to β. Thus, it is natural to restrict
our attention to PCR with k = 1; more explicitly, consider

β̂pcr =
ûT1X

Ty

ûT1X
TXû1

û1 =
1

l1
ûT1X

Tyû1. (5)

In the following sections, we study consistency and risk properties of β̂pcr and related estimators.

4 Weak consistency and big data with n = 2

Before turning our attention to risk approximations for PCR in Section 5 below (which contains
the paper’s main technical contributions), we discuss weak consistency in the one-shot asymptotic
regime, devoting special attention to the case where n = 2. This serves at least two purposes. First,
it provides an illustrative warm-up for the more complex risk bounds obtained in Section 5. Second,
it will become apparent below that the risk of the consistent PCR methods studied in this paper
depends on inverse moments of χ2 random variables. For very small n, these inverse moments do
not exist and, consequently, the risk of the associated prediction methods may be infinite. The main
implication of this is that the risk bounds in Section 5 require n ≥ 9 to ensure their validity. On the
other hand, the weak consistency results obtained in this section are valid for all n ≥ 2.

4.1 Heuristic analysis for n = 2

Recall the PCR estimator (5) and let ŷpcr(x) = xT β̂pcr be the associated linear prediction rule.
For n = 2, the largest eigenvalue of XTX and the corresponding eigenvector are given by simple
explicit formulas:

l1 =
1

2

{
||x1||2 + ||x2||2 +

√
(||x1||2 − ||x2||2)2 + 4(xT1 x2)2

}
and û1 = v̂1/||v̂1||2, where

v̂1 =
1

2xT1 x2

{
||x1||2 − ||x2||2 +

√
(||x1||2 − ||x2||2)2 + 4(xT1 x2)2

}
x1 + x2.

These expressions for l1 and û1 yield an explicit expression for β̂pcr when n = 2 and facilitate
a simple heuristic analysis of PCR, which we undertake in this subsection. This analysis suggests
that ŷpcr is not consistent when σ2 → 0 and d → ∞ (at least for n = 2). However, the analysis
also suggests that consistency can be achieved by multiplying β̂pcr by a scalar c ≥ 1; that is, by
expanding β̂pcr. This observation leads us to consider and rigorously analyze a bias-corrected PCR
method, which we ultimately show is consistent in fixed n settings, if σ2 → 0 and d → ∞. On the
other hand, it will also be shown below that ŷpcr is inconsistent in one-shot asymptotic regimes.

For large d, the basic approximations ||xi||2 ≈ γ2dh21 + τ2d and xT1 x2 ≈ γ2dhihj lead to the
following approximation for ŷpcr(xnew):

ŷpcr(xnew) = xTnewβ̂pcr ≈
γ2(h21 + h22)

γ2(h21 + h22) + τ2
hnewθ + epcr, (6)
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where

epcr =
γ2hnew

{γ2d(h21 + h22) + τ2d}2
ûT1X

T ξ.

Thus,

ŷpcr(xnew)− ynew ≈ −
τ2

γ2(h21 + h22) + τ2
hnewθ + epcr − ξnew. (7)

The second and third terms on the right-hand side in (7), epcr − ξnew, represent a random error
that vanishes as d → ∞ and σ2 → 0. On the other hand, the first term on the right-hand side in
(7), −τ2hnewθ/{γ2(h21 + h22) + τ2}, is a bias term that is, in general, non-zero when d → ∞ and
σ2 → 0; in other words ŷpcr is inconsistent. This bias is apparent in the expression for ŷpcr(xnew)
given in (6); in particular, the first term on the right-hand side of (6) is typically smaller than hnewθ.
One way to correct for the bias of ŷpcr is to multiply β̂pcr by

l1
l1 − l2

≈ γ2(h21 + h22) + τ2

γ2(h21 + h22)
≥ 1,

where

l2 =
1

2

{
||x1||2 + ||x2||2 −

√
(||x1||2 − ||x2||2)2 + 4(xT1 x2)2

}
≈ τ2d

is the second-largest eigenvalue of XTX . Define the bias-corrected principal component regression
estimator

β̂bc =
l1

l1 − l2
β̂pcr =

1

l1 − l2
ûT1X

Ty

and let ŷbc(x) = xT β̂bc be the associated linear prediction rule. Then ŷbc(xnew) = xTnewβ̂bc ≈
hnewθ + ebc, where

ebc =
hnew

{γ2(h21 + h22) + τ2}(h21 + h22)d
2
ûT1X

T ξ.

One can check that if d → ∞, σ2 → 0 and θ, η2, η2, τ2 are well-behaved (e.g. contained in a
compact subset of (0,∞)), then ŷbc(xnew) − ynew ≈ ebc → 0 in probability; in other words, ŷbc
is weakly consistent. Indeed, weak consistency of ŷbc follows from Theorem 1 below. On the other
hand, note that E|ebc| = ∞. This suggests that RV (ŷbc) = ∞, which in fact may be confirmed by
direct calculation. Thus, when n = 2, ŷbc is weakly consistent, but not consistent.

4.2 Weak consistency for bias-corrected PCR

Now suppose that n ≥ 2 is arbitrary and that d ≥ n. Define the bias-corrected PCR estimator

β̂bc =
l1

l1 − ln
β̂pcr =

1

l1 − ln
ûT1X

Tyû1 (8)

and the associated linear prediction rule ŷbc(x) = xT β̂bc. The main weak consistency result of the
paper is given below.
Theorem 1. Suppose that n ≥ 2 is fixed and let C ⊆ (0,∞) be a compact set. Let r > 0 be an
arbitrary but fixed positive real number. Then

lim
d→∞
σ2→0

sup
θ,η,τ,γ∈C

u∈Rd

PV {|ŷbc(xnew)− ynew| > r} = 0. (9)

On the other hand,
lim inf
d→∞
σ2→0

inf
θ,η,τ,γ∈C

u∈Rd

PV {|ŷpcr(xnew)− ynew| > r} > 0. (10)

A proof of Theorem 1 follows easily upon inspection of the proof of Theorem 2, which may be
found in the Supplementary Material. Theorem 1 implies that in the specified fixed n asymptotic
setting, bias-corrected PCR is weakly consistent (9) and that the more standard PCR method ŷpcr
is inconsistent (10). Note that the condition θ, η, τ, γ ∈ C in (9) ensures that the x-data signal-to-
noise ratio η2γ2/τ2 is bounded away from 0. In (8), it is noteworthy that l1/(l1 − ln) ≥ 1: in
order to achieve (weak) consistency, the bias corrected estimator β̂bc is obtained by expanding β̂pcr.
By contrast, shrinkage is a far more common method for obtaining improved estimators in many
regression and prediction settings (the literature on shrinkage estimation is vast, perhaps beginning
with [23]).
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5 Risk approximations and consistency

In this section, we present risk approximations for ŷpcr and ŷbc that are valid when n ≥ 9. A more
careful analysis may yield approximations that are valid for smaller n; however, this is not pursued
further here.
Theorem 2. Let Wn ∼ χ2

n be a chi-squared random variable with n degrees of freedom.

(a) If n ≥ 9 and d ≥ 1, then

RV (ŷpcr) = σ2

[
1 + E

{
η4γ4Wn

(η2γ2Wn + τ2)2

}]
+O

(
σ2

n

√
n

d+ n

)
+θ2η2EV

{
(uT û1)

2 − 1
}2

+O

(
θ2η2τ2

η2γ2d+ τ2

)
.

(b) If d ≥ n ≥ 9, then

RV (ŷbc) = σ2

{
1 + E

(
η2γ2

η2γ2Wn + τ2
√
n/d

)}
+O

{
σ2

√
dn

(
τ2

η2γ2n+ τ2
√
n/d

)}

+θ2η2EV

{
l1

l1 − ln
(uT û1)

2 − 1

}2

(11)

+
θ2η2τ2

η2γ2d+ τ2

{
1 + E

(
η2γ2 + τ2

η2γ2Wn + τ2
√
n/d

)}
(12)

+O

[
θ2η2τ2

η2γ2d+ τ2

√
n

d

{
τ2

η2γ2n+ τ2
√
n/d

+
τ4

(η2γ2n+ τ2
√
n/d)2

}]
.

A proof of Theorem 2 (along with intermediate lemmas and propositions) may be found in the
Supplementary Material. The necessity of the more complex error term in Theorem 2 (b) (as opposed
to that in part (a)) will become apparent below.

When d is large, σ2 is small, and θ, η, τ, γ ∈ C, for some compact subset C ⊆ (0,∞), Theorem 2
suggests that

RV (ŷpcr) ≈ θ2η2EV
{
(uT û1)

2 − 1
}2
,

RV (ŷbc) ≈ θ2η2EV

{
l1

l1 − ln
(uT û1)

2 − 1

}2

.

Thus, consistency of ŷpcr and ŷbc in the one-shot regime hinges on asymptotic properties of
EV {(uT û1)

2 − 1}2 and EV {l1/(l1 − ln)(u
T û1)

2 − 1}2. The following proposition is proved
in the Supplementary Material.
Proposition 1. Let Wn ∼ χ2

n be a chi-squared random variable with n degrees of freedom.

(a) If n ≥ 9 and d ≥ 1, then

EV
{
(uT û1)

2 − 1
}2

= E

(
τ2

η2γ2Wn + τ2

)2

+O

(√
n

d+ n

)
.

(b) If d ≥ n ≥ 9, then

EV

{
l1

l1 − ln
(uT û1)

2 − 1

}2

= O

{
n

d
· τ4

(η2γ2n+ τ2
√
n/d)2

}
.

Proposition 1 (a) implies that in the one-shot regime, EV {(uT û1)
2 − 1}2 → E{τ2/(η2γ2Wn +

τ2)2} 6= 0; by Theorem 2 (a), it follows that ŷpcr is inconsistent. On the other hand, Proposition 1
(b) implies that EV

{
l1/(l1 − ln)(uT û1)

2 − 1
}2 → 0 in the one-shot regime; thus, by Theorem 2

(b), ŷbc is consistent. These results are summarized in Corollary 1, which follows immediately from
Theorem 2 and Proposition 1.
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Corollary 1. Suppose that n ≥ 9 is fixed and let C ⊆ (0,∞) be a compact set. Let Wn ∼ χ2
n be a

chi-squared random variable with n degrees of freedom. Then

lim
d→∞
σ2→0

sup
θ,η,τ,γ∈C

u∈Rd

∣∣∣∣∣RV (ŷpcr)− θ2η2E
(

τ2

η2γ2Wn + τ2

)2
∣∣∣∣∣ = 0.

and
lim
d→∞
σ2→0

sup
θ,η,τ,γ∈C

u∈Rd

RV (ŷbc) = 0.

For fixed n, and inf η2γ2/τ2 > 0, the bound in Proposition 1 (b) is of order 1/d. This suggests that
both terms (11)-(12) in Theorem 2 (b) have similar magnitude and, consequently, are both necessary
to obtain accurate approximations forRV (ŷbc). (It may be desirable to obtain more accurate approx-
imations for EV

{
l1/(l1 − ln)(uT û1)

2 − 1
}2

; this could potentially be leveraged to obtain better
approximations for RV (ŷbc).) In Theorem 2 (a), the only non-vanishing term in the one-shot ap-
proximation for RV (ŷpcr) involves EV {(uT û1)

2− 1}2; this helps to explain the relative simplicity
of this approximation, in comparison with Theorem 2 (b).

Theorem 2 and Proposition 1 give risk approximations that are valid for all d and n ≥ 9. How-
ever, as illustrated by Corollary 1, these approximations are most effective in a one-shot asymptotic
setting, where n is fixed and d is large. In the one-shot regime, standard concepts, such as sam-
ple complexity – roughly, the sample size n required to ensure a certain risk bound – may be of
secondary importance. Alternatively, in a one-shot setting, one might be more interested in metrics
like “feature complexity”: the number of features d required to ensure a given risk bound. Approx-
imate feature complexity for ŷbc is easily computed using Theorem 2 and Proposition 1 (clearly,
feature complexity depends heavily on model parameters, such as θ, the y-data noise level σ2, and
the x-data signal-to-noise ratio η2γ2/τ2).

6 An oracle estimator

In this section, we discuss a third method related to ŷpcr and ŷbc, which relies on information that
is typically not available in practice. Thus, this method is usually non-implementable; however, we
believe it is useful for comparative purposes.

Recall that both ŷbc and ŷpcr depend on the first principal component û1, which may be viewed as
an estimate of u. If an oracle provides knowledge of u in advance, then it is natural to consider the
oracle PCR estimator

β̂or =
uTXTy

uTXTXu
u

and the associated linear prediction rule ŷor(x) = xT β̂or. A basic calculation yields the following
result.

Proposition 2. If n ≥ 3, then

RV (ŷor) =

(
σ2 +

θ2η2τ2

η2γ2d+ τ2

)(
1 +

1

n− 2

)
.

Clearly, ŷor is consistent in the one-shot regime: if C ⊆ (0,∞) is compact and n ≥ 3 is fixed, then

lim
d→∞
σ2→0

sup
θ,η,τ,γ∈C

u∈Rd

RV (ŷor) = 0.

7 Numerical results

In this section, we describe the results of a simulation study where we compared the performance of
ŷpcr, ŷbc, and ŷor. We fixed θ = 4, σ2 = 1/10, η2 = 4, γ2 = 1/4, τ2 = 1, and u = (1, 0, ...., 0) ∈
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Rd and simulated 1000 independent datasets with various d, n. Observe that η2γ2/τ2 = 1. For each
simulated dataset, we computed β̂pcr, β̂bc, β̂or and the corresponding conditional prediction error

RV (ŷ|y, X) = E
[
{ŷ(xnew)− ynew}2

∣∣y, X]
= (β̂ − β)T (τ2I + η2γ2duuT )(β̂ − β) + σ2 +

θ2η2

ψ2d+ 1
,

for ŷ = ŷpcr, ŷbc, ŷor. The empirical prediction error for each method ŷ was then computed by av-
eragingRV (ŷ|y, X) over all 1000 simulated datasets. We also computed the“theoretical” prediction
error for each method, using the results from Sections 5-6, where appropriate. More specifically, for
ŷpcr and ŷbc, we used the leading terms of the approximations in Theorem 2 and Proposition 1 to
obtain the theoretical prediction error; for ŷor, we used the formula given in Proposition 2 (see Table
1 for more details). Finally, we computed the relative error between the empirical prediction error

Table 1: Formulas for theoretical prediction error used in simulations (derived from Theorem 2 and
Propositions 1-2). Expectations in theoretical prediction error expressions for ŷpcr and ŷbc were
computed empirically.

Theoretical prediction error formula

ŷpcr σ2
[
1 + E

{
η4γ4Wn

(η2γ2Wn+τ2)2

}]
+ θ2η2E

(
τ2

η2γ2Wn+τ2

)2
ŷbc

σ2

{
1 + E

(
η2γ2

η2γ2Wn+τ2
√
n/d

)}
+ θ2η2EV

{
l1

l1−ln (u
T û1)

2 − 1
}2

+ θ2η2τ2

η2γ2d+τ2

{
1 + E

(
η2γ2+τ2

η2γ2Wn+τ2
√
n/d

)}
ŷor

(
σ2 + θ2η2τ2

η2γ2d+τ2

)(
1 + 1

n−2

)
and the theoretical prediction error for each method,

Relative Error =
∣∣∣∣ (Empirical PE)− (Theoretical PE)

Empirical PE

∣∣∣∣× 100%.

Table 2: d = 500. Prediction error for ŷpcr (PCR), ŷbc (Bias-corrected PCR), and ŷor (oracle). Rel-
ative error for comparing Empirical PE and Theoretical PE is given in parentheses. “NA” indicates
that Theoretical PE values are unknown.

PCR Bias-corrected
PCR Oracle

n = 2 Empirical PE 18.7967 4.8668 1.5836
Theoretical PE (Relative Error) NA ∞ (∞) ∞ (∞)

n = 4 Empirical PE 6.4639 0.8023 0.3268
Theoretical PE (Relative Error) NA NA 0.3416 (4.53%)

n = 9 Empirical PE 1.4187 0.3565 0.2587
Theoretical PE (Relative Error) 1.2514 (11.79%) 0.2857 (19.86%) 0.2603 (0.62%)

n = 20 Empirical PE 0.4513 0.2732 0.2398
Theoretical PE (Relative Error) 0.2987 (33.81%) 0.2497 (8.60%) 0.2404 (0.25%)

The results of the simulation study are summarized in Tables 2-3. Observe that ŷbc has smaller
empirical prediction error than ŷpcr in every setting considered in Tables 2-3, and ŷbc substantially
outperforms ŷpcr in most settings. Indeed, the empirical prediction error for ŷbc when n = 9 is
smaller than that of ŷpcr when n = 20 (for both d = 500 and d = 5000); in other words, ŷbc
outperforms ŷpcr, even when ŷpcr has more than twice as much training data. Additionally, the
empirical prediction error of ŷbc is quite close to that of the oracle method ŷor, especially when n
is relatively large. These results highlight the effectiveness of the bias-corrected PCR method ŷbc in
settings where σ2 and n are small, η2γ2/τ2 is substantially larger than 0, and d is large.

For n = 2, 4, theoretical prediction error is unavailable in some instances. Indeed, while Proposition
2 and the discussion in Section 4 imply that if n = 2, then RV (ŷbc) = RV (ŷor) =∞, we have not
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Table 3: d = 5000. Prediction error for ŷpcr (PCR), ŷbc (Bias-corrected PCR), and ŷor (oracle).
Relative error comparing Empirical PE and Theoretical PE is given in parentheses. “NA”’ indicates
that Theoretical PE values are unknown.

PCR Bias-corrected
PCR Oracle

n = 2 Empirical PE 17.9564 2.0192 1.0316
Theoretical PE (Relative Error) NA ∞ (∞) ∞ (∞)

n = 4 Empirical PE 6.1220 0.2039 0.1637
Theoretical PE (Relative Error) NA NA 0.1692 (3.36%)

n = 9 Empirical PE 1.2274 0.1378 0.1281
Theoretical PE (Relative Error) 1.2485 (1.72%) 0.1314 (4.64%) 0.1289 (0.62%)

n = 20 Empirical PE 0.3150 0.1226 0.1189
Theoretical PE (Relative Error) 0.2997 (4.86%) 0.1200 (2.12%) 0.1191 (0.17%)

pursued an expression for RV (ŷpcr) when n = 2 (it appears that RV (ŷpcr) <∞); furthermore, the
approximations in Theorem 2 for RV (ŷpcr), RV (ŷbc) do not apply when n = 4. In instances where
theoretical prediction error is available, is finite, and d = 500, the relative error between empirical
and theoretical prediction error for ŷpcr and ŷbc ranges from 8.60%-33.81%; for d = 5000, it ranges
from 1.72%-4.86%. Thus, the accuracy of the theoretical prediction error formulas tends to improve
as d increases, as one would expect. Further improved measures of theoretical prediction error
for ŷpcr and ŷbc could potentially be obtained by refining the approximations in Theorem 2 and
Proposition 1.

8 Discussion

In this article, we have proposed bias-corrected PCR for consistent one-shot learning in a simple
latent factor model with continuous outcomes. Our analysis was motivated by problems in one-shot
learning, as discussed in Section 1. However, the results in this paper may also be relevant for
other applications and techniques related to high-dimensional data analysis, such as those involving
reproducing kernel Hilbert spaces. Furthermore, our analysis sheds new light on PCR, a long-studied
method for regression and prediction.

Many open questions remain. For instance, consider the semi-supervised setting, where additional
unlabeled data xn+1, ...,xN is available, but the corresponding yi’s are not provided. Then the
additional x-data could be used to obtain a better estimate of the first principal component u and
perhaps devise a method whose performance is closer to that of the oracle procedure ŷor (indeed,
ŷor may viewed as a semi-supervised procedure that utilizes an infinite amount of unlabeled data
to exactly identify u). Is bias-correction via inflation necessary in this setting? Presumably, bias-
correction is not needed if N is large enough, but can this be made more precise? The simulations
described in the previous section indicate that ŷbc outperforms the uncorrected PCR method ŷpcr
in settings where twice as much labeled data is available for ŷpcr. This suggests that role of bias-
correction will remain significant in the semi-supervised setting, where additional unlabeled data
(which is less informative than labeled data) is available. Related questions involving transductive
learning [26, 27] may also be of interest for future research.

A potentially interesting extension of the present work involves multi-factor models. As opposed
to the single-factor model (1)-(2), one could consider a more general k-factor model, where yi =
hTi θ+ξi and xi = Shi+εi; here hi = (hi1, ..., hik)

T ∈ Rk is a multivariate normal random vector
(a k-dimensional factor linking yi and xi), θ = (θ1, ..., θk)

T ∈ Rk, and S =
√
d(γ1u1 · · · γkuk)

is a k × d matrix, with γ1, ..., γk ∈ R and unit vectors u1, ...,uk ∈ Rd. It may also be of interest
to work on relaxing the distributional (normality) assumptions made in this paper. Finally, we point
out that the results in this paper could potentially be used to develop flexible probit (latent variable)
models for one-shot classification problems.

References
[1] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 28:594–611, 2006.

8



[2] R. Salakhutdinov, J.B. Tenenbaum, and A. Torralba. One-shot learning with a hierarchical nonparametric
Bayesian model. JMLR Workshop and Conference Proceedings Volume 26: Unsupervised and Transfer
Learning Workshop, 27:195–206, 2012.

[3] M.C. Frank, N.D. Goodman, and J.B. Tenenbaum. A Bayesian framework for cross-situational word-
learning. Advances in Neural Information Processing Systems, 20:20–29, 2007.

[4] J.B. Tenenbaum, T.L. Griffiths, and C. Kemp. Theory-based Bayesian models of inductive learning and
reasoning. Trends in Cognitive Sciences, 10:309–318, 2006.

[5] C. Kemp, A. Perfors, and J.B. Tenenbaum. Learning overhypotheses with hierarchical Bayesian models.
Developmental Science, 10:307–321, 2007.

[6] S. Carey and E. Bartlett. Acquiring a single new word. Proceedings of the Stanford Child Language
Conference, 15:17–29, 1978.

[7] L.B. Smith, S.S. Jones, B. Landau, L. Gershkoff-Stowe, and L. Samuelson. Object name learning provides
on-the-job training for attention. Psychological Science, 13:13–19, 2002.

[8] F. Xu and J.B. Tenenbaum. Word learning as Bayesian inference. Psychological Review, 114:245–272,
2007.

[9] M. Fink. Object classification from a single example utilizing class relevance metrics. Advances in Neural
Information Processing Systems, 17:449–456, 2005.

[10] P. Hall, J.S. Marron, and A. Neeman. Geometric representation of high dimension, low sample size data.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67:427–444, 2005.

[11] P. Hall, Y. Pittelkow, and M. Ghosh. Theoretical measures of relative performance of classifiers for high
dimensional data with small sample sizes. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 70:159–173, 2008.

[12] Y.I. Ingster, C. Pouet, and A.B. Tsybakov. Classification of sparse high-dimensional vectors. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367:4427–
4448, 2009.

[13] W.F. Massy. Principal components regression in exploratory statistical research. Journal of the American
Statistical Association, 60:234–256, 1965.

[14] I.M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis. Annals of
Statistics, 29:295–327, 2001.

[15] D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica
Sinica, 17:1617–1642, 2007.

[16] B. Nadler. Finite sample approximation results for principal component analysis: A matrix perturbation
approach. Annals of Statistics, 36:2791–2817, 2008.

[17] I.M. Johnstone and A.Y. Lu. On consistency and sparsity for principal components analysis in high
dimensions. Journal of the American Statistical Association, 104:682–693, 2009.

[18] S. Jung and J.S. Marron. PCA consistency in high dimension, low sample size context. Annals of Statis-
tics, 37:4104–4130, 2009.

[19] S. Lee, F. Zou, and F.A. Wright. Convergence and prediction of principal component scores in high-
dimensional settings. Annals of Statistics, 38:3605–3629, 2010.

[20] Q. Berthet and P. Rigollet. Optimal detection of sparse principal components in high dimension. arXiv
preprint arXiv:1202.5070, 2012.

[21] S. Jung, A. Sen, and J.S Marron. Boundary behavior in high dimension, low sample size asymptotics of
PCA. Journal of Multivariate Analysis, 109:190–203, 2012.

[22] Z. Ma. Sparse principal component analysis and iterative thresholding. Annals of Statistics, 41:772–801,
2013.

[23] C. Stein. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
pages 197–206, 1955.

[24] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), 58:267–288, 1996.

[25] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer, 2nd edition, 2009.

[26] V.N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[27] K.S. Azoury and M.K. Warmuth. Relative loss bounds for on-line density estimation with the exponential
family of distributions. Machine Learning, 43:211–246, 2001.

9


