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Abstract 
Wave height as well as water depth at the breaking point are two basic parameters which are necessary 

for studying coastal processes. In this study, the application of soft computing-based methods such as 

artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro fuzzy inference system 

(ANFIS) and semi-empirical models for prediction of these parameters are investigated. The data sets 

used in this study are published laboratory and field data obtained from wave breaking on plane and 

barred, impermeable slopes collected from 24 sources. The comparison of results reveals that, the ANN 

model is more accurate in predicting both breaking wave height and water depth at the breaking point 

compared to the other methods. 

Keywords: Wave breaking, Breaker depth and height, Artificial neural network, Fuzzy inference system, 
ANFIS. 

  
1. Introduction 

As a wave train approaches to a beach, its length 

(L) decreases and its height (H) may increase, 

leading to the increased wave steepness (H/L). When 

the wave steepness reaches a limiting value, the 

wave breaks (USACE, 2008). The wave breaking is 

one of the most interesting phenomena of wave 

transformation in the nearshore region (Tsai et al., 

2005). Quantitative information about the 

characteristics of wave breaking at a given location is 

necessary for studying of the coastal processes such 

as calculation of wave forces exerted on the coastal 

structures, estimation of the rate of sediment 

transport and prediction of wave set up produced by 

breaking waves. The two basic parameters required 

in the most design problems are the breaking wave 

height and the water depth at the breaking point. 

In literature, there are several experimental and 

numerical studies about the wave breaking and 

different relations are developed to predict the 

breaking wave characteristics, i.e. the breaking wave 

height and the water depth at the breaking point. One 

of the most familiar criteria for breaker waves was 

presented by McCowan (1894) which determines the 

ratio of breaking wave height to the water depth at 

the breaking point to be 0.78. Similar equations are 

suggested by Weggel (1972), Sunamura and 

Horikawa (1974), Goda (1975), Komar (1998), and 

She and Canning (2008) based on the regular waves. 
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It should be noticed that these equations are 

basically developed bythe regression analysis which 

introduces a direct relation between the variables. 

However, its accuracy decreases in some 

complicated situations where there are not any clear 

relations between the parameters. While the need for 

further research on the wave breaking phenomenon 

with its complexities of turbulence and wave 

nonlinearities, it is also necessary to develop more 

accurate predictive methods which can estimate the 

mentioned parameters. 

Artificial neural networks (ANNs) are known as 

soft computing tools with capabilities of maintaining 

the experience and learning. They do not assume any 

fixed relationship between the input-output and 

therefore, they have been recently used for prediction 

of breaking wave characteristics. Deo and Jagdale 

(2003) have used ANNs for predicting the breaking 

wave height as well as the water depth at the 

breaking point. 

In the recent years, fuzzy inference system (FIS) 

has been employed in different engineering 

subjects. FIS can be used to predict uncertain 

systems and its application does not require 

knowledge of the underlying physical process as a 

precondition (Kazeminezhad et al., 2005). 

However, it has some deficiencies. In order to 

improve the results obtained through this method, 

the neuro-fuzzy methods such as adaptive neuro 

fuzzy inference system (ANFIS), which is a 

combination of ANN and FIS, were defined. These 

methods have been used in coastal engineering 

problems such as wave prediction (Kazeminezhad 

et al., 2005; Ozger, 2009; Sylaios et al., 2009), 

sediment transport estimation (Bakhtyar et al., 

2008; Kisi et al., 2009) and other related fields. 

The purpose of this study is to investigate the 

application of ANN, FIS, and ANFIS methods in 

prediction of the breaking wave height and the water 

depth at the breaking point. The results obtained 

from three developed models are compared with the 

results of semi-empirical equations. 

2. Materials and Methods 

2.1. Artificial Neural Networks (ANNs) 

An artificial neural network is an information-

processing system that has certain performance 

characteristics in common with biological neural 

networks. It is one of the artificial intelligence 

techniques where the intelligence results from 

communication between different neurons (Jain and 

Deo, 2006). It is also a useful tool for solving 

different engineering problems because it can 

approximate a desired behavior without the need to 

specify a particular function. This is a big advantage 

of artificial neural networks compared to multivariate 

statistics (Wieland and Mirschel, 2008). A neural 

network is characterized by (1) its pattern of 

connections between the neurons (called its 

architecture), (2) its method of determining the 

weights on connections (learning algorithm), and (3) 

its activation function (Fausett, 1994). Among the 

applied neural networks, the feed forward neural 

networks (FFNN) are the most common used method 

in solving various engineering problems. FFNN 

technique consists of layer being fully connected to 

the preceding layer by weights (Rajaee et al., 2009). 

Fig. 1 illustrates the common three-layer feed forward 

type of an artificial neural network. 

 
Fig. 1. Schematic representation of three-layer feed forward 
artificial neural network 

Learning of these ANNs is performed by first or 

second order learning algorithms. Backpropagation, 

adaptive learning rate and the steepest descent are 
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first-order methods in that they use the first 

derivative of error (slope) and follow the gradient 

descent approach. QuickProp, the Gauss-Newton 

method, and the Levenberg-Marquardt method are 

second-order methods and they rely on both first and 

second derivative of error (slope and curvature) in 

the search for the optimum weights (Samarasinghe, 

2007). 

In the present study, the Levenberg-Marquardt 

(LM) algorithm was chosen because of its high-

performance and the fastest convergence. It 

minimizes a predetermined error function (E) of the 

following form: 

E = ∑ ∑ (y୧ − t୧)ଶ୒୔                                               (1) 

wherey୧ is the ith component of ANN output 

vector Y, t୧ is the ith component of target output 

vector T, N is the number of output neurons and P is 

the number of training patterns. 

The LM algorithm uses the following formula to 

calculate weights (W) in subsequent iterations: 

W୬ୣ୵ = W୭୪ୢ − ሾJ୘J + γIሿିଵJ୘E(W୭୪ୢ)                (2) 

where J is the Jacobian of the error function E, I is 

the identity matrix, and γ is the parameter used to 

define the iteration step value. In this method, γ is 

chosen automatically until a downhill step is 

produced for each epoch. Starting with an initial 

value of γ, the algorithm attempts to decrease its 

value by increments of ∆γ in each epoch. If the E is 

not reduced, γ is increased repeatedly until a 

downhill step is produced (Samarasinghe, 2007). 

Several forms of activation functions have been 

used in ANNs, such as linear, binary sigmoid, 

bipolar sigmoid, hyperbolic tangent, etc. The 

hyperbolic tangent function, which was used in this 

paper, is given by: 

f(x) = ୣ୶୮(୶)ିୣ୶୮	(ି୶)ୣ୶୮(୶)ାୣ୶୮	(ି୶)                                            (3) 

More details on the ANN can be found in Fausett 

(1994) and Samarasinghe (2007). 

2.2. Fuzzy Inference Systems (FISs) 

The fuzzy inference system (FIS) is a popular 

computing framework based on the concepts of 

fuzzy set theory, fuzzy if-then rules, and fuzzy 

reasoning. The basic structure of a fuzzy inference 

system consists of three conceptual components: (1) 

a rule base, which contains a selection of fuzzy rules. 

The general form of a fuzzy if-then rule is as 

follows: if X is A then Y is B. Often the first part is 

called the antecedent or premise, while the other part 

is called the consequence or conclusion; (2) a 

database, which defines the membership functions 

used in the fuzzy rules; and (3) a reasoning 

mechanism, which performs the inference procedure 

upon the rules and given facts to derive a reasonable 

output or conclusion. 

There are three types of fuzzy inference systems 

in the literature that have been widely employed in 

various applications: Mamdani, Sugeno, and 

Tsukamoto fuzzy inference systems. The differences 

between these three fuzzy inference systems lie in 

the consequents of their fuzzy rules. 

Although the fuzzy inference system has a 

structured knowledge representation in the form of 

fuzzy if-then rules, it lacks the adaptability to deal 

with changing external environments. Thus, neural 

network learning concepts in fuzzy inference 

systems has been incorporated by various authors, 

resulting in neuro-fuzzy modeling (Jang et al., 1997). 

An adaptive neuro-fuzzy inference system 

(ANFIS) is a first order Sugeno type FIS in which 

the premise and consequence parameters of fuzzy if-

then rules are optimized by a five layers artificial 

neural network. For a first-order Sugeno fuzzy 

model, a common rule set with two fuzzy if-then 

rules and three inputs is as follows: 

Rule 1: If xଵ is Aଵ and xଶ is Bଵ and xଷis Cଵ, then fଵ = pଵxଵ + qଵxଶ + rଵxଷ + sଵ, 
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Rule 2: If xଵ is Aଶ and xଶ is Bଶ and xଷis Cଶ, then fଶ = pଶxଵ + qଶxଶ + rଶxଷ + sଶ. 

Fig. 2(a) illustrates the reasoning mechanism for 

this Sugeno model. The corresponding equivalent 

ANFIS architecture is as shown in Fig. 2(b). Every 

node in the first layer is an adaptive node. The output 

of the layer are degrees of membership of linguistic 

variables A୧, B୧, and C୧. In the second layer, every 

node is a fixed one. This layer calculates the firing 

strength for each rule, whose output of the layer is 

algebraic product of all the input signals. 

 
Fig. 2.(a) a first-order Sugeno fuzzy model with two rules (three 
inputs); (b) equivalent ANFIS architecture. 

In the third layer the ith node calculates the ratio 

of the ith rule’s firing strength to the sum of all rule’s 

firing strengths. Every node in this layer is a fixed 

node. Outputs of the layer are called normalized 

firing strengths. In the fourth layer the output of an 

adaptive node obtains from multiplying the 

normalized firing strength by f୧ = p୧xଵ + q୧xଶ +r୧xଷ + s୧. The fifth layer, which has a fixed node, 

computes the overall output as follows: 

f = ∑ ωഥ୧f୧୧ = ∑ ன౟୤౟౟∑ ன౟౟                                                (4) 

A hybrid learning algorithm is used for learning of 

neural network. The hybrid learning algorithm 

consisted of two pass. In the forward pass, node 

outputs go forward until layer 4 and the consequent 

parameters are identified by the least squares 

method. In the backward pass, when the consequent 

parameters are fixed, the error signals propagate 

backward and the premise parameters (membership 

functions’ parameters) are updated by gradient 

descent. More detailed information on ANFIS can be 

found in Jang et al. (1997). There are many various 

membership functions such as triangular, trapezoidal, 

bell, and Gaussian functions that can be applied in 

fuzzy modeling. In this study, since the majority of 

natural phenomena follow from the Gaussian 

probabilistic distribution, the Gaussian membership 

function is used as follows: 

μ(x) = exp ൤− ቀ୶ିୡୟ ቁଶ൨                                           (5) 

where μ(x) is the membership function, a and c 

are the membership functions’ parameters that 

changes the shape of the membership function. 

These parameters are referred to as the premise 

parameters. In this paper, for developing a FIS model 

with a minimum number of fuzzy rules, a subtractive 

clustering method is used. In the subtractive 

clustering method (Chiu, 1994), each data point is 

considered as a potential cluster center and is defined 

a measure of the potential for each data point. A data 

point with many neighboring data points will have 

high potential value. The data point with high 

potential value is selected as the first cluster center. 

Then, the potential of the data points whose distance 

from a selected cluster center is less than a pre-

specified value (cluster radius) are subtracted and the 

potential values are updated. The procedure 

continues until holding some conditions. 

2.3. Semi-Empirical Models 

Semi-empirical models have been developed 

based on interrelationship among dimensionless 
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parameters. Until now many attempts have been 

performed to predict the wave breaking 

characteristics using regression methods (including 

linear, polynomial and logistic). According to them, 

beach slope (m) (or seaward slope of bar in barred 

beach), deep water wave height (H଴), and deep water 

wave length (L଴) (including wave period (T)), are 

effective parameters in the prediction of the breaker 

wave height (Hୠ) and the water depth at the breaking 

point (hୠ). In Table 1 some of the currently 

developed equations, in the order of their publication 

dates, are presented. These equations are used to 

evaluate the efficiency and exactness of newly 

proposed models. 

3. Data Set 

The data sets used in this paper are the published 

laboratory and field data obtained from the wave 

breaking on the plane and barred, impermeable 

slopes. These data on the breaking wave height and 

the water depth at the breaking point are obtained 

from different sources which are summarized in 

Table 2. 

For modeling, the data set is divided into two 

parts: training and testing set. The training and 

testing data set are used for learning and evaluating 

the developed models, respectively. 

In order to predict the breaking wave height, 662 

data points of total 701 data were selected of which 

almost 80 percents of data points (532 data points) 

were used as the training set and the remaining as the 

testing set. Also 644 data points of total 701 data 

were selected for predicting the water depth at the 

breaking point of which 519 data points (almost 80 

percents) were used as the training set and125 data 

points as the testing set. In Table 3, the statistical 

characteristics of training and testing data set used in 

predicting the breaking wave height are presented. 

Also, the statistical characteristics of the data points 

used in predicting the water depth at the breaking 

point are presented in Table 4. 
 

4. Results and Discussion 

At first, two artificial neural networks were 

developed, separately, using training data to predict 

the breaking wave height and the water depth at the 

breaking point. Before learning the ANNs, the 

training input and output values are normalized in 

the range of -1 to 1, using the following equation: 

xᇱ = 2 ୶ି୶ౣ౟౤୶ౣ౗౮ି୶ౣ౟౤ − 1                                            (19) 

where x୫୧୬ and x୫ୟ୶ denotes the minimum and 

maximum of data set. 

After examining different topologies with tangent 

hyperbolic activation function, the best topology for 

both models was found to be 3 × 7 × 1. Three input 

neurons are beach slope (m)(or seaward slope of bar 

in barred beach), wave period (T) and deep water 

wave height (H0), seven hidden neurons and one 

output neuron that is breaking wave height (Hb) and 

water depth at the breaking point (hb), in each 

model, separately. Despite semi-empirical models, in 

this study, we have used dimensional parameters due 

to some deficiencies in the published laboratory and 

field data. Of course, as an advantage, this eliminates 

the need for trial and error process for predicting the 

breaking wave characteristics. Number of hidden 

neurons was chosen according to Kolmogorov's 

theorem. As a result of it, the number of hidden 

neurons is preferably not greater than one plus twice 

the input neurons (Zijderveld, 2003): 

h ≤ 2n + 1                                                            (20) 

in which h and n are number of hidden and input 

neurons, respectively.  

After learning, the developed ANNs are 

evaluated using the testing data. The comparison 

between observed and predicted breaking wave 

height and water depth at the breaking point using 

the testing data are shown in Fig. 3 and 4, 

respectively. 
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Table 1. Currently presented equations for prediction of breaking wave characteristics. 
Authors formula Eq. no.

Galvin (1969) hୠ Hୠ⁄ = 0.92				if m ≥ 0.07 ; hୠ Hୠ⁄ = 1.40− 6.85m if m ≤ 0.07 6 
Collins and Weir (1969) Hୠ hୠ⁄ = 0.72 + 5.6m 7 

Weggel(1972) 
Hୠ hୠ⁄ = b − a(Hୠ gTଶ⁄ ) ; a = 43.75ሾ1− exp(−19m)ሿ, b= 1.56 ሾ1 + exp(−19.5m)ሿ⁄  

8 

Komar and Gaughan(1973) Hୠ H଴⁄ = 0.56(H଴ L଴⁄ )ିଵ ହ⁄ 9 
Goda(1975) Hୠ L଴⁄ = 0.17൛1− expൣ−1.5π(hୠ L଴⁄ )൫1+ 15mସ ଷ⁄ ൯൧ൟ 10 

Battjes(1974) Hୠ hୠ⁄ = 1.062 + 0.137 log ቀm ඥH଴ L଴⁄⁄ ቁ 11 

Sunamura and Horikawa(1974) Hୠ H଴⁄ = m଴.ଶ(H଴ L଴⁄ )ି଴.ଶହ 12 
Singamsetti and Wind (1980) Hୠ hୠ⁄ = 0.937	m଴.ଵହହ(H଴ L଴⁄ )ି଴.ଵଷ 13 

Sunamura(1981) Hୠ hୠ⁄ = 1.1 ቀm ඥH଴ L଴⁄⁄ ቁଵ ଺⁄
 14 

Komar(1998) Hୠ = 0.39g଴.ଶ(TH଴ଶ)଴.ସ hୠ = Hୠሼ1.2ሾm (Hୠ L଴⁄ )଴.ହ⁄ ሿ଴.ଶ଻ሽ 15 
16 

She and Canning (2007) 
Hୠ gTଶ⁄ = α tanhሾβ(hୠ gTଶ⁄ )ஓሿ ; α = 0.0277, β = 152m+ 6.6 if m ≥ 0.073,β = 17.7 if m < 0.073	 γ = 1.92m+ 0.72 if m ≥ 0.094, γ = 0.9 if m < 0.094 

17 

Camenen and Larson (2007) 

Hୠ hୠ⁄ = ൫0.284 ඥ(H଴ L଴⁄ )⁄ ൯ tanhൣf∗(m,H଴ L଴⁄ )πඥH଴ L଴⁄ ൧; f∗(m,H଴ L଴⁄ ) = Aଵ + Aଶ sinሼ(π 2⁄ )(m m୫ୟ୶⁄ )஑ሽ ,m୫ୟ୶ = 0.10 + 1.6H଴ L଴,⁄  α = 1 + 14H଴ L଴⁄ if m ≤ m୫ୟ୶; α = −(1 + 20H଴ L଴⁄ ) if m > m୫ୟ୶,	 Aଵ = 0.87,Aଶ = 0.32 + 14H଴ L଴⁄  

18 

Table 2. Summary of collected laboratory and field data. 

source Conditions m T (sec) ۶૙ ⁄૙ۺ  
Number 
of data 

Munk (1949)+ Laboratory data/Plane beach 0.009-0.159 0.86-1.97 0.007-0.0092 53
Munk (1949)+ Field data/Plane beach 0.04 6.5-13.7 0.0042-0.0316 74
Iversen (1952)* Laboratory data/Plane beach 0.02-0.1 0.74-2.67 0.0025-0.0907 68
Morison and Crooke (1953)+ Laboratory data/Plane beach 0.02-0.1 0.78-2.62 0.0036-0.0778 6
Horikawa and Kuo (1967)* Laboratory data/Plane beach 0.0125-0.05 1.2-2.3 0.006-0.073 97
Komar and Simmons (1968)+ Laboratory data/Plane beach 0.036-0.105 0.81-2.37 0.0032-0.071 44
Galvin (1968)+ Laboratory data/Plane beach 0.05-0.2 1.0-8.0 0.0002-0.056 43
Galvin (1969)* Laboratory data/Plane beach 0.05-0.2 1.0-6.0 0.0007-0.0503 22
Saeki and Sasaki (1973)* Laboratory data/Plane beach 0.02 1.3-2.5 0.005-0.039 2
Iwagaki et al. (1974)* Laboratory data/Plane beach 0.03-0.1 1.0-2.0 0.005-0.073 23
Walker (1974)* Laboratory data/Plane beach 0.033 1.17-2.33 0.001-0.038 15
Singamsetti and Wind 
(1980)* 

Laboratory data/Plane beach 0.025-0.2 1.03-1.73 0.017-0.08 95

Mizuguchi (1981)* Laboratory data/Plane beach 0.1 1.2 0.045 1
Visser (1982)* Laboratory data/Plane beach 0.05-0.1 0.7-2.01 0.014-0.079 7
Maruyama et al. (1983)* Laboratory data/Plane beach 0.034 3.1 0.091 1
Stive(1984) Laboratory data/Plane beach 0.025 1.79-3.0 0.01-0.032 2
Smith and Kraus (1990) Laboratory data/Plane beach 0.033 1.02-2.49 0.009-0.092 5
Smith and Kraus (1990) Laboratory data/Barred beach 0.08-0.437 1.01-2.49 0.008-0.095 77
Ting and Kirby (1995, 1996) Laboratory data/Plane beach 0.0286 2.0-5.0 0.0023-0.02 2
Hoque(2002) Laboratory data/Plane beach 0.1053 1.12-1.8 0.024-0.076 6
Deo and Jagdale(2003) Laboratory data/Plane beach 0.033-0.1 0.74-1.2 0.0419-0.1272 20
Cox and Shin (2003, 2006) Laboratory data/Plane beach 0.0286 1.5-3.0 0.0055-0.0362 4
Scott et al. (2005) Laboratory data/Barred beach 0.054 4.0 0.0256 1
Tomasicchio(2006) Laboratory data/Barred beach 0.033 2.5-3.5 0.0072-0.0114 3
Okamoto and Basco(2006) Laboratory data/Plane beach 0.033 1.6-3.8 0.012-0.046 27
Mori and Kakuno(2008) Laboratory data/Plane beach 0.033 1.6-3.8 0.012-0.046 3
+: Data from Gaughan et al. (1973) 
*: Data from Smith and Kraus (1990) 
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Table 3. The statistical characteristics of data points used in predicting the breaking wave height. 

Training data (numbers =532) Testing data (numbers =130) 

 m T (sec) ۶૙ (m) ۶܊ (m) m T (sec) ۶૙ (m) ۶܊ (m) 

Min. 0.009 0.73 0.0104 0.0150 0.009 0.7 0.0137 0.0305
Max. 0.4366 13.7 2.46 3.05 0.3757 12.5 3.0 3.47
Avg. 0.0798 2.65 0.2604 0.3386 0.0838 2.51 0.2921 0.3663
SD* 0.0753 2.74 0.4966 0.6694 0.0767 2.73 0.5578 0.7185
*SD: Standard Deviation 

Table 4. The statistical characteristics of data points used in predicting the water depth at the breaking point. 

Training data (numbers =519) Testing data (numbers =125) 

 m T (sec) ۶૙ (m) ܊ܐ (m) m T (sec) ۶૙ (m) ܊ܐ (m) 

Min. 0.009 0.7 0.0137 0.0335 0.009 0.74 0.0104 0.0305

Max. 0.4366 13.70 3.0 4.45 0.3757 10.5 2.36 3.87

Avg. 0.0773 2.54 0.2788 0.4478 0.0738 2.29 0.2581 0.4064

SD 0.0743 2.78 0.5222 0.9025 0.0758 2.42 0.5026 0.8618

 

The other prediction model developed is ANFIS 

model. Two ANFIS models were developed using 

the training data; the first one as a breaking wave 

height predictor and the second one as a water depth 

at the breaking point predictor. At first, using the 

subtractive clustering method and the training data 

including deep water wave height, wave period and 

beach slope (or seaward slope of bar in barred beach) 

as input parameters, a FIS model was developed. The 

developed FIS model was then used as an initial FIS 

for ANFIS model. 

 

Fig. 3. Comparison between observed and predicted values 
obtained from ANN model for breaking wave height. 

After developing FIS and ANFIS models, testing 

data were used to evaluate the accuracy of the 

developed models. Fig. 5 and 6 shows the 

comparison between observed and predicted 

breaking wave height and water depth at the breaking 

point using the developed FIS models, respectively. 

These mentioned results are for testing data. 

 

Fig. 4. Comparison between observed and predicted values 
obtained from ANN model for water depth at the breaking point. 

Also the observed and predicted breaking wave 

characteristics obtained from the ANFIS models are 

shown in Fig .7 and 8. As it is shown the breaking 

wave height and the water depth at the breaking 

point were slightly unbiased in all of these three 

developed models, especially for the large scale field 

data. Moreover, it can be noticed that in all Figs, 

there are some gaps between the greater and smaller 

values which it is due to the difference between the 
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large scale, field data and the small scale laboratory 

data. 

 

Fig. 5. Comparison between observed and predicted values 
obtained from FIS model for breaking wave height. 

 

Fig. 6. Comparison between observed and predicted values 
obtained from FIS model for water depth at the breaking point. 

 

Fig. 7. Comparison between observed and predicted values 
obtained from ANFIS model for breaking wave height. 

 

 

Fig. 8. Comparison between observed and predicted values 
obtained from ANFIS model for water depth at the breaking 
point. 

Fig. 9 shows the initial and Fig. 10 shows the final 

membership functions of input variables for breaking 

wave height prediction. 

It is seen that there is a considerable change in 

the shape of membership functions of beach slope 

after training. The change in the shape of 

membership function of deep water wave height 

is also considerable but its change is less 

important than the beach slope. For deep water 

wave heights greater than 0.5 m, the values of 

membership functions become almost zero. It is 

due to the smaller number of large scale, field 

data compared to small scale, experimental data 

which leads to the effects of field data (the deep 

water wave heights greater than 0.5 m) become 

smaller than the experimental data. The initial 

and final membership functions of three input 

variables for water depth at the breaking point 

prediction is shown in Fig. 11 and Fig. 12, 

respectively. As can be seen the maximum 

change in the shape of membership functions 

after training belongs to the beach slope. The 

change in the shape of membership functions of 

two other variables is not as significant as beach 

slope. As a result, the beach slope parameter is an 

important and sensible variable in prediction of 

both the breaking wave height and the water 

depth at the breaking point. 
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Fig. 9. Initial membership functions of input variables in predicting the breaking wave height 

 

Fig. 10. Final membership functions of input variables in predicting the breaking wave height 
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Fig. 11. Initial membership functions of input variables in predicting the water depth at the breaking point 

 

Fig. 12. Final membership functions of input variables in predicting the water depth at the breaking point 
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A statistical comparison between the observed and 

predicted parameters of wave breaking 

characteristics was studied to evaluate the developed 

soft computing models as well as the previous semi- 

empirical equations using bias, mean absolute error 

(MAE), root mean square error (RMSE), scatter 

index (SI) and correlation coefficient (CC) which are 

defined as follows: 

bias = ଵ୒∑ (y୧ − t୧)୒୧ୀଵ                                          (21) 

MAE = ଵ୒∑ |y୧ − t୧|୒୧ୀଵ                                          (22) 

RMSE = ටଵ୒∑ (y୧ − t୧)ଶ୒୧ୀଵ                                  (23) 

SI = ୖ୑ୗ୉ୟ୴ୣ୰ୟ୥ୣ	୭ୠୱୣ୰୴ୣୢ	୴ୟ୪୳ୣ × 100                        (24) 

CC = ∑ (୲౟ି୲̅ౣ)(୷౟ି୷ഥౣ)౟ొసభට൫∑ (୲౟ି୲̅ౣ)మ౟ొసభ ൯൫∑ (୷౟ି୷ഥౣ)మ౟ొసభ ൯                        (25) 

where N is the number of observations; t୧ is an 

observed value; y୧ is a predicted value; t̅୫ is the 

observed mean value; and yത୫ is the predicted mean 

value. 

Table 5 shows the error statistics of the proposed 

ANN, FIS and ANFIS models as well as preceding 

equations for predicting the breaking wave height. 

These errors are related to the testing data. As 

shown, the error statistics of the FIS model is larger 

than those of the ANN model. Also, the bias and 

MAE of this model are larger than the equation of 

Komar and Gaughan (1973). However, after training 

the FIS model, the errors related to the ANFIS model 

has become lower than the FIS model and also above 

mentioned equation but it is still larger than the 

errors related to the ANN model. The bias of the 

proposed ANFIS model is 0.0072m which is still 

slightly larger than the bias of the equation of Komar 

and Gaughan (1973) that is equal to 0.0069m. As can 

be seen the errors of ANN model developed for 

predicting of breaking wave height is less than the 

other methods. The MAE, RMSE and SI of the ANN 

model are 0.0369m, 0.0872 m and 23.81%, 

respectively. These are lower values compared to the 

other methods. Furthermore, the bias of the proposed 

ANN model is minimum value between the others 

and is equal to 0.0029mwhich it means that it 

overestimates the breaking wave height.  

The statistical comparison of the predicted values 

for the water depth at the breaking point is shown in 

Table 6. According to this table, the minimum MAE, 

RMSE and SI belong to the proposed ANN model 

with values of 0.0562m, 0.1382m and 34.00%, 

respectively. The bias of the proposed ANN model is 

0.0002 and it overestimates the water depth at the 

breaking point. As shown, the minimum value of bias 

belongs to the proposed ANN model. It can be noticed 

that the error statistics of three proposed models are 

considerably lower than the preceding equations, for 

example they have decreased the RMSE between 45 

to 158%. As a result, although a small number of field 

data has been used in this study, the results obtained 

from the testing data including both laboratory and 

field data show that the ANN and ANFIS models 

proposed in this study provide better predictions for 

the estimation of the breaking wave height and the 

water depth at the breaking point, compared to the 

other methods. Using of a larger number of the field 

data can even lead to more accurate results. Of course, 

it is obvious that the results are valid in the range of 

the data reported in table 2. 

5. Conclusions 

In this study, using soft computing tools such as 

ANNs, FIS and ANFIS, some models were developed 

to predict the breaking wave characteristics. With the 

purpose of developing these models, the published 

laboratory and field data of wave breaking on plane and 

barred, impermeable slopes is used. 
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Table 5. Statistics of the predicted breaking wave height using the testing data. 

Methods 
Average observed 

value (m) 
Average predicted 

value (m) 
bias 
(m) 

MAE 
(m) 

RMSE 
(m) 

SI (%) CC 

Galvin (1969) 0.3663 0.4022 0.0359 0.0513 0.1379 37.65 0.9884
Collins and Weir 
(1969) 

0.3663 0.4501 0.0838 0.0874 0.1925 52.54 0.9856

Weggel(1972) 0.3663 0.4468 0.0804 0.0845 0.2268 61.93 0.9870
Komar and 
Gaughan(1973) 

0.3663 0.3732 0.0069 0.0404 0.0994 27.12 0.9908

Goda(1975) 0.3663 0.4225 0.0562 0.0663 0.1554 42.42 0.9870
Battjes(1974) 0.3663 0.4439 0.0776 0.0829 0.2229 60.85 0.9882
Sunamura and 
Horikawa (1974) 

0.3663 0.4435 0.0772 0.0810 0.1899 51.87 0.9897

Singamsetti and 
Wind (1980) 

0.3663 0.4432 0.0769 0.0824 0.2319 63.30 0.9850

Sunamura(1981) 0.3663 0.4123 0.0460 0.0584 0.1659 45.31 0.9869
Komar(1998), Eq. 
15 

0.3663 0.3754 0.0091 0.0407 0.1006 27.46 0.9908

She and Canning 
(2007) 

0.3663 0.3750 0.0087 0.0524 0.1294 35.33 0.9870

Cammenen and 
Larson (2007) 

0.3663 0.4028 0.0365 0.0518 0.1497 40.86 0.9880

ANN 0.3663 0.3692 0.0029 0.0369 0.0872 23.81 0.9926
FIS 0.3663 0.3745 0.0082 0.0419 0.0987 26.94 0.9909
ANFIS 0.3663 0.3735 0.0072 0.0404 0.0945 25.79 0.9914

Table 6. Statistics of the predicted water depth at the breaking point using the testing data. 

Methods 
Average observed 

value (m) 
Average predicted 

value (m) 
bias (m) 

MAE 
(m) 

RMSE 
(m) 

SI 
(%) 

CC 

Galvin (1969) 0.4064 0.3505 -0.0559 0.0661 0.2116 52.08 0.9844
Collins and Weir 
(1969) 

0.4064 0.3229 -0.0835 0.0877 0.2478 60.98 0.9840

Weggel(1972) 0.4064 0.3176 -0.0888 0.0947 0.2855 70.25 0.9825
Battjes(1974) 0.4064 0.3168 -0.0896 0.0932 0.2804 68.99 0.9838
Singamsetti and 
Wind (1980) 

0.4064 0.3229 -0.0835 0.0909 0.2828 69.58 0.9816

Sunamura(1981) 0.4064 0.3451 -0.0613 0.0725 0.2359 58.04 0.9828
Komar(1998), Eq. 
16 

0.4064 0.2775 -0.1289 0.1386 0.3566 87.74 0.9842

Cammenen and 
Larson (2007) 

0.4064 0.3520 -0.0544 0.0694 0.2284 56.20 0.9832

ANN 0.4064 0.4066 0.0002 0.0562 0.1382 34.00 0.9870
FIS 0.4064 0.4042 -0.0022 0.0630 0.1464 36.01 0.9855
ANFIS 0.4064 0.4068 0.0004 0.0599 0.1444 35.52 0.9858

 

For each method, two separate models were 

established with outputs of breaking wave height and 

water depth at the breaking point. The inputs were 

deep water wave height, wave period and beach 

slope (seaward slope of bar in barred beach). A 

comparison between the semi-empirical models and 

the proposed ANN, FIS and ANFIS models indicate 

that the errors of the ANN model in predicting the 

breaking wave height and the water depth at the 

breaking point are less than those of the other 

methods. In addition, the errors of the FIS and 

ANFIS models in prediction of the water depth at the 

breaking point were also very lower than those of the 

semi-empirical equations. As a general result, soft 
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computing methods are able to considerably improve 

the prediction of the characteristics of uncertain, 

complicated wave breaking phenomenon. 
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