
Noname manuscript No.

(will be inserted by the editor)

Independence of Containing Patterns Property and its

Application in Tree Pattern Query Rewriting Using Views

Junhu Wang · Jeffrey Xu Yu · Chengfei Liu

Received: / Accepted: date

Abstract We show that several classes of tree patterns observe the independence of

containing patterns property, that is, if a pattern is contained in the union of several

patterns, then it is contained in one of them. We apply this property to two related

problems on tree pattern rewriting using views. First, given view V and query Q, is

it possible for Q to have an equivalent rewriting using V which is the union of two

or more tree patterns, but not an equivalent rewriting which is a single pattern? This

problem is of both theoretical and practical importance because, if the answer is no,

then, to find an equivalent rewriting of a tree pattern using a view, we should use more

efficient methods, such as the polynomial time algorithm of [20], rather than try to

find the union of all contained rewritings (which takes exponential time in the worst

case) and test its equivalence to Q. Second, given a set S of views, we want to know

under what conditions a subset S′ of S is redundant in the sense that for any query

Q, the contained rewritings of Q using the views in S′ are contained in those using the

views in S−S′. Solving this problem can help us to, for example, choose the minimum

number of views to be cached, or better design the virtual schema in a mediated data

integration system, or avoid repeated calculation in query optimization. For the first

problem, we identify several classes of tree patterns for which the equivalent rewriting

can be expressed as a single tree pattern. For the second problem, we present necessary

and sufficient conditions for S′ to be redundant with respect to some classes of tree

patterns. For both problems we consider extension to cases where there are rewritings

using the intersection of multiple views and/or where a schema graph is present.

J. Wang
Griffith University, Gold Coast, Australia
E-mail: J.Wang@griffith.edu.au

J. X. Yu
Chinese University of Hong Kong, Hong Kong, China
E-mail: yu@se.cuhk.edu.hk

C. Liu
Swinburne University of Technology, Melbourne, Australia
E-mail: cliu@ict.swin.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357195265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Query rewriting using views has many applications including data integration, query

optimization, and query caching [5]. A view is an existing query whose answer may

or may not have been materialized. Given a new query, the problem is to find another

query using only the views that will produce correct answers to the original query. Usu-

ally two types of rewritings are sought: equivalent rewritings and contained rewritings.

An equivalent rewriting produces all answers to the original query, while a contained

rewriting may produce only part of the answers. Both types of rewritings have been

extensively studied in the relational database context, see [5] for an early survey, and

[17,12] for more recent developments.

More recently rewriting xml queries using xml views has attracted attention be-

cause of the rising importance of xml data [20,9,6,13]. Since xpath lies in the center

of all xml languages, the problem of rewriting xpath queries using xpath views is

particularly important. Some major classes of xpath expressions can be represented

as tree patterns [1,10]. Among previous work on rewriting xpath queries using views,

Xu et al [20] studied equivalent rewritings for several different classes of tree patterns,

and it gave a polynomial time algorithm for finding equivalent rewritings when the

tree patterns do not have *. Mandhani and Suciu [9] presented results on equivalent

rewritings of tree patterns when the tree patterns are assumed to be minimized. Lak-

shmanan et al [6] studied maximal contained rewritings of tree patterns where both

the view and the query involve /,// and [] only (these xpath expressions correspond

to tree patterns in P {/,//,[]} [10]), both in the absence and presence of non-recursive

schema graphs - a restricted form of DTDs. When there are no dtds, the worst case

complexity of finding the maximal contained rewriting is shown to be exponential in

the size of the query.

In this paper, we study two related problems on xpath rewritings using views.

The first problem is about the form of equivalent rewritings: given view V and query

Q, is it possible for Q to have an equivalent rewriting using V which is the union

of two or more tree patterns, but not an equivalent rewriting which is a single tree

pattern? This problem is of both theoretical and practical importance because, if the

answer is no, then, to find an equivalent rewriting using the view, we can use more

efficient methods such as the polynomial time algorithm of [20], rather than try to

find the union of all contained rewritings [6] and test its equivalence to Q. The second

problem is what we call the redundant views problem. Given a set S of views, we want

to know under what conditions a subset S′ of S is redundant in the sense that for any

query Q, the contained rewritings of Q using the views in S′ are contained in those

using the views in S − S′. Thus the contribution of redundant views to the contained

rewritings can be ignored. Solving this problem can help us to, for example, choose

the minimum number of views to be cached, or better design the virtual schema in a

mediated data integration system, or avoid useless computation in query optimization.

We first study the above problems for the class of tree patterns involving /, // and [],

and then extend our results to other classes of tree patterns. We also consider the case

where the intersection of views is used in the rewriting, as well as the case a schema

graph is present.

Our main contributions are:

2

a

e

d

g

b

c

(a) G1

b

a

+

(b) G2

a

*

c
 d

(c) P1

a

b

d

(d) P2

Fig. 1. Schema graphs G1, G2 and tree patterns P1, P2

– We show that, when there is no dtd, several classes of tree patterns observe the

independence of containing patterns property, that is, if a tree pattern is contained

in the union of multiple tree patterns, then it must be contained in one of them.

– Using the above property, we show that for queries and views in P {/,//,[]}, if there

is no equivalent rewriting in the form of a single tree pattern, then there is no

equivalent rewriting in the form of a union of tree patterns. We extend this result to

queries in P {/,[],∗}, queries and views in P̂ {/,//,[],∗}, and rewritings using multiple

views. We also consider the presence of dtds.

– When multiple views exist, we provide a necessary and sufficient condition for

identifying redundant views. In the case where the intersection of views is also

used in the rewriting, we provide a necessary condition and a separate sufficient

condition for redundant views.

The rest of the paper is organized as follows. Section 2 provides the terminology

and notations. Section 3 shows the independence of containing patterns property of

tree patterns. Based on this property, Section 4 presents our result on the form of

equivalent rewritings. Section 5 then discusses conditions under which some views are

redundant. Section 6 discusses related work. Finally Section 7 concludes the paper.

2 Preliminaries

2.1 DTDs, XML trees, and tree patterns

Let Σ be an infinite set of tags. We adopt the similar notations used in [6], and model

a dtd as a connected directed graph G (called a schema graph) satisfying the following

conditions:

(1) each node is labeled with a distinct label in Σ;

(2) each edge is labeled with one of 1, ?, +, and ∗, which indicate “exactly one”, “one

or zero”, “one or many”, and “zero or many”, respectively. Here, the default edge

label is ∗;
(3) there is a unique node, called the root, which may have an incoming degree of zero.

All other nodes have incoming degrees greater than 0.

Because a node in a schema graph G has a unique label, we also refer to a node by

its label. If the graph is acyclic, then the dtd is said to be non-recursive. We will use

dtd and schema graph interchangeably1. Two example schema graphs are shown in

Fig. 1 (a) and Fig. 1 (b), the first one is non-recursive, and the second one is recursive.

1 A schema graph cannot model constructs such as a := (b, b?) and a := (b | c) in a dtd.

3

An xml tree is a node-labeled, unordered tree. Let v be a node in an xml tree t,

the label of v is denoted by label(v). Let N(t) (resp. N(G)) denote the set of all nodes

in xml tree t (resp. schema graph G), and rt(t) (resp. rt(G)) denote the root of t (resp.

G). A tree t is said to conform to schema graph G if

(1) for every node v ∈ N(t), label(v) ∈ Σ,

(2) label(rt(t)) = label(rt(G)),

(3) for every edge (u, v) in t, there is a corresponding edge (label(u), label(v)) in G,

and

(4) for every node v ∈ N(t), the number of children of v labeled with x is constrained

by the label of the edge (label(v), x) given in G.

We denote the set of all xml trees conforming to G by TG.

We consider a class of xpath expressions given as follows.

P ::= τ | ∗ | P/P | P//P | P [P] | P [//P]

Here, τ ∈ Σ, ∗ is the wildcard representing any tag in Σ, and, /, //, and [] represent the

child-axis, descendant-axis, and branching condition, respectively. The class of xpath

expressions corresponds to a set of tree patterns (TP) known as P {/,//,[],∗} in [10].

Formally, a tree pattern (TP) in P {/,//,[],∗} is a tree such that each edge is labeled

with either / or //; each node is labeled with a tag in Σ or the wildcard ∗, and there

is a distinguished node corresponding to the output of the XPath expression. When

there is no confusion, we will use TP and XPath query interchangeably. A tree patten

has a tree representation. Fig. 1 (c) and (d) show two TPs. They correspond to the

xpath expressions a/∗ [c]//d and a/b/d, respectively. Here, single lines represent edges

labeled with /, called /-edges, and double lines represent edges labeled with //, called

//-edges. A branch in the tree representation represents a condition ([]) in an xpath

expression, and a circle indicates the distinguished node of P . Below, given a TP P ,

we use DNP to denote the distinguished node. The path from rt(P) to DNP is called the

distinguished path.

The following subsets of P {/,//,[],∗} are of special interest to us. P {/,//,[]} is the

set of TPs that do not have *-nodes (i.e., nodes labeled with *), P {/,[],∗} is the set of

TPs that do not have //-edges, and P̂ {/,//,[],∗} is the set of TPs such that no //-edge

is incident on a *-node, and there are no leaf *-nodes. Note that P {/,//,[]} is a subset

of P̂ {/,//,[],∗}.

Let N(P) (resp. rt(P)) denote the set of all nodes in a TP P (resp. the root of P).

A matching of P in an xml tree t is a mapping δ from N(P) to N(t) which is

(1) root-preserving, i.e., δ(rt(P)) = rt(t),

(2) label-preserving, i.e., ∀v ∈ N(P), label(v) = label(δ(v)) or label(v) = ∗, and

(3) structure-preserving, i.e., for every edge (x, y) in P , if it is a /-edge, then δ(y)

is a child of δ(x); if it is a //-edge, then δ(y) is a descendant of δ(x), i.e, there is a

path from δ(x) to δ(y).

Each matching δ produces a subtree of t rooted at δ(DNP), denoted subt
δ(DNP), which

is also known as an answer to the TP. We use P (t) to denote the set of all answers of

P on t:

P (t) = {subt
δ(DNP) | δ is a matching of P in t} (1)

If P (t) = ∅ for every xml tree t, then P is said to be an empty query, denoted P (t) = ∅.

4

Let T be a set of xml trees. We use P (T) to denote the union of answer sets of Q

on the trees in T . That is, P (T) =
⋃

t∈T P (t). In addition, when we discuss TPs in the

presence of dtd G, we will implicitly assume every TP P is satisfiable under G, that

is, there is t ∈ TG such that P (t) 6= ∅.

2.2 Tree pattern containment and containment mapping

A TP P is said to be contained in another TP Q, denoted P ⊆ Q, if for every xml tree

t, P (t) ⊆ Q(t) (Refer to Eq. (1)). Given a dtd G and two TPs P and Q, P is said to be

contained in Q under G, denoted P ⊆G Q, if for every xml tree t ∈ TG, P (t) ⊆ Q(t).

Tree pattern equivalence is defined as two-way containment as usual. That is, P = Q

is defined as P ⊆ Q and Q ⊆ P , and P =G Q means P ⊆G Q and Q ⊆G P .

When there are no dtds, the containment of some classes of tree patterns can

be characterized by the existence of a containment mapping. Recall [1]: a containment

mapping (CM) from Q to P is a mapping h from N(Q) to N(P) that is label-preserving,

root-preserving, structure-preserving (which now means that for every /-edge (x, y) in

Q, (h(x), h(y)) is a /-edge in P , and for every //-edge (x, y), there is a path from h(x)

to h(y)), and output-preserving, which means h(DNQ) = DNP . The following lemma is

proved in [11].

Lemma 1 [11] In the following cases, P ⊆ Q iff there is a CM from Q to P .

(1) Q ∈ P {/,//,[]},

(2) P ∈ P {/,[],∗},

(3) Q ∈ P {/,[],∗}, and there are no leaf *-nodes in Q.

A closer inspection of the proof in [11] shows the following lemma is also true.

Lemma 2 Suppose Q ∈ P̂ {/,//,[],∗}. Then for any pattern P ∈ P {/,//,[],∗}, P ⊆ Q iff

there is a CM from Q to P .

2.3 Contained rewriting, maximal contained rewriting and equivalent rewriting

A view is a pre-defined TP. Let V be a view and Q be a TP. A contained rewriting

(CR) of Q using V is a TP Q′ such that when evaluated on the subtrees returned by V ,

Q′ gives correct answers to Q. More precisely, (1) for any xml tree t, Q′(V (t)) ⊆ Q(t),

and (2) there exists some t such that Q′(V (t)) 6= ∅.

Let Q′ be a CR of Q. We use Q′ ◦ V to represent the expansion of Q′, which is

the TP obtained by merging rt(Q′) and DNV as follows: if label(DNV) 6= ∗, then the

merged node is labeled label(DNV), otherwise the merged node is labeled label(rt(Q′))

(Note that if label(DNV) 6= ∗, label(rt(Q′)) 6= ∗ then label(rt(Q′)) = label(DNV)). The

distinguished node of Q′ ◦ V is the distinguished node of Q′. Fig.2 shows a view V , a

TP Q, a CR Q′ of Q using V , and the expansion Q′ ◦ V of Q′.

It is easy to see that (Q′ ◦ V)(t) = Q′(V (t)). Thus condition (1) in the definition

of CR is equivalent to Q′ ◦ V ⊆ Q, and condition (2) in the definition is equivalent to

Q′ ◦ V 6= ∅. A CR Q′ is said to be an equivalent rewriting (ER) if Q′ ◦ V ⊇ Q also

holds. The maximal contained rewriting (MCR), denoted MCR(Q,V), is the union of

all CRs of Q using V [6]. We use EMCR(Q,V) to denote the union of expansions of all

5

a

c b

d
(a) V

a

c b

x y
(b) Q

b

x y
(c) Q′

a

c b

d x y
(d) Q′ ◦ V

Fig. 2. View (a), Query (b), CR (c), and Expansion (d)

of the CRs in MCR(Q, V). Using the concepts of useful embedding [6] and revised useful

embedding [19], it can be easily proved that, when Q is in P {/,//,[]} or P̂ {/,//,[],∗}, the

MCR of Q using V is the union of a finite number of CRs of Q using V . That is, there

are CRs Q1 . . . Qm such that EMCR(Q,V) = Q1 ◦ V ∪ · · · ∪ Qm ◦ V . For convenience,

we define EMCR(Q, V) to be the empty query if Q has no CRs using V .

In the presence of DTDs, a contained rewriting (resp. equivalent rewriting) of Q

using view V under dtd G is a TP Q′ such that (1) for any xml tree t ∈ TG, Q′(V (t)) ⊆

Q(t) (resp. Q′(V (t)) = Q(t)), (2) for some t ∈ TG, Q′(V (t)) 6= ∅. The MCR of Q using

V under G is the union of all CRs of Q using V under G.

3 Independence of containing patterns property of tree patterns

In this section, we show that some classes of tree patterns observe what we call the

independence of containing patterns (ICP) property, that is, if a TP is contained in the

union of several other TPs, it is contained in one of them.

Theorem 1 Let P and P1, . . . , Pn be tree patterns, in the following cases, if P ⊆⋃n
i=1 Pi, then there exists i ∈ [1, n] such that P ⊆ Pi.

(1) P ∈ P {/,//,[],∗}, P1, . . . , Pn ∈ P̂ {/,//,[],∗}, or

(2) P ∈ P {/,[],∗}, P1, . . . , Pn ∈ P {/,//,[],∗}.

To prove the above theorem, we need the concept of boolean tree patterns. A

boolean pattern [10] is a pattern with no output node. Let P be a boolean pattern. For

an xml tree t, the result of evaluating P on t, denoted P (t), is either true or false.

P (t) is true if and only if there is a matching of P in t. For two boolean patterns P1

and P2, P1 ⊆ P2 means P1(t) =true implies P2(t) =true for any xml tree t. If P2 is

in P̂ {/,//,[],∗}, then P1(t) ⊆ P2(t) iff there is a homomorphism from P2 to P1 (Recall:

a homomorphism is the same as a containment mapping, except it does not need to be

output-preserving) [10]. In addition, P1 ∪ P2 returns P1(t) ∨ P2(t) for any t.

We first prove the following lemma.

Lemma 3 For boolean patterns P, P1, . . . , Pn ∈ P {/,//,[],∗}, if P ∈ P {/,[],∗}, or P1, . . . , Pn ∈

P̂ {/,//,[],∗}, then P ⊆
⋃

i Pi implies there exists i ∈ [1, n] such that P ⊆ Pi.

Proof We prove the lemma for the case n = 2. The case n > 2 is similar.

Using Lemma 1 of [10], we can construct two boolean patterns Q and Q′ such that

P ⊆ P1 ∪ P2 iff Q ⊆ Q′. Q and Q′ are as shown in Fig. 3, where V is a pattern which

is contained in both P1 and P2, and V does not have *-nodes or //-edges (see [10] for

how to construct V). Furthermore, c can be chosen as a label which does not appear

6

Q
 Q
'
r
 r

c

c

c

c

c
V

P

V

P
1

P
2

v
1

v
2

v
3

u
1

u
2

Fig. 3. Q and Q′ as in [10]

a

b
 c

c

d

a

b
 c

c

d

z

a

b
 c

d

a

b
 c

d

z

(
a
)

P
 (
b
)

P
i
 (
c
)

P
'
 (
d
)

P
'
i

Fig. 4. Tree patterns P , Pi and the boolean patterns P ′ and P ′

i

in either P1 or P2. Note that (1) if P1, P2 are in P̂ {/,//,[],∗}, then Q′ ∈ P̂ {/,//,[],∗}, (2)

if P ∈ P {/,[],∗}, then Q ∈ P {/,[],∗}. Since P ⊆ P1 ∪ P2 implies Q ⊆ Q′, by Lemma 1,

we know there is a homomorphism from Q′ to Q. Now examine the structure of Q

and Q′, any homomorphism from Q′ to Q must map the nodes u1 and u2 either to

v1 and v2 respectively, or to v2 and v3 respectively. In the former case, there will be

a homomorphism from P2 to P ; in the later case there will be a homomorphism from

P1 to P . Therefore, either P ⊆ P1 or P ⊆ P2. ⊥

We are now ready to prove Theorem 1.

Proof (proof of Theorem 1)

We denote by P ′, P ′
i (i ∈ [1, n]) the boolean patterns obtained from P, Pi by at-

taching a child node labeled with a distinct label z to the distinguished nodes of P

and Pi respectively (Since Σ is an infinite set of tags, z exists, refer to Fig. 3). Let us

denote the new nodes in P and Pi by zP and zPi
respectively.

We show that P ⊆
⋃

i∈[1,n] Pi implies P ′ ⊆
⋃

i∈[1,n] P
′
i . Let t be any xml tree. For

every matching h of P ′ in t, there is a matching of P in t which is the one obtained

by restricting h to all nodes in P except zP . Since P ⊆
⋃

i∈[1,n] Pi, there exists an

i ∈ [1, n] such that there is a matching f of some Pi in t and f(DNPi
) = h(DNP).

This matching f can clearly be extended to P ′
i - simply let f(zPi

) = h(zP). Therefore

P ′ ⊆
⋃

i∈[1,n] P
′
i .

By Lemma 3, there exists i ∈ [1, n] such that P ′ ⊆ P ′
i . Therefore, there is a

homomorphism from P ′
i to P ′. This homomorphism implies a containment mapping

from Pi to P . Hence P ⊆ Pi. ⊥

7

Theorem 1 does not hold in the presence of dtds. For example, consider the dtd

in Fig. 1 (a). Under the dtd, a//d ⊆ a/b/d ∪ a/e/d. But a//d is contained in neither

a/b/d nor a/e/d. Also a/∗ is contained in the union of a/g, a/b and a/e, but it is not

contained in any of them.

4 Equivalent rewritings, single pattern or union of patterns?

Let V be the view, and Q be the query. By definition, EMCR(Q,V) ⊆ Q. In the best

case, EMCR(Q,V) is equivalent to Q (In this case, we say the MCR of Q using V is

equivalent to Q). The question arises now whether it is possible for Q to have no ER

(which is a single TP) using V , but it has a MCR (which is a union of TPs) using V

which is equivalent to Q. In other words, any single CR of Q using V is not equivalent

to Q , but the union of all CRs is. We study this problem for the following cases.

4.1 The class P {/,//,[]}

We first consider the case V ∈ P {/,//,[]}, Q ∈ P {/,//,[]} and the rewritings of Q using

V are all in P {/,//,[]}. Using Theorem 1, we can easily prove the following result.

Theorem 2 Let V, Q ∈ P {/,//,[]} be the view and query respectively. When there are

no DTDs, if Q has a MCR using V which is equivalent to Q, then it has a single CR

using V which is equivalent to Q.

Proof Suppose EMCR(Q, V) = Q1 ◦V ∪ . . .∪Qn ◦V , where each Qi is a CR of Q using

V . Since every Qi ◦V is in P {/,//,[]}, if EMCR(Q,V) = Q, then by Theorem 1 (1) there

is i ∈ [1, n] such that Q = Qi ◦ V . That is, Qi is an equivalent rewriting of Q using V .

⊥

Because of Theorem 2, for queries and views in P {/,//,[]}, if there is no equivalent

rewriting of Q using V , then no MCR of Q using V is equivalent to Q. In other words, if

we cannot find a single CR of Q using V which is equivalent to Q, then it is impossible

to find a union of CRs of Q using V which is equivalent to Q. This suggests that we

should always use a more efficient algorithm, such as that in [20] to find an equivalent

rewriting of Q using V .

4.2 Other classes of tree patterns

Theorem 2 can be extended to the cases as stated in the next theorem.

Theorem 3 Let V, Q be the view and query respectively. In the following cases, if Q

has a MCR using V which is equivalent to Q, then it has a single CR using V which is

equivalent to Q.

(1) Q ∈ P {/,[],∗} and there are no leaf *-nodes in Q.

(2) V, Q ∈ P̂ {/,//,[],∗}, and label(DNV) 6= ∗.

Note that Theorem 3 (2) includes the case where V, Q ∈ P {/,//,[]}.

Before proving the above theorem we prove the following lemmas first.

8

Lemma 4 Let the query Q and view V be in P {/,//,[]}. For every CR Q′ ∈ P {/,//,[],∗}

of Q using V , there is a CR Q′′ ∈ P {/,//,[]} such that Q′ ◦ V ⊆ Q′′ ◦ V .

Proof By definition of CR, Q′ ◦ V ⊆ Q. Since Q ∈ P {/,//,[]}, there is a CM δ from Q

to Q′ ◦ V . δ partitions N(Q) into two disjoint sets: N1 = {v ∈ N(Q) | δ(v) ∈ N(V)},
and N2 = {v ∈ N(Q) | δ(v) ∈ N(Q′) − {rt(Q′)}}. It is clear that for every path p in

Q, either every node on p is mapped to V , or the last node on p which is mapped to

V , denoted x, and the child of x on p, denoted y, satisfy the following relationship:

δ(x) is on the distinguished path of V , and either (x, y) is a //-edge, or δ(x) = DNV .

Furthermore DNQ is mapped to DNQ′◦V = DNQ′ .

If we denote Q′′ the pattern obtained as follows:

(a) Let rt(Q′′) be a node labeled with label(DNV);

(b) For every path p in Q, let the first node on p which is mapped to Q′′ be y, and

the node preceding y on p be x, then add the node subtree Qy under rt(Q′′), and

connect rt(Q′′) and rt(Qy) with the same type of edge as that of (x, y).

then Q′′ ∈ P {/,//,[]}, Q′′◦V ⊆ Q, and δ makes a CM from Q′′ to Q′, therefore, Q′ ⊆ Q′′

and Q′ ◦ V ⊆ Q′′ ◦ V . ⊥

Lemma 5 Let the query Q and view V be in P̂ {/,//,[],∗}. Suppose label(DNV) 6= ∗.
For every CR Q′ ∈ P {/,//,[],∗} of Q using V , there is a CR Q′′ ∈ P̂ {/,//,[],∗} such that

Q′ ◦ V ⊆ Q′′ ◦ V .

The proof of Lemma 5 is very similar to that of Lemma 4, except that to ensure Q′′

is in P̂ {/,//,[],∗}, we need the condition label(DNV) 6= ∗. In fact, if this condition is not

satisfied, then the lemma does not hold. For example, consider the view V = a/ ∗ [/c],

and the query Q = a//b. Clearly Q′ = ∗//b is a CR of Q using V . There is no CR

Q′′ ∈ P̂ {/,//,[],∗} such that Q′ ◦ V ⊆ Q′′ ◦ V .

Using the above lemmas, we prove Theorem 3 as follows.

Proof (of Theorem 3) Recall (Section 2.3) that, in both of the cases stated in the

theorem, there are CRs Q1, . . . , Qk of Q using V such that EMCR(Q,V)=Q1 ◦V ∪ . . .∪
Qk ◦ V . Since EMCR(Q,V) = Q, we know Q ⊆ Q1 ◦ V ∪ . . . ∪ Qk ◦ V . In case (1),

by Theorem 1 (2), there is some i such that Q ⊆ Qi ◦ V . That is, Qi is an equivalent

rewriting of Q using V . In case (2), by Lemma 5, there are Q′
1, . . . , Q

′
k ∈ P̂ {/,//,[],∗}

such that Q = Q′
1 ◦ V ∪ . . . ∪ Q′

k ◦ V . Clearly each Q′
i ◦ V is a pattern in P̂ {/,//,[],∗}.

By Theorem 1 (1), there is i ∈ [1, k] such that Q ⊆ Q′
i ◦V . That is, Q′

i is an equivalent

rewriting of Q using V . ⊥

We point out that Theorem 3 (2) does not hold if label(DNV) = ∗ and the rewritings

are allowed to be in P {/,//,[],∗}. For example, the query Q = a//b has the following

two CRs using the view V = a/∗: Q1 = b and Q2 = ∗//b. The union of the expansions

of these rewritings is a/b ∪ a/ ∗ //b, which is equivalent to Q. But Q is not equivalent

to either a/b or a/ ∗ //b.

4.3 Rewritings using multiple individual views

Theorem 2 and Theorem 3 can be easily extended to the case when there are multiple

views.

9

Theorem 4 Let V1, . . . , Vn be views and Q be a query. In the following cases, if Q ⊆

EMCR(Q, V1) ∪ · · · ∪ EMCR(Q,Vn), then there exists i ∈ [1, n] such that there is an

equivalent rewriting of Q using Vi.

(1) Q ∈ P {/,[],∗} and Q has no *-leaves.

(2) V1, . . . , Vn, Q ∈ P̂ {/,//,[],∗}, and label(DNVi
) 6= ∗ (for i ∈ [1, n]).

The proof of the above theorem is similar to that of Theorem 3.

4.4 Rewritings using intersections of views

So far we have only considered rewritings using individual views. However, multiple

views can be combined to rewrite a query. For instance, when the views have identical

root labels and identical labels for distinguished nodes (we say such views are compat-

ible), the intersection of these views may be used to rewrite a query, even though there

are no rewritings using any individual view. For example, the query Q = a[b][c]/d does

not have a CR using either V1 = a[b]/d or V2 = a[c]/d, but it has a CR using V1 ∩ V2,

which is equivalent to Q. We will consider this case now.

We need to formally define CR and ER using V1 ∩ · · · ∩ Vn first. We focus on views

and queries in the class P {/,//,[]} here.

Definition 1 Let V1, . . . , Vn be compatible views in P {/,//,[]}, and Q be a query in

P {/,//,[]}. Suppose V1 ∩ · · · ∩ Vn is not always empty. A contained rewriting (CR) of Q

using V1 ∩ · · · ∩ Vn is a TP Q′ ∈ P {/,//,[]}, such that for any xml tree t, Q′(V1(t) ∩
· · · ∩ Vn(t)) ⊆ Q(t), and there is at least one t such that V1(t) ∩ · · · ∩ Vn(t) 6= ∅. Q′ is

said to be an equivalent rewriting (ER) if Q′(V1(t)∩· · ·∩Vn(t)) ⊇ Q(t) also holds. The

maximal contained rewriting (MCR) of Q using the intersection is the union of all CRs

of Q using the intersection.

In the presence of dtd G, the CR, MCR and ER are defined similarly, except we

consider only xml trees conforming to G.

The next example shows that it is possible for a query to have different CRs using

the intersection, thus the union of these CRs produces strictly more answers than any

single CR.

Example 1 Consider the views V1 = a[x]/b and V2 = a[y]/b, and the query Q =

a[x][y][//b/d]//b[c]. It can be verified that Q1 = b[c][d], Q2 = b[d]//b[c], Q3 = b[//b/d][c]

and Q4 = b[//b/d]//b[c] are all CRs of Q using V1 ∩ V2, and none of them is contained

in the others.

However, if the union of all CRs becomes equivalent to Q, then one of the CRs is

equivalent to Q. In other words, Theorem 2 can be extended to rewritings using the

intersection of compatible views.

Theorem 5 Let V1, . . . , Vn be compatible views in P {/,//,[]}, and Q be a query in

P {/,//,[]}. If the MCR of Q using V1 ∩ · · · ∩Vn is equivalent to Q, then one of the CRs

is an ER of Q using V1 ∩ · · · ∩ Vn.

To prove the above result, we need an important property of intersection of TPs,

as stated in the following lemma.

10

Lemma 6 [14] Let V1, . . . , Vn be compatible views in P {/,//,[]}. If V1 ∩ · · · ∩ Vn is not

always empty, then there are TPs V ′
1 , . . . , V ′

k ∈ P {/,//,[]} such that V1 ∩ · · · ∩ Vn is

equivalent to V ′
1 ∪ · · · ∪ V ′

k.

We call each V ′
i in the above lemma a disjunctive component of the intersection.

Proof (proof of Theorem 5) By Lemma 6, there are TPs V ′
1 , . . . , V ′

k ∈ P {/,//,[]} such

that V1 ∩ · · · ∩ Vn is equivalent to V ′
1 ∪ · · · ∪ V ′

k. Therefore, Q′ is a CR of Q using

V1 ∩ · · · ∩ Vn if and only if it is a CR of Q using every V ′
i for i = 1, . . . , k. Suppose

Q1, . . . , Qm are all of the CRs of Q using V1 ∩ · · · ∩ Vn. Then the MCR of Q using the

intersection is equivalent to Q implies

Q ⊆
m⋃

i=1

k⋃

j=1

(Qi ◦ V ′
j).

Since all TPs involved are in P {/,//,[]}, by Theorem 1, we know there is an i and a

j such that Q ⊆ Qi ◦ V ′
j . Therefore, the CR Qi is an equivalent rewriting of Q using

V1 ∩ · · · ∩ Vn.

Theorem 5 can also be extended to the case where rewritings using both individual

views and using intersections of views are considered together. Let S = {V1, . . . , Vn}
be a set of compatible views. We use MCR(Q, S) (resp. EMCR(Q,S)) to denote the

union of all CRs (resp. union of the expansions of all CRs) of Q using a single view in S

or using the intersection of a subset of views in S. Similar to the proof of Theorem 5,

we can prove the theorem below.

Theorem 6 Let S = {V1, . . . , Vn} be compatible views in P {/,//,[]}, and Q be a query

in P {/,//,[]}. If EMCR(Q,S) is equivalent to Q, then there exists a single CR, Q′, of

Q using either a single view, or using the intersection of some of the views in S, such

that the expansion of Q′ is equivalent to Q.

4.5 The presence of dtds

Theorem 2 still holds in the presence of a non-recursive schema graph. This is because

an equivalent rewriting is also a MCR, and when both Q and V are in P {/,//,[]}, the

MCR of Q using V under a non-recursive schema graph can be expressed as a single

TP in P {/,//,[]} [6].

Theorem 2 does not hold in the presence of recursive schema graphs, as demon-

strated by the next example.

Example 2 Consider the query Q = a//b and the view V = a/b under the recursive

dtd in Fig. 1 (b). Q has two CRs: Q′
1 = b and Q′

2 = b//b. The expansions of these CRs

are a/b and a/b//b respectively. Under the dtd, Q is equivalent to the union of a/b

and a/b//b, but it is not equivalent to either one of them. That is, there is no single

CR of Q using V which is equivalent to Q, but the union of the two CRs is equivalent

to Q.

11

a

x

x

x

b

c

d

b

 c

x

x

d
 e

(a) Q

a

x

x

x

b

c

d

(b) V

x

x

x

e

(c) Q1

a

x

x

x

b

c

d

x

x

e

(d) Q1 ◦ V

x

x

(e) Q2

a

x

x

x

b

c

d

x

(f) Q2 ◦ V

Fig. 5. Q has no equivalent rewriting using V according to conventional definition, but Q can
be fully answered using V : Q1 ◦ V ∩ Q2 ◦ V = Q

Theorem 4 does not hold in the presence of non-recursive schema graphs. For

example, consider the dtd G shown in Fig. 1 (a). Under the dtd, if we let Q = a//d,

V1 = a/b/d and V2 = a/e/d, then MCR(Q, V1) = V1 and MCR(Q, V2) = V2, and

MCR(Q, {V1, V2}) = V1 ∪ V2 =G Q. But Q is not equivalent to either V1 or V2 under

G.

Theorem 5 still holds in the presence of non-recursive dtds. This is because, under

a non-recursive dtd G, V1 ∩ · · · ∩ Vn is equivalent to a single TP in P {/,//,[]}, say V .

As given in [6], the MCR of Q using V under G is contained in a single CR of Q using

V under G. Therefore, the MCR of Q using V1 ∩ · · · ∩ Vn under G is contained in a

single CR, say Q′, of Q using V1 ∩ · · · ∩ Vn under G. If the MCR produces all answers

to Q, namely Q is contained in the MCR, then Q′ is an ER of Q.

4.6 Discussion: answerability of Q using V

In this section, we show, by example, that even if Q has no equivalent rewriting using V

according to the definition given in Section 2, it is still possible to answer Q completely

using V . The next example demonstrates this point.

Example 3 Consider the query Q and view V shown in Fig. 5 (a) and (b) respectively.

Q has no equivalent rewriting using V . But given any xml tree t, we can find Q(t)

using the view as follows. We evaluate the query Q1 = x/x[e]/y over the subtrees in

V (t), and denote the results as Q1(V (t)); we then evaluate Q2 = x/y over the subtrees

in V (t), and obtaining a set denoted as Q2(V (t)). Finally, we take the intersection of

Q1(V (t)) and Q2(V (t)). It can be verified that Q(t) = Q1(V (t)) ∩ Q2(V (t)).

5 Redundant views

In this section we assume there are multiple views V1, . . . , Vn in P̂ {/,//,[],∗}. We now

ask the question when a subset of views Vi1 , . . . , Vik
are redundant in the sense that

for every query Q, the MCRs of Q using Vi1 , . . . , Vik
are all contained in the union of

the MCRs of Q using the other views. Formally we have

12

Definition 2 Let V1, . . . , Vn ∈ P̂ {/,//,[],∗} be views and k < n. If for every TP Q ∈

P̂ {/,//,[],∗},
k⋃

i=1

EMCR(Q, Vi) ⊆
n⋃

j=k+1

EMCR(Q,Vj)

then we say the views V1, . . . , Vk are redundant.

Intuitively, when considering CRs the redundant views can be ignored because all

answers returned by CRs using the redundant views can be returned by CRs using other

views.

One might wonder how the redundant views problem is related to the view con-

tainment problem ∪k
i=1Vi ⊆ ∪n

j=k+1Vj . As we show in the next example, the condition

∪k
i=1Vi ⊆ ∪n

j=k+1Vj is neither sufficient nor necessary for V1, . . . , Vk to be redundant.

Example 4 (1) Let V1 = a[b]/c and V2 = a/c. Clearly V1 ⊆ V2. But V1 is not redundant,

because the query Q = a[b]/c/d has a CR using V1, but it does not have a CR using

V2. (2) Now let V1 = a/x/x and V2 = a/x. It is easy to verify V1 * V2, but V1 is

redundant.

We now provide the following sufficient and necessary condition for redundant

views.

Theorem 7 Given V1, . . . , Vn ∈ P {/,//,[],∗}, V1, . . . , Vk (k < n) are redundant iff

for every i ∈ [1, k], the union of the expansions of the CRs of Vi using the views

Vk+1, . . . , Vn is equivalent to Vi, that is,

Vi =

n⋃

j=k+1

EMCR(Vi, Vj).

Proof (only if) we only need to consider the query Q = Vi for i ∈ [1, k]. Clearly there

is an equivalent rewriting of Vi using itself. Therefore
⋃k

j=1 EMCR(Vi, Vj) = Vi for

i ∈ [1, k]. By definition, V1, . . . , Vk are redundant implies that

k⋃

j=1

EMCR(Vi, Vj) ⊆
n⋃

j=k+1

EMCR(Vi, Vj).

Thus

Vi ⊆
n⋃

j=k+1

EMCR(Vi, Vj)

for all i ∈ [1, k]. Since EMCR(Vi, Vj) ⊆ Vi for all j ∈ [k + 1, n], we know

Vi =
n⋃

j=k+1

EMCR(Vi, Vj).

(if) Suppose for every i ∈ [1, k],

Vi =

n⋃

j=k+1

EMCR(Vi, Vj).

13

Suppose EMCR(Vi, Vj) = Qj,1 ◦ Vj ∪ . . . ∪ Qj,mj
◦ Vj . Then

Vi =
n⋃

j=k+1

mj⋃

s=1

(Qj,s ◦ Vj).

For any TP Q, if Q′ is a CR of Q using Vi, then Q′ ◦ Vi ⊆ Q. Hence

Q′ ◦
n⋃

j=k+1

mj⋃

s=1

(Qj,s ◦ Vj) ⊆ Q

i.e.,
n⋃

j=k+1

mj⋃

s=1

((Q′ ◦ Qj,s) ◦ Vj) ⊆ Q

Thus every Q′ ◦ Qj,s (s = 1, . . . , nj), if not empty, is a CR of Q using Vj . Therefore,

Q′ ◦ Vi ⊆
n⋃

j=k+1

EMCR(Q,Vj)

Since Q′ is an arbitrary CR of Q using Vi, we know

k⋃

i=1

EMCR(Q,Vi) ⊆
n⋃

j=k+1

EMCR(Q, Vj).

By definition, V1, . . . , Vk are redundant. ⊥

If the views V1, . . . , Vk are in P {/,[],∗} and they have no *-leaves, or if V1, . . . , Vn

are in P̂ {/,//,[],∗} and the distinguished nodes of Vk+1, . . . , Vn are not labeled *, then

by Theorem 4, Vi =
⋃n

j=k+1 EMCR(Vi, Vj) iff there is j ∈ [k + 1, n] such that Vi has

an equivalent rewriting using Vj . This leads to the following corollary.

Corollary 1 Given views V1, . . . , Vn, In the following cases, V1, . . . , Vk (k < n) are

redundant iff for every i ∈ [1, k], there exists j ∈ [k+1, n] such that Vi has an equivalent

rewriting using Vj .

(1) V1, . . . , Vk are in P {/,[],∗} and they have no *-leaves.

(2) V1, . . . , Vn are in P̂ {/,//,[],∗}, and the distinguished nodes of Vk+1, . . . , Vn are

not labeled *.

Note that case (2) above includes the case where V1, . . . , Vn are in P {/,//,[]}.

Theorem 7 still holds when there is a schema graph, and the proof is similar.

However, when a schema graph exists, the condition in Corollary 1 is still sufficient

but no longer necessary. The proof of sufficiency is similar to the case when there are

no schema graphs. The non-necessity is shown by the dtd in Fig. 1 (a), and the views

V1 = a/b, V2 = a/e, and V3 = a//d. Clearly V3 is redundant under the dtd, but it

does not have an equivalent rewriting using either V1 or V2.

A special case of Corollary 1 is when all the views V1, . . . , Vn are in P {/,//,[]}, and

they are compatible, that is, their distinguished nodes have identical labels. In this case,

if Vi is redundant, then by Corollary 1, there is j 6= i such that Vi has an equivalent

rewriting using Vj . That is, there is a TP Q′ such that Vi = Q′◦Vj . If the distinguished

path of Vi does not have repeating labels, then we know the root of Q′ must be the

same as the distinguished node of Q′. Therefore Vi ⊆ Vj . This proves the following

corollary.

14

Corollary 2 Let V1, . . . , Vn be compatible views in P {/,//,[]}. If V1, . . . , Vk (k < n)

are redundant, then for every i ∈ [1, k] such that the distinguished path of Vi has no

repeating labels, there exists j ∈ [k + 1, n] such that Vi ⊆ Vj .

The condition that the distinguished path of Vi has no repeating labels is important

in the above corollary. If it is not satisfied, the corollary does not hold. This is easily

seen in Example 4 (2).

Identifying redundant views Corollary 1 provides a means to find the redundant

views. To see whether Vi is redundant we only need to check whether there exists Vj

such that Vi has an equivalent rewriting using Vj . To do so we can use the algorithm

in [20].

5.1 Redundant views when intersections of views are used for rewriting

We now re-examine the redundant views problem, taking into consideration rewritings

using intersections of views as well as individual views.

Let S = {V1, . . . , Vn} be a set of compatible views. We use EMCR(Q, S) to de-

note the union of expansions of all CRs of Q using any single view in S or using the

intersection of any subset of views in S. The new meaning of redundant views is as

follows.

Definition 3 Let S = {V1, . . . , Vn} be a set of compatible views and S′ be a proper

subset of S. We say that S′ is strongly redundant if for every query Q, EMCR(Q, S) ⊆
EMCR(Q, S − S′).

The following theorem provides a necessary condition for S′ to be strongly redun-

dant.

Theorem 8 Let S = {V1, . . . , Vn} be a set of compatible views in P {/,//,[]} and S′

be a proper subset of S. If S′ is strongly redundant, then for every view V ∈ S′,

V = EMCR(V, S − S′).

Proof We prove the theorem by contradiction. Suppose there is V ∈ S′ such that V 6=
EMCR(V,S − S ′). That is, V * EMCR(V,S − S ′). Consider the query Q = V . Q has

an equivalent rewriting using S, whose expansion is V itself. Thus EMCR(Q, S) = V .

Therefore EMCR(Q, S) * EMCR(Q,S − S ′). This contradicts the assumption that S′

is strongly redundant. ⊥

However, the condition that ∀V ∈ S′, V = EMCR(V, S − S′) is generally not suffi-

cient for S′ to be strongly redundant, as shown in the following example.

Example 5 Let V be the view shown in Fig. 5 (b), V1 be the pattern shown in Fig. 5 (d),

and V2 be the pattern shown in Fig. 5 (f). Let S = {V, V1, V2} and S′ = {V1, V2}. As

shown in Fig. 5, V1 = Q1 ◦ V and V2 = Q2 ◦ V . However, S′ is not strongly redundant

because there is Q (as shown in Fig. 5 (a)) which has an equivalent rewriting using

V1 ∩ V2, but no equivalent rewriting using V .

The next theorem provides a sufficient condition for S′ to be strongly redundant.

15

Theorem 9 Let S = {V1, . . . , Vn} be a set of compatible views in P {/,//,[]} and S′

be a proper subset of S. If for every view V ∈ S′, V = EMCR(V, S − S′), and for

every intersection I involving views in S′ each disjunctive component V ′ in I satisfies

V ′ = EMCR(V ′, S − S′), then S′ is strongly redundant.

Proof Let Q be any TP in P {/,//,[]}. Suppose Q has a CR Q′ using the intersection

I of some views (a single view is treated as a special intersection). Suppose I =

V ′
1 ∪ . . . ∪ V ′

k, then Q′ is a CR of Q using V ′
i for all i ∈ [1, k]. By assumption, every

V ′
i satisfies V ′

i = EMCR(V ′
i , S − S′). By Theorem 6, there is intersection Ii of some

views in S − S′ such that V ′
i has an equivalent rewriting using Ii. Let V ′

i = Qi ◦ Ii.

Then Q′ ◦ (Qi ◦ Ii) ⊆ Q (hence (Q′ ◦ Qi) ◦ Ii ⊆ Q). Thus Q′ ◦ Qi is a CR of Q using

Ii, and Q′ ◦ I = Q′ ◦ (V ′
1 ∪ . . . ∪ V ′

k) =
⋃k

i=1(Q′ ◦ Qi) ◦ Ii. Therefore, EMCR(Q, S) ⊆
EMCR(Q, S − S′). By definition, S′ is strongly redundant. ⊥

6 Related work

When a tree pattern is viewed as a constraint over xml trees, the independence of

containing patterns property can be regarded as a special case of the independence of

negative constraints (INC) property: given constraints C, C1, . . . , Cn, C implies C1 ∨
· · · ∨ Cn iff C implies some Ci. The INC property was first studied in [7] and since

then found to hold for many classes of constraints. For works on tree pattern query

rewriting using views, besides the papers [6,20,9] discussed in Section 1, several other

papers have dealt with with the problem. In particular, [19] extended the work of [6]

to tree patterns in P̂ {/,//,[],∗}, and presented efficient algorithms to find maximal

contained rewritings when there is no schema graph or when there is an acyclic schema

graph. [18] considered rewritings using different combinations of multiple views, one of

them is intersection. [14] studied the problem of query answerability using views for

general xpath queries (that may involve negation, and disjunction), that is, given Q

and V1, · · · , Vn, whether there are Q1, · · · , Qn such that Q1 ◦ V1 ∪ · · · ∪ Qn ◦ Vn = Q.

As shown in Section 4 (Theorem 4), when Q and V1, · · · , Vn are restricted to some

classes of tree patterns, the problem is significantly simplified because no unions of

tree patterns need to be considered, hence the simple algorithm in [20] can be applied.

[15]defined correct rewritings of TPs, using a single view, for tree patterns with multiple

output nodes. The rewriting is essentially a mapping from the output nodes of Q

to the output nodes of V under which V ⊆ Q. When restricted to a single output

node for each pattern or view, the mapping is unique, and the existence of a correct

rewriting simply means V ⊆ Q. [3] addressed the problem of answering xpath queries

using a single materialized view where, for the view, a combination of node references,

typed data values, and full paths may be stored. However, the way in which a query is

answered using the view is different: one can follow node references to go to the original

document, so the original xml tree cannot be discarded. [16] presented an algorithm

for equivalently answering xpath queries using multiple materialized views based on

the assumption that the Dewey codes are stored in the materialized views so that the

common ancestors of nodes in different views can be found. [2] studied a different type

of equivalent rewriting using multiple views in the presence of structural summaries and

integrity constraints: the answer sets of the views are nodes rather than subtrees, and

the answers to the new query are obtained by combining answers to the views through

a number of algebraic operations. There have also been works on rewriting XQuery

16

queries using views [13,4,21]. In relational query rewriting using views, the redundant

views problem was studied in [8], which showed similar properties for views which are

redundant: a view is redundant if and only if it has an equivalent rewriting using the

other views. We are not aware of any work on the form of equivalent rewritings, neither

for xpath rewritings nor for relational rewritings.

7 Conclusion

We showed that some tree patterns observe the independence of containing patterns

property. Based on which, we showed that for some classes of tree patterns, the equiv-

alent rewriting using views can be expressed as a single tree pattern rather than the

union of multiple tree patterns. We also identified necessary and sufficient conditions

for a subset of views to be redundant. In doing this, we considered different scenarios:

the absence or presence of dtds, rewritings using multiple single views, and rewritings

using the intersection of views.

Acknowledgement This work is partially supported by grant from the Research

Grant Council of the Hong Kong Special Administrative Region, China (CUHK418205).

References

1. S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Minimization of tree
pattern queries. In SIGMOD, pages 497–508. ACM, 2001.

2. A. Arion, V. Benzaken, I. Manolescu, and Y. Papakonstantinou. Structured materialized
views for XML queries. In VLDB, pages 87–98. ACM, 2007.

3. A. Balmin, F. Özcan, K. S. Beyer, R. Cochrane, and H. Pirahesh. A framework for using
materialized XPath views in XML query processing. In VLDB, pages 60–71. Morgan
Kaufmann, 2004.

4. A. Deutsch and V. Tannen. Reformulation of XML queries and constraints. In ICDT,
pages 225–241. Springer, 2003.

5. A. Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–294, 2001.
6. L. V. S. Lakshmanan, H. Wang, and Z. J. Zhao. Answering tree pattern queries using

views. In VLDB, pages 571–582. ACM, 2006.
7. J.-L. Lassez and K. McAloon. Independence of negative constraints. In TAPSOFT, Vol.1,

pages 19–27. Springer, 1989.
8. C. Li, M. Bawa, and J. D. Ullman. Minimizing view sets without losing query-answering

power. In ICDT, pages 99–113. Springer, 2001.
9. B. Mandhani and D. Suciu. Query caching and view selection for XML databases. In

VLDB, pages 469–480. ACM, 2005.
10. G. Miklau and D. Suciu. Containment and equivalence for an XPath fragment. In PODS,

pages 65–76. ACM, 2002.
11. G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath. J. ACM,

51(1), 2004.
12. A. Nash, L. Segoufin, and V. Vianu. Determinacy and rewriting of conjunctive queries

using views: A progress report. In ICDT, pages 59–73. Springer, 2007.
13. N. Onose, A. Deutsch, Y. Papakonstantinou, and E. Curtmola. Rewriting nested XML

queries using nested views. In SIGMOD, pages 443–454. ACM, 2006.
14. K. Tajima and Y. Fukui. Answering XPath queries over networks by sending minimal

views. In VLDB, pages 48–59. Morgan Kaufmann, 2004.
15. J. Tang and S. Zhou. A theoretic framework for answering XPath queries using views. In

XSym, pages 18–33. Springer, 2005.
16. N. Tang, J. X. Yu, M. T. Özsu, B. Choi, and K.-F. Wong. Multiple materialized view

selection for XPath query rewriting. In ICDE, pages 873–882. IEEE, 2008.
17. J. Wang, R. W. Topor, and M. J. Maher. Rewriting union queries using views. Constraints,

10(3):219–251, 2005.

17

18. J. Wang and J. X. Yu. Xpath rewriting using multiple views. In DEXA, pages 493–507.
Springer, 2008.

19. J. Wang, J. X. Yu, and C. Liu. Contained rewritings of xpath queries using views revisited.
In WISE, pages 410–425. Springer, 2008.

20. W. Xu and Z. M. Özsoyoglu. Rewriting XPath queries using materialized views. In VLDB,
pages 121–132. ACM, 2005.

21. C. Yu and L. Popa. Constraint-based XML query rewriting for data integration. In
SIGMOD, pages 371–382. ACM, 2004.

18

