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ABSTRACT

Motivation: A gene regulatory network in which the modes (activation/

inhibition) of the transcriptional regulations are known and in which

gene expression assumes boolean values can be treated as a

system of linear equations over a binary field, i.e. as a constraint sat-

isfaction problem for an information code.

Results: For currently available gene networks, we show in this article

that the distortion associated with the corresponding information code

is much lower than expected from null models, and that it is close to

(when not lower than) the Shannon bound determined by the rate-

distortion theorem. This corresponds to saying that the distribution

of regulatory modes is highly atypical in the networks, and that this

atypicality greatly helps in avoiding contradictory transcriptional

actions.

Choosing a boolean formalism to represent the gene networks, we

also show how to formulate criteria for the selection of gates that

maximize the compatibility with the empirical information available

on the transcriptional regulatory modes. Proceeding in this way, we

obtain in particular that non-canalizing gates are upper-bounded by

the distortion, and hence that the boolean gene networks are more

canalizing than expected from null models.
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1 INTRODUCTION

A gene regulatory network consists of a set of transcription fac-

tors (TF) regulating the expression of the genes of a given

genome. As our knowledge of these regulatory mechanisms

grows steadily, the problem of understanding the principles

behind their organization and their functioning is becoming a

crucial question of Systems Biology, see Bonneau, 2008;

Cosentino Lagomarsino et al., 2007; Mangan and Alon, 2003;

Materna and Davidson, 2007; Shmulevich et al., 2002. While the

current literature is focused mainly on the topological aspects of

a gene regulatory network, the perspective that we take in this

article is to study whether the transcriptional regulatory modes

(i.e. the activation/inhibition role of a TF on its target genes) of

the gene networks currently available are distributed randomly

on the given network or are organized according to some

criterion, and how this organization can affect the dynamics of

the gene network.

To formalize this question and to try to understand the rules

of this design, we use tools from information theory (Cover and

Thomas, 2006; Mezard and Montanari, 2009) and in particular

we treat a gene network as a ‘code’ for which the signs of the

regulatory actions constitute a particular ‘source word’, which

can be compared with the typical words generated by a corres-

ponding probabilistic model (further details on the terminology

in section 2). As a comparison criterion, we use the ‘level of

coherence’ of the regulatory actions along the network. Two

regulatory orders emanating from a TF and acting on the

same target gene (possibly through intermediate genes) are con-

sidered coherent when they induce the same behavior on the

target gene (i.e. they both induce activation or repression); they

are considered incoherent when they induce conflicting behav-

iors. As can be easily deduced from simple examples like Feed-

Forward Loops (FFL) (Mangan and Alon, 2003), in a gene

regulatory network, incoherence is associated with negative (un-

directed) cycles on the signed graph having the genes as nodes,

the regulations as edges and the modes of the regulations as signs

of the edges, see Iacono et al., 2010. An undirected cycle is nega-

tive when it contains an odd number of inhibitions. Provided we

associate binary values to the expression of the genes, the main

feature of a negative undirected cycle is that no choice of expres-

sion can satisfy all constraints imposed by the regulations. This

satisfiability can be tested by formulating the ‘compatibility’ as a

system of linear algebraic equations over a binary field. In com-

binatorial optimization, such problems are well known to be

equivalent to constraint satisfaction problems of exclusive OR

(XOR) type, see Mezard and Montanari, 2009.
If the gene regulatory network is a code, and the signs of the

regulations specify a codeword, then the problem can be studied

as a (lossy) source compression problem, see Ciliberti and

Mézard, 2005; Wainwright et al., 2010. In this framework, in

particular, the level of coherence of the transcriptional regula-

tions can be rigorously computed as the distortion introduced by

the source compression problem. Computing this distortion is a

hard problem. In the constraint satisfaction literature, it is some-

times referred to as Maximum XOR Satisfiability (MAX-

XORSAT) problem, and consists in computing the binary gene

expression assignment that maximizes the number of satisfied

(SAT) linear equations at steady state, see Correale et al.,

2006b; Cosentino Lagomarsino et al., 2005. For the gene net-

works currently available, the distortion can be quantified with

sufficient precision and can be compared with two important

quantities: (i) the average distortion of a typical word associated*To whom correspondence should be addressed.
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to the same ‘code’ (i.e. a gene network with the same topology
but signs reshuffled); (ii) the best average distortion achievable
by any gene network with the same ratio of genes/regulations.

The latter value corresponds to the Shannon bound provided by
the rate-distortion theorem (Cover and Thomas, 2006).
We show in the article that the distortion of the currently

available gene networks is much lower than the one of a typical
sequence of the same code, and that it is comparable with (when
not better than) the Shannon bound. This atypicality implies that

in our gene networks the signs of the transcriptional regulations
are highly organized and far from random. In particular, the
origin of the low distortion can be traced in the scarcity of

dual-mode TF, i.e. of TF acting both as activators and as repres-
sors. Our calculation suggests a practical reason for such an or-
ganization: single-mode TF lower the distortion and hence help

in avoiding conflictual transcriptional orders in which different
TF induce contradictory actions on a downstream gene.
In a gene network represented as a signed graph, the regula-

tory actions represent two-body interaction terms (i.e. the value
of a gene acting as a TF, multiplied by that of its target gene,
with the sign of the corresponding edge) or, in system-theoretic

language, Single-Input Single-Output (SISO) regulations. When
multiple genes act simultaneously as TF on a target gene, the
overall regulation can be described as a superposition of these

SISO terms. An alternative assumption, common in the gene
network literature (Balleza et al., 2008; Buchler et al., 2003;
Correale et al., 2006b; Kauffman, 1993; Kauffman et al., 2004;

Shmulevich et al., 2005; Silva-Rocha and de Lorenzo, 2008; van
Hijum et al., 2009), is that the transcription of a gene having
multiple regulators is decided by some logical combination of the

inputs. This corresponds to replacing superpositions of two-body
terms with a single multibody term (MISO: Multi-Input Single-
Output action). One of the major drawbacks of the boolean

networks obtained in this way is the arbitrarity in the choice of
the gates, due to the lack of systematic methods for gates disam-
biguation based on experimental evidence (see e.g. Bonneau,

2008; Chowdhury et al., 2010; Kim et al., 2007; Lau et al.,
2007; Shmulevich et al., 2002; Silva-Rocha and de Lorenzo,
2008; Zou, 2010 for a few attempts in this direction, mostly

based on inference from microarrays).
The approach that we take in this article is to try to identify

classes of boolean gates such that the steady-state MISO predic-

tions for the regulation overlap as much as possible with the
corresponding SISO predictions. In terms of perturbative expan-
sions, this corresponds to asking that the two-body projections

of the complex multibody terms be ‘coherent’ with the corres-
ponding two-body terms, whenever the latter are not ambiguous.
The rationale behind this choice is that the only type of informa-

tion currently available in large-scale gene networks is precisely
compendia of SISO regulatory signs. We will show in the article
that under this assumption, a natural choice is to associate cana-

lizing gates (i.e. AND-OR type of gates, see Kauffman, 1993) to
positive undirected cycles and (possibly) non-canalizing gates to
negative undirected cycles. The property of low distortion of the

gene networks then reflects in a low amount of non-canalizing
gates in the boolean formulations of the gene networks with
respect to null models.

Looking at the corresponding dynamics, we observe that, in
spite of the higher canalization, our gene networks seem to be

more sensitive to perturbations than the corresponding null
models. This appears to be due to the near-acyclic and massively

parallel feed-forward architecture of the networks, in which non-
canalizing gates have the effect of breaking the steady-state

global symmetry of the basic input–output motifs.

2 METHODS

Gene regulatory networks and SISO constraint satisfaction prob-

lems. Consider a gene regulatory network composed of n nodes

x ¼ x1 . . . xn
� �T

representing the genes and m directed edges

y ¼ y1 . . . ym
� �T

representing regulatory actions of activation/

inhibition of a gene on another gene. Assume both x and y are

represented in boolean terms, xi 2 X ¼ f0, 1g ¼ f‘low’, ‘high’g,
and yi 2 Y ¼ f0, 1g, where we use the convention that 0 stands

for activation (i.e. ‘þ’) and 1 for inhibition (i.e. ‘�’), see example
in Figure 1A. Then both Y and X can be identified with Z2, the

Galois field with two elements endowed with the operation �
(addition mod2).

In this section, we are interested in formulating a description
of the fixed points of the signed graph (of nodes x and edges y)

representing the gene regulatory network. We shall for now
assume that each regulatory action is SISO and that multiple

regulations acting on the same gene happen simultaneously, in-
dependently and in parallel. Consider for example a single regu-

latory action y1 between the two genes x1 and x2 (i.e. m ¼ 1,
n¼ 2). For any value y1 2 Y, it is always possible to find (at

least) a combination of x1, x2 2 X , which is ‘compatible’ with
the expected action described by the sign y1. If, for example,

y1 ¼ 0 (i.e. activation), then the regulation is SAT when x1, x2

Fig. 1. Gene networks and rate-distortion theory. (A) A toy example of

signed gene regulatory network, and its formulation as a SAT problem.

(B) Rate-distortion scheme. In the regime n5m, the encoding/decoding

scheme is normally referred to as a lossy source compression problem

(Cover and Thomas, 2006), as a length-n sequencebx is used to represent

a length-m word y. The distortion corresponds to the relative Hamming

distance dðy,byÞ=m. In our gene networks the distortion of a network is a

measure of potential ‘conflicts’ (or contradictory orders) in the gene regu-

latory program of an organism
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assume the same value, opposite values when y1 ¼ 1, see

Supplementary Figure S1. Using the formalism of constraint sat-

isfaction problems (Mezard et al., 2003; Mezard and Montanari,

2009), we can rewrite this ‘compatibility’ condition as a linear

equation over a binary field: x1 � x2 ¼ y1. This exclusive-OR

satisfiability (XORSAT) problem can also be written as

x1 � x2 � y1 ¼ 0.
Let us make use of an m� nmatrix A to describe the topology

of the gene network. Each row of A identifies an edge, and has

two non-zero entries (equal to 1) in correspondence of the two

genes involved in the regulatory action (the order is irrelevant for

our purposes), see Figure 1A for an example. Finding gene ex-

pression assignments x 2 Xn compatible with all the regulatory

signs of a given y 2 Ym means solving a linear system over the Z2

field:

Ax� y ¼ 0: ð1Þ

The XORSAT problem (1) may or may not have a solution

depending on y. When (1) has no solution (it is said UNSAT

in this case), then one can look for the x 2 X n that solves most of

the m constraints of (1). This problem is called MAX-XORSAT,

see Mezard and Montanari, 2009. Denoting dðy, AxÞ the

Hamming distance between y and Ax, then solving the MAX-

XORSAT for a given y means findingbx that minimizes dðy, AxÞ:

bx ¼ argminx2Xndðy, AxÞ ¼ argminx2Xn Ax� y
�� ��: ð2Þ

The relative Hamming distance

DA, y ¼
1

m
min
x2Xn

dðy, AxÞ ð3Þ

is called the distortion of the ‘word’ y associated to the ‘code’ (1)-

(2). We shall call average distortion of the gene regulatory net-

work associated to (1)-(2) the expectation of (3) over the entire

alphabet Ym:

DA ¼
1

m

X
y2Ym

pðyÞdðy, AbxÞ ð4Þ

where, for each y,bx solves (2). Denotingby ¼ Abx the estimate of

y obtained through (2) (see Fig. 1B), then DA ¼ 0 if and only ifby ¼ y 8 y 2 Ym.
Example: FFL. Let us consider as an example the FFL of

Figure 2. In a FFL, n ¼ m ¼ 3, and hence both alphabets X n

and Ym consist of eight words, and we may ask if for each choice

of y 2 Y3 there is always an x 2 X3 such that (1) is SAT. In this

case, the connectivity matrix A is the following

A ¼
1 1 0
1 0 1
0 1 1

2
4

3
5 ð5Þ

and it is straightforward to verify that only in four of the eight

choices of y (1) is SAT. These cases (Fig. 2A) are known in the

literature as coherent FFL, whereas the 4 UNSAT cases (Fig. 2B)

are called incoherent in Mangan and Alon, 2003. In a coherent

FFL dðy, AbxÞ ¼ 0, whereas in an incoherent FFL dðy, AbxÞ ¼ 1,

i.e. DA, y ¼ 1=3. See Supplementary Information and

Supplementary Table S1 for a count of the FFL motifs in the

gene networks of Table 1.

Computing distortion for a gene regulatory network. In infor-

mation theory, the process of obtainingby from y through (1)-(2)

in the regime n5m is called a lossy source compression problem,

see Figure 1 and the Supplementary Information. In particular,

solving the combinatorial optimization problem (2) corresponds

to encoding the length-m binary sequence y into the length-n

binary sequencebx through the ‘channel’ given by the connectivity

matrix A. Decoding then corresponds to constructing an estimateby of y out of bx (Fig. 1).
Boolean networks and steady-state consistency. A Boolean net-

work or, more generally, a discrete dynamical system on Z2 can

be written as

xðtþ 1Þ ¼ � xðtÞð Þ, xðtþ 1Þ, xðtÞ 2 Xn ð6Þ

where � ¼ ð�1, . . . ,�nÞ : Xn ! X n is the boolean state update

map. If ki is the in-degree of a fan-in node xi, then ki41, and the

Fig. 2. FFL motifs and their steady-state values. The FFL is the simplest

motif forming an undirected cycle in a graph. Of the eight possible FFL,

four are coherent (A) and four incoherent (B); see Mangan and Alon,

2003. As SISO systems, at steady state the coherent FFL are SAT (C),

while the incoherent FFL are UNSAT (D). Therefore, coherent FFL

admit bicanalizing steady-state behavior if the boolean logic gate is

itself canalizing (E). No bicanalizing steady state is possible for incoherent

FFL (F)

Table 1. Gene regulatory networks and their distortion

Network n m R q Demp
A, y DA

E.coli 1461 3220 0.454 0.416 [0.1134, 0.1152] [0.1767, 0.2043]

S.cerevisiae 690 1082 0.638 0.204 [0.0379, 0.0379] [0.1077, 0.1091]

B.subtilis 918 1324 0.693 0.256 [0.0536, 0.0536] [0.1040, 0.1043]

n and m are the number of nodes and edges of the directed graph representing the

gene network; R is the ratio nodes/edges; q is the fraction of negative edges; Demp
A, y

and DA are respectively the distortion of the true edge sign assignment and of the

null models, see (3) and (4) (lower and an upper bound are provided; see Iacono and

Altafini, 2010 for the details).
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value xiðtþ 1Þ is decided univocally from the values of its pre-

cursory inputs, denoted xi1 , . . . , xiki , according to a logical func-

tion: xiðtþ 1Þ ¼ �iðxi1 ðtÞ, . . . , xiki ðtÞÞ.
As in the previous section, we aim at studying fixed points of

the dynamics, where a fixed point for the system (6) is x 2 Xn

such that x ¼ �ðxÞ. Setting the problem as in (1) corresponds to

saying that all transcriptional actions happen independently and

in parallel at each fan-in node. The concept is natural in con-

tinuous-time models, where superposition of the effects can take

place, but it is ambiguous for discrete dynamics in Z2. Placing a

function �i on each fan-in node resolves all ambiguities and

guarantees existence and uniqueness of the solution of (6).
In particular, we aim at formulating a constraint satisfaction

problem containing all our information about transcriptional

regulation and at exploring what functions � are compatible

with it. In the boolean networks literature, this approach is

referred to as consistency problem, see Shmulevich et al., 2002.
A k-input boolean logic gives rise to 22

k

possible boolean

gates. Little is known empirically on the actual update rules at

fan-in nodes in real genome-wide transcriptional networks,

except for some case-by-case analysis (Albert and Othmer,

2003; Harris et al., 2002; Materna and Davidson, 2007) and

some in-depth studies of specific transcriptional units (Buchler

et al., 2003; Setty et al., 2003). Especially when ki42, it is not

even an obvious assumption that the ki inputs necessarily have to

form a single coordinated transcriptional logic unit, rather than

multiple concomitant, independent subunits, perhaps active in

different environmental conditions.

In random boolean networks (Kauffman, 1993), ki and �ið�Þ of
each node are chosen randomly. In our gene networks, such

random choice would disregard the information we have avail-

able about the topology and about the regulatory action (acti-

vation/inhibition) from each precursor xj to xi. This information

can be used to prune a large part of the possible gates. If adopt-

ing the topology of the true networks means fixing the ki pre-

cursors of each node (Correale et al., 2006a; Kauffman et al.,

2003), imposing in the boolean logic the compatibility with the

direct SISO regulations requires assuming that all the functions

�ið�Þ are unate in each of the arguments (Sontag et al., 2008).

This corresponds to saying that multiple appearances of the same

xj in one of the �ið�Þ must be characterized by the same sign. In

turn, � unate implies that it is possible to fix the sign of each

input of the gate equal to the value of the direct SISO transcrip-

tional regulation. Once this compatibility condition is taken into

account, further negations on the gates should be avoided,

thereby reducing drastically the number of possible choices.
Formally, we have to solve the following steady-state consist-

ency problem, see Correale et al., 2006b; Cosentino Lagomarsino

et al., 2005
Find �i : Xki ! X , i ¼ 1, . . . , n, s.t.

xi � �ið�, . . . , � , xj, � , . . . , �Þ ¼ y‘
8 j, ‘ s:t: 9A‘, i ¼ A‘, j ¼ 1:

ð7Þ

Because �i is unate, the edge sign y‘ can be explicitly attributed

to xj by replacing (7) with

xi � �ið�, . . . , � , y‘ � xj, � , . . . , �Þ ¼ 0
8 j, ‘ s:t: 9A‘, i ¼ A‘, j ¼ 1:

ð8Þ

The argument above allows to restrict the search to �i, which do

not contain any negation neither on the output nor in the inputs

(except for the y‘).
Let us consider for example the 16 gates of a two-input �i, see

Table S3. These gates can be classified into four groups (Correale

et al., 2006b):

1. Constant functions (2 gates);

2. Projections (4 gates);

3. XOR class (2 gates);

4. AND-OR class (8 gates).

Excluding the trivial functions in class 1 and 2, and excluding the

gates containing negations [in (8) the y‘ are not considered part

of the function �i] leaves us with only three gates: AND, OR and

XOR. Qualitatively, the AND-OR gates differ from the XOR

gate in the sense that the former are canalizing in one of the

inputs, while XOR is not. A gate is said canalizing if at least

one of its inputs has a value that alone decides the output of the

gate, regardless of the values of the other variables. The canaliz-

ing value is 0 for AND and 1 for OR. For XOR instead no input

is canalizing. For random boolean networks, it is well known

that canalizing functions represent mechanisms associated

with ordered dynamical behavior (as opposed to chaotic

behavior), see Kauffman, 1993; Kauffman et al., 2004. In the

compendium of transcriptional mechanisms analyzed in Harris

et al., 2002, for example, canalizing functions are neatly

overrepresented.
In the following we show that further constraints on the

gates, and in particular a criterion to discern canalizing from

(potentially) non-canalizing gates, can be deduced by imposing

that on certain positive undirected cycles, the ‘multibody’

steady-state behavior must be compatible with the direct

SISO regulations. Let us consider Feed-Forward Circuits

(FFC), i.e. FFL-like subgraphs with a single root (i.e. node

with zero in-degree) and a single sink (i.e. node with zero out-

degree) but branches of any length. For these FFC, positivity

of the undirected cycle amounts to having the same signature

along the two-directed paths connecting the single root to the

single sink. In terms of constraint satisfaction conditions (1)-

(2), the corresponding subproblems must be SAT, and this

means that a steady state is uniquely determined along the

cycle by the value taken by the root. This means also that

at steady state the root-sink boolean relationship relies on at

least two independent transcriptional routes. For positive

FFC, in particular, the two relationships are coherent in the

sense that they agree on the root-sink steady-state value. Root-

sink coherent redundancies like this can be taken as criteria

for discerning the type of gate to be placed at multiinput

nodes involved in FFC motifs.
Example: consistency for boolean FFL. An isolated FFL with

its single root, single sink and two-input logic gate is an example

of undirected cycle splittable into two-directed paths. If we con-

sider a coherent FFL as in Figure 2C, then at a fixed point the

direct SISO constraints are x2 ¼ �x1 and x3 ¼ x1 (after the double

negation). Replacing the direct SISO actions on x3 with a two-

input gate �3ðx1, x2Þ then (8) becomes:

x3 � �3ðx1, �x2Þ ¼ x3 � �3ðx1, x1Þ ¼ 0:
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It is straightforward to verify that �3 ¼ fAND, ORg are both

compatible with the root-sink actions of each directed path,

while XOR is not, see Figure 2E.
If instead we consider the incoherent FFL in Figure 2D, the

SISO steady-state compatibility conditions reduce to x2 ¼ �x1 be-

cause the value of x3 is ambiguous and (8) is

x3 � �3ðx1, x2Þ ¼ x3 � �3ðx1, �x1Þ ¼ 0:

Depending on the choice of �3 (see Fig. 2F), at steady state we

have 8x1

x3 ¼
0 if �3 ¼ AND
1 if �3 ¼ OR, XOR :

�

As expected, for incoherent FFL, no gate can be compatible with

the root-sink action on both branches simultaneously. Each of

the basic gates opts for one of the choices. It is consequently

impossible to discriminate between AND, OR or XOR with

the SISO information available. Notice how in correspondence

of each choice of �3 the steady-state value of x3 is blocked for all

possible values of x1. No steady-state block appears instead in

the coherent FFL with canalizing gates, where in addition at

steady state AND and OR are indistinguishable and the

output is completely determined by x1. This can be rephrased

in terms of global symmetry of the corresponding SAT subpro-

blem. Steady-state blocks, like in the incoherent FFL, break the

global symmetry on the corresponding motif: flipping the value

of the root does not result in a steady-state flip at the sink. We

shall denote FFL motifs (and more generally FFC motifs) re-

specting the global input–output steady-state symmetry

bicanalizing.

3 RESULTS/DISCUSSION

The distortion of the gene networks of Table 1. Consider the three

gene regulatory networks of Table 1. In a source compression

scheme, the difficult task is the encoding part [i.e. solving the

MAX-XORSAT problem (2)]. For two-body constraints like (2),

it is well known to be equivalent to solving a maximum cut

problem or to computing the ground state of an Ising spin

glass with bimodal bonds, see Mezard and Montanari, 2009.
For the three gene-regulatory networks of Table 1, efficient

heuristics are discussed in Iacono et al., 2010; Iacono and

Altafini, 2010, see also Supplementary Information for a recap.

In the following, we denote Demp
A, y the distortion in correspond-

ence of the true (‘empirical’) edge sign assignments y of a given

network. The values reported in Table 1 are computed from the

‘distance to monotonicity’ of Iacono and Altafini, 2010, using

(3). The upper and lower bounds computed for Demp
A, y are fairly

tight, see Table 1.

Needless to say, it is impossible to evaluate exactly quantities

such as (4), which are computed exhaustively over Ym. To esti-

mate DA, we can repeat the same optimization as in (2) on a

sufficiently large number of null models, obtained drawing

length-m independent identically distributed edge sign words

from a Bernoulli distribution BðqÞ, where q ¼ m�=m is the frac-

tion of negative edge signs of the original y; see Table 1 and the

Supplementary Information for more details. As can be seen on

Table 1, Demp
A, y5DA for all three gene networks, meaning that the

true gene networks have less distortion than the corresponding
null models (coherently with the results reported in Iacono et al.,
2010; Iacono and Altafini, 2010). Notice that only nodes

involved in undirected cycles contribute to the distortion. In par-
ticular, then, intending the networks as undirected graphs and
restricting to the bicomponents (i.e. dropping the nodes/edges

not involved in undirected cycles) means changing the values
of n and m, and hence of Demp

A, y and of DA, see Supplementary
Table S2.
BothDemp

A, y andDA are obtained in correspondence of the given

topology, described by the connectivity matrix A. If we allow
also the topology to vary, then we can use the rate-distortion
theorem of information theory (Cover and Thomas, 2006) to

determine the admissible region for the distortion D for all pos-
sible compression rates R ¼ n=m in correspondence of a BðqÞ
source of edge sign words. As explained in the Supplementary

Information, the boundary of such an admissible region repre-
sents a Shannon-type bound, and it is achieved in correspond-
ence of a ‘best’ network topology. For Bernoulli sources, the

distortion D on such bound can be computed explicitly; see
(S2) on the Supplementary Information. In Figure 3, the
Shannon bound D is compared with Demp

A, y and DA for the

three gene networks of Table 1. As can be observed, the values
of Demp

A, y are close to the corresponding D. In particular, once we
restrict to the bicomponents (insets in Fig. 3A–C), Demp

A, y5D in

two of the three networks. On the contrary, DA � D in all three
cases. The meaning is that in spite of non-optimal topologies, the
distortions of our gene regulatory networks (which, from

Demp
A, y5DA, we know to be much lower than expected) are also

at the level expected for a ‘best’ network topology.
A statistical physics analog of an XORSAT problem is an

Ising spin glass (Mezard and Montanari, 2009); see
Supplementary Information. In this context, the distortion
Demp

A, y has the interpretation of ‘frustration’ encoded in the undir-

ected cycles, i.e. of linearly independent undirected cycles having
negative sign (meaning an odd number of inhibitions). Our
result, therefore, implies that frustration is largely absent in

these signed graphs. Notice that direct counts of the basic
frustrated/non-frustrated motifs such as the incoherent/coherent
FFL are largely inconclusive; see Supplementary Information

and Table S1. The true distortion can be computed only
genome-wide, and its calculation confirms that indeed conflictual
orders are largely avoided.

Low distortion and single-mode TF. It is worth mentioning that
the origin of the low-distortion of the gene networks lies in the
highly skewed distribution of the signs of the actions of the TF.

As can be seen in Figure 4, the vast majority of the TF tends to
operate in a single-mode fashion on all their target genes. Dual-
mode TF are statistically rare with respect to the null models

(cumulative binomial test, P-value 10�2). See Supplementary
Tables S4 and S5–S7 for more details. While this skewness is
expected, as the physical interaction mechanisms of an activator

and of an inhibitor are normally different, its consequences for
the regulation on a genome-wide scale have rarely been assessed,
except on small motifs like FFL. Following the arguments of

Facchetti et al., 2011, Iacono and Altafini, 2010, and in particu-
lar the notion of gauge equivalence discussed therein, it can be
shown that such a pattern is responsible for the limited amount

of distortion of these networks. On the contrary, the signs on the
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incoming edges at the target genes do not show any deviation

from the null models. See Supplementary Information and

Supplementary Figure S2 for more details.

Distortion as an upper bound on non-canalizing functions of

boolean networks. In non-isolated FFL, the bicanalizing proper-

ties of boolean logic mentioned in section 2 extend to output

nodes that are fan-in of multiple coherent FFL, see

Supplementary Figure S3, while in presence of one or more in-

coherent FFL the situation is more complex, and more difficult

to analyze in detail; see e.g. Supplementary Figure S4. Not only

the type of gates chosen matters in this case, but also the order in

which logical operations are carried out; see table in

Supplementary Figure S4. The case in which the node x2 of an

FFL has in-degree greater than 1 is equally complex because the

motifs have more than one root. See Supplementary Figures

S5–S7 for a few examples. While the nested FFL case of

Supplementary Figure S5 is always bicanalizing, in

Supplementary Figure S6 even though all undirected cycles are

positive, the multiinput motif is bicanalizing only for some com-

binations of AND, OR. In Supplementary Figure S7, instead, no

logic gate can achieve bicanalization. Even on these simple ex-

amples, it is possible to observe how the choice of non-canalizing

gates along positive undirected cycles can lead to paradoxical

input-output steady-state behaviors. Notice for example in

Supplementary Figure S6 how XOR can induce ‘wrong’ bicana-

lizations, i.e. bicanalization with respect to the wrong input.
For these reasons, and to maximize the ‘overlap’ between

SISO transcriptional actions and MISO actions induced by the

boolean logic, it is reasonable to assume that positive undirected

cycles are preferentially endowed with canalizing gates, while in

negative undirected cycles no priority can be imposed on the type

of gates. This choice corresponds to solving the steady-state con-

sistency problem while maximizing the satisfiability to both (1)

and (8). Following Correale et al., 2006a, the problem can be

stated rigorously as a MAX-SAT problem subject jointly to (1)

and (8); see Supplementary Information. Proceeding in this way,

we obtain that in our boolean gene networks the number of non-

canalizing gates is upper bounded by Demp
A, y (and for null models

by DA). Because Demp
A, y5DA and Demp

A, y approaches the Shannon

bound, this criterion implies that non-canalizing gates for the

true edge sign words y are remarkably underrepresented with

respect to the null models on the same topology.
A perturbation analysis of the boolean dynamics. In the rest of

the article we consider unate boolean networks with the topology

Fig. 3. Distortion and Shannon bounds. For the three gene networks of Table 1 [(A) E.coli; (B) S.cerevisiae; (C) B.subtilis], the distortion in corres-

pondence of the ‘true’ edge signs y ðDemp
A, y ) and in correspondence of the null models (DA) is compared with the Shannon bound given by the rate-

distortion theorem (yellow curve); see Supplementary Information. Upper and lower bounds on Demp
A, y and on DA are normally close; see Table 1 (one

exception is DA for E.coli). In the insets, the same quantities are shown for the bicomponents of the networks (where nodes and edges not involved in

undirected cycles are dropped; see Supplementary Table S2). In this last case, Demp
A, y is below the Shannon bound in two of the three networks (and close

in the third one). In all cases, Demp
A, y5DA, i.e. the distortion is atypical for a BðqÞ source of words (i.e. of edge sign assignments)

Fig. 4. Single-mode action of the TF. The histograms show the number of positive and negative edges in the out-degree of the TF for the three networks

[(A) E.coli; (B) S.cerevisiae; (C) B.subtilis]. The histograms are highly skewed, meaning that the majority of TF have a single mode of action. In

particular, the TF significantly single mode (with respect to a cumulative binomial test, P-value 10�2) are highlighted in color: blue for activators, red for

repressors. See also Supplementary Tables S5–S7 for a list of the corresponding genes. For E.coli, the few TF having both positive and negative edges are

well-known dual-mode regulators, such as crp, fnr, ihf, fis, arcA and narL. See Supplementary Table S4
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of our gene networks, in which the gates are drawn at random,

but respecting the rule above that non-canalizing gates are ad-

missible only in presence of negative undirected cycles. We focus

in particular on the more complex Escherichia coli gene network

(the other two have a lower size and a much simpler topology;

see Supplementary Figure S2). It is interesting to compare the

dynamics obtained in this way with those of the null models, in

which the number of non-canalizing gates is higher. For random

boolean networks, non-canalizing is taken as a proxy for com-

plex, chaotic-like behavior; see Kauffman, 1993; Kauffman et al.,

2004. Topologically, our gene networks differ from random net-

works in many aspects, most importantly in the limited number

of feedback loops and in the highly parallel feed-forward archi-

tecture (Cosentino Lagomarsino et al., 2007); see Supplementary

Table S8. For a boolean network with these characteristics,

rather than rendering the dynamics chaotic, the presence of

XOR gates has the effect of constraining the possible steady

states admissible by the system. In this respect, the whole net-

work replicates the blocking phenomenon we have observed on

small motifs like FFL. In particular, in Figure 5, a perturbation

analysis is shown. In the true network, perturbations of a steady

state tend to persist more than in a null model, and the new

steady state tends to remain more distant from the original one

than in the null models. This behavior is consistent across all

perturbation sizes and is not explainable in terms of the sign of

the feedback loops: we recover in fact the same behavior when

we consider the maximal directed acyclic graph extracted from

the gene network, see Supplementary Figure S8.
In Figure 5, the fact that the perturbed initial conditions in

average do not increase their distance to the steady state as time

grows (apart from a transient of limited amplitude for the null

models) is an indication of a non-chaotic regime. The fact that

the distance does not decrease much in time is less predictable

because in an ordered regime one would expect perturbations to

die out consistently. Comparing Figure 5 and Supplementary

Figure S8, we can observe how the presence of a few directed

cycles can impact significantly the response to perturbations,

rendering the gene networks much less stable than one would

expect from their nearly acyclic, massively feed-forward topology

and their high level of canalization. This confirms, if necessary,

that the predictions one obtains through a random boolean net-

work (even those obtained choosing a flat distribution of boo-

lean rules on a given topology) are of limited significance for

models closer to the reality of currently available gene networks.
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