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A COGNITIVE STYLE AND AGGREGATION OPERATOR

MODEL: A LINGUISTIC APPROACH FOR CLASSIFICATION

AND SELECTION OF THE AGGREGATION OPERATORS

K. K. F. YUEN

Abstract. Aggregation operators (AOs) have been studied by many schol-
ars. As many AOs are proposed, there is still lacking approach to classify the

categories of AO, and to select the appropriate AO within the AO candidates.
In this research, each AO can be regarded as a cognitive style or individual

difference. A Cognitive Style and Aggregation Operator (CSAO) model is pro-

posed to analyze the mapping relationship between the aggregation operators
and the cognitive styles represented by the decision attitudes. Four algorithms

are proposed for CSAO: CSAO-1, CSAO-2 and two selection strategies on the

basis of CSAO-1 and CSAO-2. The numerical examples illustrate how the
choice of the aggregation operators on the basis of the decision attitudes can

be determined by the selection strategies of CSAO-1 and CSAO-2. The CSAO

model can be applied to decision making systems with the selection problems
of the appropriate aggregation operators with consideration of the cognitive

styles of the decision makers.

1. Introduction

Aggregation Operators (AOs) are applied in many domains on problems con-
cerning the fusion of a collection of information granules. These domains include
mathematics, physics, engineering, economics, business, management, and social
sciences. Although the discussions of AOs are very broad [1, 3, 5, 7, 8, 9, 10, 11,
13, 14, 15, 16, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 41], there is
a lack of research about the best practice in choosing aggregation operators. The
selection of the AOs can make use of the theory of cognitive style, but it seems
no research has investigated the relationship between aggregation operators and
the cognitive styles. Cognitive styles can be used to select the best individual for
decision making.

The term ’cognitive style’, was used by Allport [2], and has been described as
a person’s typical or habitual mode of problem solving, thinking, perceiving and
remembering [22]. A style is considered to be a fairly fixed characteristic of an
individual [22]. Studies in cognitive styles initially developed as a result of interest
in individual differences, particularly during the 1960’s [22]. Since the early 1970s,
they have been more seriously considered by the teaching and training world [22]. In
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this research, the cognitive styles are associated with the development of artificial
intelligence. The new motivation could be called computational cognitive style,
which is to classify the individual styles of the algorithms or functions under the
same objective. This research shows the classification of the aggregation operators
using the cognitive styles.

Different researchers have used a variety of labels for the styles they have investi-
gated. For example, Rading and Cheema [22] suggested that the labels be grouped
into two principal cognitive styles. These were labeled the Wholist-Analytic and
Verbialiser-Imager dimensions. Most researchers apply a set of uni-dimensional
labels, which are postulated in the individual preferences, for the quantitative re-
search of the cognitive style. This leads not to having a formal definition of the
labels of the cognitive style. In this research, the cognitive style is described by a
decision attitude variable which includes three basic linguistic labels: pessimistic,
neural, and optimistic.

Many studies use linguistic methods in the decision making, for example [6,
12, 17, 18, 21, 35, 38, 39]. In fuzzy decision making process, a linguistic label is
usually represented by a fuzzy number. Expert uses the linguistic label sets to
access the candidates with respect to a series of criteria. An assessment result that
is the selected fuzzy number assigned to the candidate under a criterion is called an
information granule. The aggregation operator takes a set of information granules
as input to yield a final meaningful result. There are many aggregation operators
which lead to different final results. It is difficult to evaluate which aggregation
operator performs better than others. This research suggested that an aggregation
operator is analogue to the cognitive style of a human expert, and such cognitive
style can be represented by a linguistic variable which is represented by a native
fuzzy number. However, it seems that none of research discusses the use of linguistic
method for such classification and selection of the aggregation operators.

The aggregation operator is a function or an algorithm to process information,
analogous to the humans information process, which should be related to the scope
of Cognitive psychology. Cognitive psychology is committed to using computers as
a tool for aiding understanding of the mind [4]. Computational intelligence is one
of studies of cognitive psychology. Cognitive style is the individual differences of
the information processes of the mind. As there are similar relationships between
the attributes of the aggregation operators and the cognitive styles, this paper pro-
poses the Cognitive Style and Aggregation Operator (CSAO) model, which includes
several algorithms to classify the individual styles of the AOs using the linguistic ap-
proach. In this paper, CSAO is the extension of Yuens work [36], which established
the foundation for CSAO-1.

The paper is organized as follows. Section 2 defines the properties of aggregation
operators whilst section 3 reviews different categories of the aggregation operators.
On the basis of reviewed aggregation operators and first order linguistic ordinal
scale using for cognitive style linguistic terms, section 4 proposes a CSAO-1 model.
Section 5 introduces the Compound Linguistic Ordinal Scale (CLOS), which is the
second order linguistic ordinal scale. Section 6 proposes a CSAO-2 model based on
CLOS and CSAO-1. The numerical analyses are illustrated in section 7.
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2. Fundamental Definitions of Aggregation Operators

The formal definitions of aggregation operators are as follows.

Definition 2.1. A generic aggregation operator Agg is a function which aggregates
a set of granules X = (x1, . . . , xi, . . . , xn) into an aggregated value y. It has the
form:

y = Agg
(t)
(n) (α; (x1, . . . , xi, . . . , xn)) = Agg

(t)
(n) (α;X) (1)

t is the length of tuple(s) of xi and n is the number of the granules. α is a construct
parameter or a bag of construct parameters to scale Agg.

Sometimes, α is not shown if the information of α is not important for discussion
in some scenarios. Likewise, AO can be simplified as the notations such as Agg,

Agg (α;X), Agg(t) (α;X) or Agg
(t)
(n) (α;X). This research is only interested in t ∈

{1, 2}. To extend Definition 2.1, the following definition is proposed.

Definition 2.2. Agg is a non-weighted AO such that xi = ci where ci ∈ C is a
single element, or 1-tuple element. It has the form:

Agg(1) (α;X) = Agg(1) (α; (c1, . . . , ci, . . . , cn)) = Agg(1) (α;C) (2)

Definition 2.3. Agg is a weighted AO such that xi = {ci, vi} where vi ∈ V =
(v1, . . . , vn) is a utility weight. Thus xi is a pair (or 2-tuple). The weighted AO is
of the form:

Agg(2) (α;X) = Agg(2) (α; ({c1, v1} , . . . , {ci, vi} , . . . , {cn, vn})) (3)

Definition 2.4. If wi = vi∑n
i=1 vi

, then wi ∈ W = (w1, . . . , wn) is the probability

weight such that
∑

i∈{1,...,n}
wi = 1. Thus A is a normalized weighted AO of the form:

Agg(2) (α;X) = Agg(2) (α; ({c1, w1} , . . . , {ci, wi} , . . . , {cn, wn})) (4)

This paper focuses on discussion of normalized weighted AO.
Let y be the output of AO of X. Usually yand ci have a fix interval I ′ =

[a, b] ⊆ [−∞,∞]. Many studies used the fix interval I = [0, 1] for discussion. This
is the only mathematical matter of scaling or normalizing I ′ into I. To merge
the discussion with other studies, and to associate membership theory with the
aggregation problems (as the membership value also belongs to [0, 1]), this research
uses a fix interval I = [0, 1]. The scaling functions of I ′ into I are beyond the
research topic here. Now let X and y be scaled, and the extension of Definition 2.5
be as follows.

Definition 2.5. Let ci, y ∈ I, I = [0, 1]. A non-weighted aggregation operator
is the functionAgg : In → I. A weighted aggregation operator is the function
Agg : V T ×In → I, and a normalized weighted aggregation operator is the function
Agg : WT × In → I.

According to [29, 13, 16, 8, 7] , there are some properties for the aggregators:

(1) Boundary conditions: Agg (0, . . . , 0) = 0 and Agg (1, . . . , 1) = 1;
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(2) Monotonicity:Agg (x1, . . . , xi, . . . , xn) ≥ Agg (x1, . . . , x
′
i, . . . , xn) if xi ≥ x′i.

(3) Continuity: A is continuous with respect to each of its variables.
(4) Associativity: Agg (x1, x2, x3) = Agg (x1, Agg (x2, x3))

= Agg (Agg (x1, x2) , x3).
(5) Symmetry: also known as commutativity or anonymity. For every permuta-

tion δ of {1, 2, . . . , n}, the operator satisfies: Agg
(
xδ(1), xδ(2), . . . , xδ(n)

)
=

Agg (x1, x2, . . . , xn).
(6) Bisymmetry: Agg (A (x11, x12) , Agg (x21, x22)) =

Agg (Agg (x11, x21) , Agg (x12, x22))
(7) Absorbent Element: Agg (x1, . . . , a, . . . , xn) = a;
(8) Neutral Element: Agg(n) (x1, . . . , e, . . . , xn) = A(n−1) (x1, . . . , xn−1)
(9) Idempotence: Agg (x, x, . . . , x) = x;

(10) Compensation: minni=1 (xi) ≤ Agg (x1, x2, . . . , xn) ≤ maxni=1 (xi)
(11) Reinforcement: full, downward, and upward reinforcements [29].

Different operators are associated with different choices of the above properties.
There are no absolute rules that associate properties to operators. The researchers
usually define some properties, and then create their operators.

3. Categories of Aggregation Operators

A non-weighted AO is the special case of a weighted AO such that all weights are
equal. This study focuses on discussing the weighted AO. Aggregation operators
have been contributed by many researchers. The followings introduce AOs which
are frequently used and discussed.

3.1. Quasi-linear Means. The general form of quasi-linear means [5, 19, 23] is of
the form:

qlm (W,C) = h−1

(
1

n

n∑
i=1

ωih (ci)

)
, c ∈ Ip. (5)

The function h : I → <, called the generator of qlm (w, c) is continuous and
strictly monotonic. If h (x) = xα, qlm is the weighted root power (wrp) or weighted
generalized mean, and other three types are extensions (Table 1).

1. Weighted Root Power

wrp (α;W,C) =

(
n∑
i=1

wic
α
i

)1/α
2. Weighted Harmonic mean
(α→ −1)
whm (W,C) = 1∑n

i=1
wi
ci

3. Weighted Geometric mean
(α→ 0)

wgm (W,C) =
n∏
i=1

cwii

4. Weighted Arithmetic mean
(α→ 1)
wam (W,C) =

∑n
i=1 wici

Table 1. Some Forms of Quasi-linear Means
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3.2. Ordered Weighted Averaging. OWA [29, 33] is the weighted arithmetic
mean (wam) in which its weight values are related to the order position of C.

owa (W,C) =
∑n

i=1
wibj , (6)

where bj is the jth largest of the C, wi ∈ [0, 1] and
∑

i∈{1,...,n}
wi = 1. wi can be

generated from a regular non-decreasing quantifier Q, which is of the form:

wi = Q

(
i

n

)
−Q

(
i− 1

n

)
, i = 1, . . . , n, (7)

where Q can be defined by Q (α; r) = rα, α ≥ 0.

3.3. Weighted Median. In weighted median aggregation [30, 23], each element
ci is replaced by two elements:

c+i = (1− wi) + wi · ci (8)

c−i = wi · ci. (9)

Then the median value is computed by

wmed (W,C) = Median
(
c+1 , c

−
1 , . . . , c

+
i , c
−
i , . . . , c

+
n , c
−
n

)
. (10)

Alternatively, c+i and c−i can be computed by T-conorm and T-norm, denoted as
S and T respectively, having the forms as below

c+i = S (1− wi, ci) (11)

c−i = T (wi, ci) (12)

which S and Tare also defined in section 3.4.

3.4. T-norms and T-conorms. T-norms have the properties in which T (x, 1) =
x and T (x, y) ≤ min (x, y) whilst T-conorms have the properties in which S (x, 0) =
x and S (x, y) ≤ max (x, y) [8]. Different kinds of T-norms and T-connorms [8, 23]
are shown in table 2.

3.5. Weighted Gamma Operator. Zimmermann and Zysno [41] proposed an
gamma operator on the unit interval based on T-norms and T-conorms. Calvo and
Mesiar [7] modified the equation with a weighted assignment, which is of the form:

wgo (α;C,W ) =
(∏n

i=1
c
wi
i

)1−α (
1−

∏n

i=1
(1− ci)wi

)α
. (13)

3.6. OWMAX and OWMIN. Ordered weighted maximum (owmax) and ordered
weighted minimum operators (owmin) were proposed by Dubois el at. [9]. Un-
like OWA which deals with weighted arithmetic mean, owmax and owmin apply
weighted maximum and minimum [19]. For any weight vector W = (w1, . . . , wn) ∈
[0, 1]

n
such that 1 = w1 ≥ . . . ≥ wn, owmax is of the form:

owmax (W,C) =
n
∨
i=1

(
wi ∧ c(i)

)
, C ∈ [0, 1]n . (14)

For W ∈ [0, 1]
n

such that w1 ≥ . . . ≥ wn = 0, owmin is of the form:

owmin (W,C) =
n
∧
i=1

(
wi ∨ c(i)

)
, C ∈ [0, 1]n . (15)
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1. Min-Max Tm (a, b) = min {a, b}
Sm (a, b) = max {a, b}

2. Lukasiewicz T l (a, b) = max {a+ b− 1, 0}
Sl (a, b) = min {a+ b, 1}

3. Product/
Probabilistic

Tp (a, b) = ab
Sp (a, b) = a+ b− ab

4. Dubois &
Prade

Tdp (α; a, b) = a·b
max{a,b,α} , α ∈ (0, 1)

Sdp (α; a, b) = 1− (1−a)(1−b)
max{(1−a),(1−b),α} , α ∈ (0, 1)

5. Yager Ty (α; a, b) = max
{

0, 1− [(1− a)
α

+ (1− b)α]
1/α
}

Sy (α; a, b) = min
{

1, (aα + bα)
1/α
}
, , α > 0

6. Frank Tf (α; a, b) = logα

[
1 +

(αa−1)(αb−1)
α−1

]
, α > 0, α 6= 1

Sf (α; a, b) = 1− logα

[
1 +

(α1−a−1)(α1−b−1)
α−1

]
7. Weber-
Sugeno

Tws (αT ; a, b) = max
{
a+b−1+αT ·a·b

1+αT
, 0
}
, αT > −1

Sws (αT ; a, b) = min {a+ b+ αS · a · b, 1} , αS = αT
(1+αT )

8. Schweizer
& Sklar

Tss (α; a, b) = 1− [(1− a)
α

+ (1− b)α − (1− a)
α

(1− b)α]
1
α

Sss (α; a, b) = [aα + bα − aαbα]
1
α , α > 0

Table 2. List of T-norms and T-connorms

3.7. Leximin Ordering. Leximin ordering was proposed by Dubois et al. [10].
Yager [31] improved the Lexmin ordering, based on OWA weights. Let ∆ denotes
a distention threshold between the values being aggregated, the Leximin is of the
form:

leximin (W,C) =
∑n

i=1
wibi (16)

, where bi is a sorted C ∈ In in descending order such that b1 > . . . > bn. In
addition,

wj = LexW (∆, n) =


∆(n−j)

(1+∆)n−j
, j = 1

∆(n−j)

(1+∆)n+1−j , j = 2, . . . , n
, wj ∈W

(17)

4. Decision Attitude and Aggregation Operator 1
(DAAO-1, or CSAO-1)

Under uncertainty, different decision makers would have different decision at-
titudes since they have characteristics of cognitive style or individual difference.
The decision attitudes (DAs) can be described by a collection of linguistic terms
represented by a collection of DA atomic fuzzy sets, D = {d1, · · · , dj , · · · , dp},
(or the 1st degree DA fuzzy variable) which is further classified as a collection of
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compound fuzzy sets HD = {dij : i = 1, . . . , p; j = 1, . . . , r} with added directional
hedge fuzzy sets H = {h1, . . . , hr} (The 2nd degree DA fuzzy variable). Details of
compound fuzzy variable are shown in section 5.

The range of the membership of a decision attitude fuzzy set is in [0,1] and the
aggregated value also belongs to [0,1]. The aggregated value of the membership (or
the likelihood) of a decision attitude has the relationship, shown in the following
definition.

Definition 4.1. An aggregated value y from a normalized aggregation operator
Agg of the set of input parameters X belongs to a decision attitude fuzzy set dj ,
with the membership value dj (y) ∈ [0, 1] by the membership function dj : y → I,
I = [0, 1].

As the fuzzy set is characterized by the membership function, the same notation
dj is used for a fuzzy set of membership. Usually, the membership function applies
a triangular function µj (a, b, c) which is defined by three points.

Different input parameter sets, X’s, result in different Effective Aggregation
Ranges (EAR) from a collection of the aggregation operators. The effective aggre-
gation range [y∗ , y∗] is defined as follows.

Definition 4.2. Let the set of the aggregated values from the set of the ag-

gregation operators Ãgg be Y = (y1, . . . , yk, . . . , ym). The permutation of Y is
~Y =

{
y(1), . . . , y(k), · · · , y(m)

}
, where y(1) ≤ y(2) · · · ≤ y(m). Thus, the Effective

Aggregation Range is [y∗ , y∗], where y∗ = y(1) = min (Y ) is the low-boundary, and
y∗ = y(m) = max (Y ) is the up-boundary.

Lemma 4.3. The EAR is the proper subset of I, i.e. [y∗ , y∗] ⊆ [0, 1] (see Figure
1).

Proof. As y = A
(t)
(n) (α;X) ∈ I = [0, 1], y∗ = min (Y ) ≥ 0, and y∗ = max (Y ) ≤ 1,

the lemma holds. �

Figure 1. Effective Aggregation Range of AOs

Lemma 4.4. The collection of AOs is the form Ãgg : X → [y∗ , y∗]
m

, where m is
the dimension ( the number) of the output set.

Proof. This lemma is directly derived from Definition 4.2. �

The CSAO model describes how the cognitive styles of the aggregation operators
can be reflected by the decision attitudes. The CSAO can be represented by a
collection of the DA fuzzy sets. Thus, the following proposition holds.
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Proposition 4.5. (DAgg): The collection of decision attitude fuzzy sets for an
aggregation operator A is of the form:

DAgg = {{y, d1 (y)} , . . . , {y, dj (y)} , . . . , {y, dp (y)}} , y ∈ [y∗ , y∗] (18)

Proof. Let the collection of decision attitude fuzzy sets beD = {d1, · · · , dj , · · · , dp},
and the discourse universal ofD be [y∗ , y∗] ⊆ [0, 1] (Lemma 4.3). Thus the collection
of memberships of the set of decision attitudes D for an aggregation operator is
DA : [y∗ , y∗]→ Ip. As the fuzzy set is generally defined as a collection of pairs, the
form is given above. �

Proposition 4.6. (D
Ãgg

): A collection of the 1st degree DA fuzzy sets D
Ãgg

for

a collection of aggregation operators Ãgg = (Agg1, . . . , Aggk, . . . , Aggm) is of the
form:

D
Ãgg

=



{{
y(1), d1

}
, . . . ,

{
y(1), dj

}
, . . . ,

{
y(1), dp

}}
...

. . .
...

. . .
...{{

y(k), d1

}
, . . . ,

{
y(k), dj

}
, . . . ,

{
y(k), dp

}}
...

. . .
...

. . .
...{{

y(m), d1

}
, . . . ,

{
y(m), dj

}
, . . . ,

{
y(m), dp

}}

 ,

(19)

where
{
y(k), dj

}
=
{
y(k), dj

(
y(k)

)}
,∀k,∀j, and y(1) ≤ y(2) · · · ≤ y(m).

Proof. It follows from Proposition 4.5 and Lemma 4.4. �

Definition 4.7. The Information Fusion Process IFP =
(
X̄, Y,AO∗, {AO} , SAO

)
is the function which aggregates multiple sources of data granules X̄ as a meaningful
value Y to represent an object by selecting the most appropriate aggregation op-

erator (AO*) among a set of the AO candidates ÃO = {AO}, i.e. SAO : {AO} →
AO∗, and AO∗ : X̄ → Y .

The CSAO model is the ideal function for SAO. Following of the above definition,
two definitions are proposed for the selection of AO in D

Ãgg
.

Definition 4.8. If an aggregation operator has more than one membership of DAs,
the selection of DAs for the AO is of the form:

d∗ (k) = ArgMax
({{

y(k), d1
}
, . . . ,

{
y(k), dj

}
, . . . ,

{
y(k), dp

}})
(20)

Definition 4.9. If a DA linguistic term includes more than one aggregation oper-
ator, the selection of AOs in a DA linguistic term is of the form:

d∗j = ArgMax
({{

y(1), dj
}
, . . . ,

{
y(k), dj

}
, . . . ,

{
y(m), dj

}})
(21)

The DAAO-1 for CSAO is in the following algorithm.

Algorithm 4.10. DAAO-1 = CSAO-1
(
D, Ãgg,X

)
:

Input:

a. A collection of the membership functions of DA fuzzy sets
D = {d1, · · · , dj , · · · , dp};
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b. A collection of AOs: Ãgg = (Agg1, . . . , Aggk, . . . , Aggm);
c. A collection of information granules: X = (x1, . . . , xi, . . . , xn);

Process:

Step 1: Compute Ãgg (X), and then Y = (y1, . . . , yk, . . . , ym) is achieved;

Step 2: Get the permutation of Y : ~Y =
{
y(1), . . . , y(k), · · · , y(m)

}
;

Step 3: Get [y∗ , y
∗] =

[
y(1), y(m)

]
;

Step 4: Calculate intervals and modal values forDby equally dividing [y∗ , y
∗] ;

i. d1 =
(
y∗, y∗, y∗ + y∗−y∗

p−1

)
ii. dj 6=1,p =

(
y∗ + y∗−y∗

p−1 (j − 2), y∗ + y∗−y∗
p−1 (j − 1), y∗ + y∗−y∗

p−1 (j)
)

iii. dp =
(
y∗ − y∗−y∗

p−1 , y∗, y∗
)

Step 5: Elicit memberships for Dby interpolation of the three points (a,b,c):

Step 6: Calculate D
(
~Y
)

, D
Ãgg

and d∗ (k), ∀k.

Step 7: Get d∗j ,∀j.

Output:.
{
d∗j
}

. //END

This study focuses on discussion of the weighted aggregation operators of which
xi = {wi, ci} ∈ Xis the input.

Figure 2. Properties of Effective Aggregation Range

To conclude, the CSAO description model is the function g : X → I or g =

Ãgg ◦ D = D
(
Ãgg (X)

)
. It means that the function g maps the collection of

information granules X with the set of the aggregators Ãgg, to the membership
interval [0,1] corresponding to the collection of decision attitude fuzzy sets D.
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In most practice, the decision attitudes can be described by three linguistic
terms: pessimistic, neutral and optimistic. Figure 2 shows some properties of the
DA fuzzy sets.

Properties of EAR can be summarized as followings.

Proposition 4.11. Let y′ = mean (y∗ , y∗) = 1
2 (y∗ + y∗), then

(1) Effective aggregation range (EAR) is downward aggregation if y′ < 0.5;.
(2) EAR is upward aggregation if y′ > 0.5;
(3) EAR is central aggregation if y′ = 0.5;
(4) EAR 2 is more upward than EAR 1 if y′1 < y′2. Or EAR 1 is more downward

than the EAR 2.
(5) EAR 2 is wider than EAR 1 if y∗

1
−y∗1 < y∗

2
−y∗2 . Or EAR 1 is narrower

than EAR 2.

Example 4.12. A numerical example analysis of the algorithm of the CSAO-1
description model is illustrated as follows.

Input

a. Define the collection of decision attitude fuzzy sets:
Let D = {d1, d2, d3} represent the set of pessimistic, neural, and optimistic
decision attitudes. d1 = µ (y∗ , y∗ , y

′), d2 = µ (y∗ , y
′, y∗), d2 = µ (y′, y′, y∗),

where µ is the triangular membership function.
b. Define a collection of the Aggregation Operators:

Ãgg = (Agg1, . . . , Aggk, . . . , Agg17)

=

 wrp,whm,wgm,wam, owa, owmax, owmin,
Lexmin, wgo, wmed,wmedl, wmedmm,
wmeddp, wmedy, wmedf , wmedws, wmedss


The aggregation operator can be found in section 3. For the notation,
wmedl is wmedwith Lukasiewicz T-norm and T-connorm. This naming
convention is also applied to other wmeds, taking different T-norms and
T-connorms. In addition, as α affects the aggregation result, different value
of α can be regarded as a different operator. This example takes α = 0.2,
for all parametric operators.

c. Get the collection of information granules:
Let X = (x1, . . . , x5) be weighted criteria; C = (0.4, 0.5, 0.6, 0.7, 0.9), W =
owaW (0.6, 5) = (0.3801, 0.1964, 0.1589, 0.1387, 0.1253),
and thus X = ((0.4, 0.1978) , . . . , (0.9, 0.6250)).

Process

Step 1: ComputeY byÃ (X):

Y = Ã (X) =

{
0.5375, 0.5137, 0.5332, 0.5557, 0.6949, 0.3807, 0.4, 0.6939,
0.5019, 0.4619, 0.5127, 0.5, 0.5, 0.5, 0.1193, 0.5199, 0.4868

}
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(k) Agg y(k) D
(
y(k)

)
d∗ (k)

1 wmedf 0.1193 {1,0,0} Pess
2 owmax 0.3807 {0.0917,0.9083,0} Pess
3 owmin 0.4 {0.0247,0.9753,0} Ntl
4 wmed 0.4619 {0,0.8095,0.1905} Ntl
5 wmedss 0.4868 {0,0.7231,0.2769} Ntl
6 wmedmm 0.5 {0,0.6773,0.3227} Ntl
7 wmeddp 0.5 {0,0.6773,0.3227} Ntl
8 wmedy 0.5 {0,0.6773,0.3227} Ntl
9 wgo 0.5019 {0,0.6707,0.3293} Ntl
10 wmedl 0.5127 {0,0.6333,0.3667} Ntl
11 whm 0.5137 {0,0.6298,0.3703} Ntl
12 wmedws 0.5199 {0,0.6080,0.3920} Ntl
13 wgm 0.5332 {0,0.5618,0.4382} Ntl
14 wrp 0.5375 {0,0.5470,0.4530} Ntl
15 wam 0.5557 {0,0.4838,0.5162} Opt
16 owa 0.6949 {0,0,1} Opt
17 Leximin 0.6949 {0,0,1} Opt

Table 3. The Results for D
Ãgg

of 17 AOs

Step 2: Get the ~Y :
GetOrdering (Y ) = {14,11,13,15,16,2,3,16,9,4,10,6,6,6,1,12,5}, then

~Y =

{
0.1193, 0.3807, 0.4, 0.4619, 0.4868, 0.5, 0.5, 0.5, 0.5019, 0.5127,
0.5137, 0.5199, 0.5332, 0.5375, 0.5557, 0.6939, 0.6949

}
.

Step 3: [y∗ , y∗] =
[
y(1), y(m)

]
= [0.1193, 0.6949].

Step 4 and 5: Assign intervals and interpolate memberships for D.
Let (y∗ , y

′, y∗) = [0.1193, 0.4071, 0.6949] be substituted by µ (a, b, c) in
D. CSAO-1 pattern is shown in Figure 3. It can be observed that the
proposed numerical integration is downward integration asy′ = 0.4071 <
0.5.

Step 6: Calculate D
(
~Y
)

, D
Ãgg

and d∗ (k).

Table 3 summarizes the results forD
Ãgg

,
{
y(k), DAgg

(
y(k)

)}
∈ D

Ãgg
,

∀k ∈ {1, · · · , 17}.

Step 7 and Output:
{
d∗j
}

= {1, 3, 17} , which means {wmedf , owmin,
owa/Leximin}, where owa and Leximin produce the same result.

The interpretation of the above example is as follows. The weighted median with
other t-connorms and t-norms [23, 30] is likely to produce questionable results.
Firstly, t-conform and t-norm are initially designed for aggregation of two fuzzy
sets, and are not suitable for weighted criteria, since wmed (W,C) has different
meanings for wmed (C,W ). Secondly, the definition of the tuning parameter α
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Figure 3. Fuzzy Sets in CSAO-1 Pattern

is infinitive since each α represents a new aggregation operator due to different
output values. Thirdly, the more criteria are aggregated, the lesser values in W as∑
wi∈W

wi = 1 are followed. As t-norms or t-conorms is mainly based on Min and

Max of two sets, a misleading result will result.
owmax and owmin are not the effective AOs for the decision matrix. The third

reason of the above description explains this issue. Lexmin and owa produce the
same result as the weights used by them, and are not defined by their intrinsic
functions. If these aggregation operators are removed, the new result is shown
in Example 4.13. Further investigation for owa is concluded after illustration of
Example 4.13.

Example 4.13. Let be Ãgg = {Agg1, . . . , Aggk, . . . , Agg7} ={wrp,whm,wgm,wam,
owa,wgo,wmed}. Others remain unchanged. The new results for D

Ãgg
are shown

in Table 4, and finally,
{
d∗j
}

= {1, 6, 7}, which is {wmed, wam, owa}.

(k) Agg y(k) D
Ãgg

(
y(k)

)
d∗ (k)

1 wmed 0.4619 {1,0,0} Pess
2 wgo 0.5019 {.6570,0343,0} Pess
3 whm 0.5137 {.5558,04442,0} Pess
4 wgm 0.5332 {.3880,06120,0} Ntl
5 wrp 0.5375 {.3513,06487,0} Ntl
6 wam 0.5557 {.1953,08047,0} Ntl
7 owa 0.6949 {0,0,1} Opt

Table 4. The Results for D
Ãgg

of Seven AOs

Examples 4.12 and 4.13 imply that not all AOs can be applied in DSAO (DAAO).
It is similar to that not all the people being suitable for a single job, an interest, or
a subject domain as they have different cognitive styles. People who are suitable
for a job are pooled and selected accordingly with respect to the senior decision



A Cognitive Style and Aggregation Operator Model: a Linguistic Approach for Classification ... 41

maker. Thus only the suitable AOs can be taken in DSAO, and then classified.
The one which mostly reflects the decision maker’s cognitive style is selected.

In addition, owa seems to produce exaggerate results in the above example. The
main reason is that the order of the values of the criteria is sorted in descending
order. This action is unnecessary. For one reason, the weight and the criterion are
matched; for another reason, the different initial settings of the criteria order are
very likely to produce different results. For the third reason, there is no point to
mismatch the weight and the criterion pair.

The next section discusses CLOS prior to discuss DSAO-2 which is based on
CLOS and CSAO-1.

5. Compound Linguistic Ordinal Scale

Compound Linguistic Ordinal Scale (CLOS) and its application was developed by
Yuen [37]. CLOS is a Deductive Rating Strategy (Rs) of the Hedge-Direction-Atom
Linguistic Representation Model (HDA-LRM) with a cross reference relationship.

In the HDA-LRM, Compound Linguistic Variable (CLV) ℵ, a matrix of a large
number of linguistic descriptors is produced by the syntactic rule. The semantic rule
“Computing with CLV” maps CLV into representation numbers in matrix Xℵ or X
by Fuzzy Normal Distribution fX (ℵ), and produces the numerical results meeting
the different requirements of different scenario using few scalable descriptable user-
defined parameters.

The Deductive Rating Strategy (Rs) is the ideal rating interface for handing the
large scale of CLV. Three key concepts are presented, as follows.

5.1. Syntactic Rule. Regarding the syntactic form, CLOS is established on a
compound linguistic variable α ∈ ℵmn which is comprised of the elements from

the linguistic term vectors respectively: hedge vector
−→
Vh directional vector

−→
Vd =[

v−d , v
θ
d, v

+
d

]
and atomic vector

−→
Va =

[
vaj
]
. A matrix of Compound Linguistic

Variable (CLV) ℵmn is built on the syntactic rule algorithm (algorithm 2), ℵmn =

Gℵ

(−→
Vh,
−→
Vd,
−→
Va

)
, and has the following form:

∅ vhd1 ⊕ va2 · · · vhd1 ⊕ van−1 vhd1 ⊕ van
...

...
. . .

...
...

∅ vhdη ⊕ va2
. . . vhdη ⊕ van−1 vhdη ⊕ van

va1
θ va2

θ
. . . van−1

θ van
θ

vhdη+2
⊕ va1 vhdη+2

⊕ va2
. . . vhdη+2

⊕ van−1 ∅
..
.

..

.
. . .

...
...

vhdm ⊕ va1 vhdm ⊕ va2 · · · vhdm ⊕ van−1 ∅


(22)

, where vhd is the element of the combination of
−→
Vh and

−→
Vd.

Algorithm 5.1. (Syntactic Rule Algorithm ℵmn = Gℵ

(−→
Vh,
−→
Vd,
−→
Va

)
:

1. Input: Linguistic term sets (
−→
Vh,
−→
Vd,
−→
Va)
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2. Proceed G−−→
Vhd

(−→
Vh,
−→
Vd

)
=
−→
Vhd by

[vhdi ]
m
i=1 =

[(
vhη ⊕ v−d

)
, · · · ,

(
vh1
⊕ v−d

)
, vθd ,

(
vh1
⊕ v+

d

)
, · · · ,

(
vhη ⊕ v+

d

)]
3. Proceed Gℵ

(−→
Vhd,
−→
Va

)
by

Gαij
(
vhdi , vaj

) ∧
=

 ∅
vhdi ⊕ vaj
∅

j = 1&i ∈ {1, · · · , ((m+ 1) /2)}
j 6= 1, n&∀i

j = n&i ∈ {((m+ 1) /2) , · · · ,m}
,∀i, j

4. Return: ℵmn = Gℵ

(−→
Vhd,
−→
Va

)
//END

5.2. Semantic Rule. The numerical representation is derived by the semantic rule
algorithm or Fuzzy Normal Distribution of the form:

X̄ℵ = fX (ℵ) = fX

({(
γαj , dαj , ταj ,

{
µ−1
αjϕ

}ϕ)}
, [Xmin, Xmax] ,

(
φ
(−→
Vh
)
, λ0

))
(23)

X̄ℵ is the numerical representation of ℵin either fuzzy or crisp value as crisp value is
the special case of the fuzzy value. γαj is the modal value, dαj is symmetric distance
(by default, dα1 = dα2 =, . . . ,= dαn), ταj is tuning parameter of the membership
function, µαj , of αj , and µ−1

αjϕ is the inversed membership function, which the

default setting is the inversed parabola-based membership function PbMF−1
αj is of

the form:

PbMF−1
αj

(µαjφ) =


γαj − dαj

√
1− (µαjφ)

1/ταj ,φ =′ −′

γαj ,φ =′ θ′

γαj + dαj

√
1− (µαjφ)

1/ταj ,φ =′ +′ (24)

, where ϕ =′ −′,′ θ′′+′ is determined from
−→
Vd

[Xmin, Xmax] is the interval of numerical representation of the scale. The 2-

tuple input
(
φ
(−→
Vh

)
, λ0

)
determines the distribution of the

−→
Vhd in the membership

fuzziness process (MFI). Thus fX (ℵ) is shown in Algorithm 5.2.

Algorithm 5.2. (Semantic Rule Algorithm / Fuzzy Normal Distribution):

1. Get valid
({(

γαj , dαj , ταj ,
{
µ−1
αjϕ

}ϕ)}
, [Xmin, Xmax] ,

(
φ
(−→
Vh

)
, λ0

))
.

2. Calculate MCI
([[−→

Vh

]])
and MFI

([[−→
Vh

]])
by

MFI
([[−→

Vh

]])
= MFI


 vh1

...
vhη




=


[
µ′li − λµlidis (vhi) , 1

]
i=1[[

µ′li − λµlidis (vhi) , µ
′
ui + λµlidis (σi)

]]η−1

i=2[
0, µ′ui + λµlidis (σi)

]
i=η

,
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where dis (vhi) =
φ(vhi)∑
−→
Vh

φ(vhi)
; λµui = λµli = λ0

2 , whereλµui , λµli ∈ [0, 1]

(i.e. λ0 ∈ [0, 2]) such that 0 ≤ µui ≤ 1.

3. Calculate MFI
([[−→

Vh
+
]])

and MFI
([[−→

Vh
−
]])

by

MFI
([[−→

Vh
−
]])

= vip
(
MFI

([[−→
Vh

]]))
≡

µ−L µ−U⌈
µlj , µuj

⌉η
j=1

=
µL µU[[
µlj , µuj

]]1
j=η

MFI
([[−→

Vh
+
]])

= hrp
(
MFI

([[−→
Vh

]]))
≡

µ+
L µ+

U⌊
µlj , µuj

⌋η
j=1

=
µU µL[[
µUj , µlj

]]η
j=1

,where MFI
([[−→

Vh

]])
= MFI


 vh1

...
vhη


 =

µL µU[[
µlj , µuj

]]η
j=1

4. Calculate FI
([[

α̂j
]])

,∀j by

FI
([[

α̂j
]])

=



[ [[
µ−1
αj− (µli

−) , µ−1
αj− (µli

−)
]]η
i=1[[

µ−1
αj (µlθ ) , µ

−1
αj (µlθ )

]]
i=η+1

]
,j = 1

[[
µ−1
αj− (µli

−) , µ−1
αj− (µli

−)
]]η
i=1[[

µ−1
αj (µlθ ) , µ

−1
αj (µlθ )

]]
i=η+1[[

µ−1
αj+ (µli

+) , µ−1
αj+ (µli

+)
]]m
i=η+2

 , 1 < j < n

[ [[
µ−1
αj (µlθ ) , µ

−1
αj (µlθ )

]]
i=η+1[[

µ−1
αj+ (µli

+) , µ−1
αj+ (µli

+)
]]m
i=η+2

]
,j = n

,∀j

5. If Xℵ is in fuzzy number, then

X =
[[[(

x̄lij , x̄πij , x̄uij
)]]m

i=1

]n
j=1

,

x̄πij ∈ mean
(
FI
([[

α̂j
]]))

and
(
x̄lij , x̄uij

)
∈ FI

([[
α̂j
]])

, ∀i, j
6. Return X;.

//END

5.3. Deductive Rating Strategy. It seems incredible that an expert can handle
|ℵ7±2,7±2| = [21, 73] linguistic terms although CLV can produce a large scale of
compound linguistic terms. Thus deductive rating strategy is proposed. Algorithm
5.3 shows the rating steps whilst Figure 4 shows an example of the rating interface.

Algorithm 5.3. (Deductive Rating Strategy
(−→
Vhdj ,

−→
Va, Rs

)
):

1. Observe external information;
2. Understand the problem;
3. Understand the CLOS model;

4. First step rating: choose vaj in
−→
Va ≡

[
vaj
]n
j=1

;

5. Computer shows second options by
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−→
Vhdj = Rs

(
vaj
)

=


[vhdi ]

η
i=1 if j = 1

[vhdi ]
m
i=1 if j 6= 1, n

[vhdi ]
m
i=η+2 if j = n

.

6. Rethink the second option and revise first option;

6.1 If first option is confirmed, then the rater chooses vhdi in
−→
Vhdj ;

6.2 Else go to Step 3
7. Return αij =

(
vhdi , vaj

)
//END

6. Decision Attitude and Aggregation Operator 2
(DAAO-2, or CSAO-2)

Usually a fuzzy set consists of several AOs. If a decision maker chooses a linguis-
tic term for the decision attitude, although the choices are narrowed, he still needs
to choose the right one representing his cognitive style. Thus the DA atomic fuzzy
set is further classified by a vector of hedge termsH = {h1, . . . , hη, . . . , hr}, which
is represented by a vector of the memberships of DA dj , the following proposition
holds.

Proposition 6.1. ({dij} = fX (HD)): The Linguistic Cartesian Product Gℵ of D
and H forms a collection of compound fuzzy sets HD = {hi ⊕ dj : i = 1, . . . , r; j =
1, . . . , p}, which is of the form.

HD = Gℵ (H,D) =



∅ h1 ⊕ d2 · · · h1 ⊕ dp
...

...
. . .

...

∅ hη ⊕ d2
. . . hη ⊕ dp

d1
θ d2

θ . . . dp
θ

hη+2 ⊕ d1 hη+2 ⊕ d2
. . . ∅

...
...

. . .
...

hr ⊕ d1 hr ⊕ d2 · · · ∅


(25)

Let {dij} be the matrix of the fuzzy numbers of HD. {dij} is determined by the
semantic rule algorithm fX (HD) (algorithm 5.2), which is of the form:

{dij : i = 1, . . . , r; j = 1, . . . , p} = fX (HD)

= fX

({(
γdj ,∆dj , τdj ,

{
µdjφ

−1
}φ)}

, [y∗ , y
∗] ,
(
ϕ
(−→
Vh

)
, λ0

))
(26)

,where
{(
γdj ,∆dj , τdj ,

{
µ−1
djϕ

}ϕ)}
is the 1st degree DA fuzzy sets which are the

symmetric fuzzy set: γdj is the modal value, ∆dj is symmetric distance (by default,
∆d1 = ∆d2 =, . . . ,= ∆dp), τdj is the tuning parameter of the membership function,
µdj is the membership function of dj or dj , and µ−1

djϕ is the inverse membership
function. The collection of the 1st degree DA fuzzy sets is called the 1st degree DA
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fuzzy variable. The parameters of the membership fuzziness process
(
φ
(−→
Vh

)
, λ0

)
determine the distribution of the 2nd degree DA fuzzy variable with respect to the
corresponding 1st degree DA fuzzy sets.

Proof. It follows from Algorithms 5.1 and 5.2. �

The compound linguistic terms for the decision attitude are used by a deductive
rating strategy which is the double step rating process (algorithm 4). The collection
of the 2nd degree DA fuzzy sets is shown in the following proposition.

Proposition 6.2. ( D”
Ãgg

): A collection of the 2nd degree DA fuzzy sets D”
Ãgg

for a collection of aggregation operators Ãgg = (Agg1, . . . , Aggk, . . . , Aggm)is of the

form: D
Ãgg

(
~Y
)

=



∅


{
y(1), d1,2

}
...{

y(m), d1,2
}
 · · ·


{
y(1), d1,p

}
...{

y(m), d1,p
}


...
...

. . .
...

∅


{
y(1), dη,2

}
...{

y(m), dη,2
}
 . . .


{
y(1), dη,p

}
...{

y(m), dη,p
}


{
y(1), dη+1,1

}
...{

y(m), dη+1,1

}



{
y(1), dη+1,2

}
...{

y(m), dη+1,2

}
 . . .


{
y(1), dη+1,p

}
...{

y(m), dη+1,p

}


{
y(1), dη+2,1

}
...{

y(m), dη+2,1

}



{
y(1), dη+2,2

}
...{

y(m), dη+2,2

}
 . . . ∅

...
...

. . .
...

{
y(1), dr,1

}
...{

y(m), dr,1
}



{
y(1), dr,2

}
...{

y(m), dr,2
}
 · · · ∅


(27)

Proof. Proposition 4.5 indicatesDAgg, which extends further toD
Ãgg

in proposition

4.6. Proposition 6.1 develops the syntactic form and semantic form of the collection
of compound fuzzy sets {dij : i = 1, . . . , r; j = 1, . . . , p} for the decision attitude.
The DAgg can be applied to fX (HD). Thus, the form of D”

Ãgg
is derived. �

Regarding the final selection of the representation of 2nd degree DA fuzzy sets
and AOs, two definitions are formed.

Definition 6.3. If an aggregation operator has more than one of the 2nd degree
DA fuzzy sets, the selection of DAs for the dedicated AO is of the form:
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d”∗ (k) = ArgMax
({{

y(k), di,j
}

: di,j 6= ∅
})

(28)

d”∗ (k) returns the index of the linguistic label to describe the AO.

Definition 6.4. If the 2nd degree DA fuzzy set dij includes more than one aggre-
gation operator, the selection of AOs of dij is of the form:

d∗ij = ArgMax
({{

y(1), dij
}
, . . . ,

{
y(k), dij

}
, . . . ,

{
y(m), dij

}})
(29)

d∗ij returns the index in ~Y to represent the linguistic label dij .

Algorithm 6.5. DAAO-2 = CSAO-2
(
D, Ãgg,X,

(−→
Vh,
−→
Vd

)
,
(
φ
(−→
Vh

)
, λ0

))
:

Input:

a. A collection of the 1st degree DA linguistic variable: D = {d1, · · · , dj , · · · , dp}
is comprised of the membership set {µdj} and the corresponding inverse

membership set
{
µ−1
dj,ϕ=′−′,′θ′,′+′

}
with the tuning factor set {τdj};

b. A vector of hedge terms
−→
Vh and A vector of directional terms

−→
Vd;

c. A collection of AOs: Ãgg = (Agg1, . . . , Aggk, . . . , Aggm);
d. A collection of information granules: X = (x1, . . . , xi, . . . , xn);

e. A collection of the parameters of the member fuzziness process:
(
φ
(−→
Vh
)
, λ0

)
;

Process:

Step 1: Compute Ãgg (X), and then Y = (y1, . . . , yk, . . . , ym) is achieved;

Step 2: Get the permutation of Y : ~Y =
{
y(1), . . . , y(k), · · · , y(m)

}
;

Step 3: Get [y∗ , y
∗] =

[
y(1), y(m)

]
;

Step 4: Calculate intervals and {(γdj ,∆dj )}
p
j=1 forDby equally diving [y∗ , y

∗];

i. d1 =
(
y∗, y∗, y∗ + y∗−y∗

p−1

)
= (γd1 , γd1 , γd1 + ∆d1)

ii. dj 6=1,p =
(
y∗ + y∗−y∗

p−1 (j − 2), y∗ + y∗−y∗
p−1 (j − 1), y∗ + y∗−y∗

p−1 (j)
)

= (γdj −∆dj , γdj , γdj + ∆dj )

iii. dp =
(
y∗ − y∗−y∗

p−1 , y∗, y∗
)

= (γdp −∆dp , γdp , γdp)

Step 5: Elicit memberships µdj for Dby interpolation of (a,b,c).

Step 6: Calculate D
(
~Y
)

, D
Ãgg

and d∗ (k), ∀k.

Step 7: Form HD with rating interface by Algorithm 5.1.
Step 8: Calculate {dij : i = 1, . . . , r; j = 1, . . . , p} of HD by

fX

({(
γdj ,∆dj , τdj , µ

−1
djϕ

)}
, [y∗ , y

∗] ,
(
φ
(−→
Vh

)
, λ0

))
(Algorithm 5.2)

Step 9: Calculate D”
Ãgg

(
~Y
)

Step 10: Calculate d”∗ (k), ∀k in D”
Ãgg

(
~Y
)

.

Step 11: Calculate d∗ij , i = 1, . . . , r; j = 1, . . . , p

Output:
{
d∗ij
}

//END
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Example 6.6. This example is a continuation of Example 4.12. DAAO-2 is illus-
trated as follows.
Input:

a. D = {d1, d2, d3} ={P,N,O};
µdj is the symmetric triangular membership, ∀j ∈ {1, 2, 3};
µ−1
dj,ϕ=′−′,′θ′,′+′ is the inversed triangular membership set, ∀j ∈ {1, 2, 3};
τdj = 1, ∀j ∈ {1, 2, 3} ;

b.
−→
Vh = [Little,Quite,Much] , and

−→
Vd = [Below,Absolutely,Above]

c. A collection of AOs: Ãgg = (Agg1, . . . , Aggk, . . . , Agg17);
d. A collection of information granules:

C = (0.4, 0.5, 0.6, 0.7, 0.9) ,
W = owaW (0.6, 5) = (0.3801, 0.1964, 0.1589, 0.1387, 0.1253) ,
and thus X = ((0.4, 0.1978) , . . . , (0.9, 0.6250));

e. A collection of the parameters of the member fuzziness process:(
φ
(−→
Vh

)
, λ0

)
= ({1, 2, 3} , 0.5) ;

Figure 4. Deductive Rating Strategy in the Rating Interface of CLOS

Process:

Step 1-3: Y = Ãgg (X) =

{
0.5375, 0.5137, 0.5332, 0.5557, 0.6949, 0.3807, 0.4, 0.6939,

0.5019, 0.4619, 0.5127, 0.5, 0.5, 0.5, 0.1193, 0.5199, 0.4868

}
;

~Y =

{
0.1193, 0.3807, 0.4, 0.4619, 0.4868, 0.5, 0.5, 0.5, 0.5019, 0.5127,

0.5137, 0.5199, 0.5332, 0.5375, 0.5557, 0.6939, 0.6949

}
;

[y∗ , y∗] =
[
y(1), y(m)

]
= [0.1193, 0.6949] ;
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Step 4: Calculate intervals and {(γdj ,∆dj )}
3
j=1 for D:

i. d‘ = (0.1193, 0.1193, 0.4071) ;
ii. d2 = (0.1193, 0.4071, 0.6949) ;
iii. d3 = (0.4071, 0.6949, 0.6949) ;
iv. {γdj} = {0.1193, 0.4071, 0.6949} and ∆dj = 1,∀j ∈ {1, 2, 3};

Step 5: Elicit memberships µdj for D. The results are shown in Figure 3.

Step 6: Calculate D
(
~Y
)

=
{
D
(
y(k)

)}
, D

Ãgg
and d∗ (k), ∀k. The results are

shown in Table 3.

Step 7: Form HD with rating interface by Algorithm 5.1.−→
Vhd= [vhd1 , · · · , vhd7 ]= [Much Below,Quite Below, Little Below, Abso-

lutely, Little Above,Quite Above,Much Above], thus

HD = Gℵ (H,D) =



∅ MB −N MB −O
∅ QB −N QB −O
∅ LB −N LB −O

A− P A−N A−O
LA− P LA−N ∅
QA− P QA−N ∅
MA− P MA−N ∅


And the rating interface is shown in Figure 4.

Step 8: Calculate {dij} of HD by

fX

({(
γdj ,∆dj , τdj , µ

−1
djϕ

)}
, [y∗ , y

∗] ,
(
φ
(−→
Vh

)
, λ0

))
(Algorithm 5.2). Thus,

{dij} =



∅ (0.1193, 0.2092, 0.2992) (0.4071, 0.4971, 0.5870)
∅ (0.2392, 0.3112, 0.3831) (0.5270, 0.5990, 0.6709)
∅ (0.3472, 0.3771, 0.4071) (0.6350, 0.6649, 0.6949)

(0.1193, 0.1193, 0.1193) (0.4071, 0.4071, 0.4071) (0.6949, 0.6949, 0.6949)
(0.1193, 0.1493, 0.1793) (0.4071, 0.4371, 0.4671) ∅
(0.1433, 0.2152, 0.2872) (0.4310, 0.5030, 0.5750) ∅
(0.2272, 0.3172, 0.4071) (0.5150, 0.6050, 0.6950) ∅



Step 9: Calculate D”
Ãgg

(
~Y
)



∅
(
017
) 

03, 0.6095, 0.8860, 0.9672,
0.9672, 0.9672, 0.9463,
0.8265, 0.8152, 0.7455,
0.5978, 0.5503, 0.3482, 02


∅

(
01, 0.0332, 016

) (
012, 0.0860, 0.1455,
0.3981, 02

)
∅

(
01, 0.8799, 0.2372, 014

) (
017
)(

1, 016
) (

017
) (

016, 1, 1
)(

017
) (

03, 0.1716, 013
)

∅

(
017
) 

03, 0.4285, 0.7742, 0.9576,
0.9576, 0.9576, 0.9838,
0.8665, 0.8523, 0.7652,
0.5806, 0.5212, 0.2686, 02

 ∅

(
01, 0.2933,
0.0791, 014

) (
011, 0.0545, 0.2022, 0.2497,
0.4518, 02

)
∅
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“0” means that the membership of AO is equal to zero in this compound
linguistic term. The index of “0” means the number of zeros.

Step 10: Calculate d”∗ (k), ∀k in D”
Ãgg

(
~Y
)

. The results are shown in Table

5.

(k) Agg y(k) D”
(
y(k)

)
d”∗ (k)

1 wmedf 0.1193 {A-P(1)} A-P

2 owmax 0.3807 {MA-P(0.293),QB-N(0.033),LB-
N(0.880)}

LB-N

3 owmin 0.4 {MA-P(0.079),QB-N(0.237)} QB-N

4 wmed 0.4619 {LA-N(0.172),QA-N(0.428),MB-
P(0.609)}

MB-P

5 wmedss 0.4868 {QA-N(0.774),MB-O(0.886)} MB-O

6 wmedmm 0.5 {QA-N(0.958),MB-O(0.967)} MB-O
7 wmeddp 0.5 {QA-N(0.958),MB-O(0.967)} MB-O

8 wmedy 0.5 {QA-N(0.958),MB-O(0.967)} MB-O

9 wgo 0.5019 {QA-N(0.984),MB-O(0.946)} QA-N
10 wmedl 0.5127 {QA-N(0.866),MB-O(0.827)} QA-N

11 whm 0.5137 {QA-N(0.852),MB-O(0.815)} QA-N

12 wmedws 0.5199 {QA-N(0.765),MA-N(0.054),MB-
O(0.745)}

QA-N

13 wgm 0.5332 {QA-N(0.581),MA-N(0.202),MB-
O(0.598),QB-O(0.086)}

MB-O

14 wrp 0.5375 {QA-N(0.521),MA-N(0.250),MB-

O(0.550),QB-O(0.145)}
MB-O

15 wam 0.5557 {QA-N(0.269),MA-N(0.452),MB-

O(0.348),QB-O(0.398)}
MA-N

16 owa 0.6949 {A-O(1)} A-O
17 Leximin 0.6949 {A-O(1)} A-O

Table 5. The Results for D”
(
~Y
)

and d”∗ (k) of 17 AOs

Step 11 and Return: Calculate d∗ij , i = 1, . . . , r; j = 1, . . . , p

{
d∗ij
}

= d∗ij





∅ MB −N MB −O
∅ QB −N QB −O
∅ LB −N LB −O

A− P A−N A−O
LA− P LA−N ∅
QA− P QA−N ∅
MA− P MA−N ∅




=



∅ 0 6, 7, 8
∅ 2 15
∅ 2 0
1 0 16, 17
0 4 ∅
0 9 ∅
2 15 ∅


“0” means no AO is available in this compound linguistic term. Another

number means the index in ~Y .

If a linguistic term (e.g. MB-O, A-O) includes more than one AOs (e.g. (6,7,8)
or (16,17)), either of the AOs can be used since the AOs produce the same result
with respect to a compound fuzzy set.



50 K. K. F. Yuen

Example 6.7. Using DAAO-2, this example considers only seven AOs used in
Example 4.13. Steps 1 and 7 are skipped. The remains of the steps are illustrated
as follows:

Step 8: Calculate {dij}

{dij} =



∅ (0.4619, 0.4983, 0.5347) (0.5784, 0.6148, 0.6512)
∅ (0.5105, 0.5396, 0.5687) (0.6270, 0.6561, 0.6852)
∅ (0.5542, 0.5663, 0.5784) (0.6707, 0.6828, 0.6949)

(0.4619, 0.4619, 0.4619) (0.5784, 0.5784, 0.5784) (0.6949, 0.6949, 0.6949)
(0.4619, 0.4741, 0.4862) (0.5784, 0.5906, 0.6027) ∅
(0.4716, 0.5008, 0.5299) (0.5881, 0.6173, 0.6464) ∅
(0.5056, 0.5402, 0.5784) (0.6221, 0.6585, 0.6949) ∅


Step 9: Calculate D”

Ãgg

(
~Y
)

.

D”Ãgg

(
~Y
)

=



∅
(

01, 0.9025, 0.5786,
0.0415, 03

) (
07
)

∅
(

02, 0.1101, 0.7813,
0.9282, 0.4477, 01

) (
07
)

∅
(
05, 0.1255, 01

) (
07
)(

1, 06
) (

07
) (

07, 1
)(

07
) (

07
)

∅(
02, 0.9615, 0.5566, 04

) (
07
)

∅(
02, 0.2214, 0.7584,
0.8759, 0.6248, 01

) (
07
)

∅


“0” means that the membership of AO is equal to zero in this compound

linguistic term. The index of “0” means the number of zeros.

Step 10: Calculate d”∗ (k), ∀k in D”
Ãgg

(
~Y
)

, which are shown in Table 6.

Step 11: and Return :
{
d∗ij
}

is shown as follows.

{
d∗ij
}

= d∗ij





∅ MB −N MB −O
∅ QB −N QB −O
∅ LB −N LB −O

A− P A−N A−O
LA− P LA−N ∅
QA− P QA−N ∅
MA− P MA−N ∅




=



∅ 2 0
∅ 5 0
∅ 6 0
1 0 7
0 0 ∅
2 0 ∅
5 0 ∅


“0” means no AO is available in this compound linguistic term. Another

number means the index in ~Y .

One can purely use DAAO-1, or DAAO-2. However, the selection function by
ArgMax is excessively straightforward in DAAO-1 in many AO candidates for one
DA linguistic term dj , whilst DAAO-2 contains no AOs for some linguistic terms if
insufficient AO candidates for the relatively large scale of the compound linguistic
terms. Regarding the number of AO candidates, the selection strategy to combine
DAAO-1 and DAAO-2 is of the following algorithm.



A Cognitive Style and Aggregation Operator Model: a Linguistic Approach for Classification ... 51

(k) Agg y(k) D”
(
y(k)

)
d”∗ (k)

1 wmed 0.4619 {A-P(1)} A-P
2 wgo 0.5019 {QA-P(0.962),MB-N(0.903)} QA-P
3 whm 0.5137 {QA-P(0.557),MA-P(0.221),MB-

N(0.579),QB-N(0.110)}
MB-N

4 wgm 0.5332 {MA-P(0.758),MB-N(0.042),QB-N(0.781)} QB-N
5 wrp 0.5375 {MA-P(0.876),QB-N(0.928)} QB-N
6 wam 0.5557 {MA-P(0.625),QB-N(0.448),LB-N(0.126)} MA-P
7 owa 0.6949 {A-O(1)} A-O

Table 6. The Results for D”
(
~Y
)

and d”∗ (k) of Seven AOs

Algorithm 6.8. (Selection Strategy, SAO
(

(dj , hi) ,
(
D
Ãgg

, d”∗ (k)
))

):

Input: D
Ãgg

of DAAO-1, and d”∗ (k) of DAAO-2.

Selection Process:

Step 1: Select an atomic term of DA dj .

Step 2: Check if no AO return for the dj in D
Ãgg

,

True: Return empty message and go to Step 1.
False: Go to Step 3.

Step 3: Check if only one AO return for the dj in D
Ãgg

,

True: Return Agg(k).
False: Go to Step 4.

Step 4: Select the directional hedge term hi.

Step 5: Check if no AO return for the dij = hi ⊕ dj in d”∗ (k),
True: Return empty message and go to Step 4 or 1.
False: Return Agg(k) = d”∗ (k).

Return: Agg(k). //End

Example 6.9. Consider Examples 4.13 and 6.7. The rating interface can be re-
ferred to Figure 4. Three cases are illustrated.

Case 1: d3= ‘Opt’.
Input: D

Ãgg
of DAAO-1 in table 4 and d”∗ (k) of DAAO-2 in Table 6.

Selection Process

Step 1: Select an atomic term of DA: d3=”Opt”.
Step 2: owa return for the dj in D

Ãgg
,

Step 3: Only one AO return for the dj in D
Ãgg

,

Return: Agg(7) = owa

Case 2: d2=”Ntl”.

Input: D
Ãgg

of DAAO-1 in table 4 and d”∗ (k) of DAAO-2 in Table 6.
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Selection Process:

Step 1: Select an atomic term of DA: d2=”Ntl”.

Step 2 and 3: wgm, wrp, and wam return for the dj .

Step 4: Select the directional hedge term hi.

Step 5: Check if no AO return for the dij = hi ⊕ dj in d”∗ (k),

True: Return empty message and go to Step 4 (As dj=”Ntl” is as-
sumed,
Step 1 is skipped).
False: Return Agg(k) = d”∗ (k).

Return: Agg(k) = wgo,wrp, wam depends on which valid hi is firstly
selected.

Case 3: which d1=”Pes”, is similar to Case 2. Agg(k) = wmed,wgo, wrp
depends on which valid hi is firstly selected.

7. CSAO in Decision Matrix

In a decision matrix, more than one alternative is considered. This means dif-
ferent input value setsX’s possibly produce different {d∗ (k)},

{
d∗j
}

, and
{
d∗ij
}

. To
address this issue, three definitions are created as follows:

Definition 7.1. In the decision matrix, the linguistic presentation of the style of
the decision attitude for the AOs is computed by the form:{

d∗β (k)
}∗

= Max
(
Mode

(
Join

({
d∗β (k)

})))
, (30)

where β is the index of the alternative of the decision matrix. Join is the function
which combines the matrices, and Mode is the value that occurs the most frequently

in an entry of Join
({{

d∗ij
}
β

})
.

Definition 7.2. In a decision matrix, the AO of the style of the decision attitude
for the linguistic terms is computed as:{{

d∗j
}
β

}∗
= Max

(
Mode

(
Join

({{
d∗j
}
β

})))
(31)

Definition 7.3. let
{
d∗ij
}
β

be the DAAO-2 pattern of the alternativeβ. Then, the

pattern of the decision matrix is of the form:{{
d∗ij
}
β

}∗
= Max

(
Mode

(
Join

({{
d∗ij
}
β

})))
(32)

If more than one AO index is returned in the entry, the index number with the
highest value is chosen since it is likely to produce higher value for each alternative
of the decision matrix. Thus the Max is taken. Also Max can eliminate “0” values.
The Selection Strategy in Decision matrix is illustrated in Algorithm 7.4.

Algorithm 7.4. (Agg(k) = CSAO
(

(hi, dj) , {X} , Ãgg,D,
(−→
Vh,
−→
Vd
)
,
(
φ
(−→
Vh
)
, λ0

))
:

Input: (hi, dj) , D, Ãgg,X,
(−→
Vh,
−→
Vd
)
,
(
φ
(−→
Vh
)
, λ0

)
Process:



A Cognitive Style and Aggregation Operator Model: a Linguistic Approach for Classification ... 53

Step 1: Calculated d∗β (k) in CSAO1
(
D, Ãgg,Xβ

)
∀β ∈ {1, . . . , |{X}|}

(Algorithm 4.10)

Step 2:
{
d∗j
}
β

= CSAO1
(
D, Ãgg,Xβ

)
, ∀β ∈ {1, . . . , |{X}|} (Algorithm

4.10)

Step 3:
{
d∗ij
}
β

= CSAO2
(
D, Ãgg,Xβ ,

(−→
Vh,
−→
Vd

)
,
(
φ
(−→
Vh

)
, λ0

))
,

∀β ∈ {1, . . . , |{X}|} (Algorithm 5.1)

Step 4:
{
d∗β (k)

}∗
= Max

(
Mode

(
Join

({
d∗β (k)

})))
Step 5:

{{
d∗j
}
β

}∗
= Max

(
Mode

(
Join

({{
d∗j
}
β

})))
Step 6:

{{
d∗ij
}
β

}∗
= Max

(
Mode

(
Join

({{
d∗ij
}
β

})))
Step 7: Check if no AO return for the dj in

{
d∗β (k)

}∗
,

True: Return Empty message and go to Input to request another dj .
False: Go to Step 4.

Step 8: Check the numbers of AO’s return for the dj in
{
d∗β (k)

}∗
,

1: ReturnAgg(k) =
{
d∗β (k)

}∗
without considering hi.

2-3: Return Agg(k) =
{{
d∗j
}
β

}∗
without consideringhi.

≥ 4 : Go to Step 9.

Step 9: Check if no AO return for the dij = hi ⊕ dj in
{{
d∗ij
}
β

}∗
,

True: Return empty message and go to Input with new (hi, dj).

False: Return Agg(k) =
{{
d∗ij
}
β

}∗
.

Return: Agg(k). //End

The use of this algorithm is shown in the section 7.3. The next section performs
the numerical analyses for the proposed DSAO model to validate its usability and
validity.

8. Numerical Analyses

Three major analyses are performed and discussed as follows.

8.1. Scenario. Consider a decision matrix as follows,

Ō =

W
C
T1

T2

T3

T4

T5

(w1 w2 w3 w4 w5)
(c1 c2 c3 c4 c5)
0.5 0.5 0.6 0.7 0.9
0.5 0.7 0.9 0.8 0.5
0.6 0.9 0.5 0.7 0.5
0.4 0.5 0.6 0.8 0.9
0.5 0.9 0.5 0.7 0.5

 ,

where W = owaW (δ) , δ ∈ {0.1, 0.2, . . . , 1}, which is shown in Table 7.
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In this section, firstly, ten different decision matrices of the above form are cre-
ated with 10 weight sets (Table 7). The matrices are further aggregated by 10 aggre-

gation operators defined as: Ãgg = (whm,wgm,wam,wmed,wrp01, wrp05, wrp20,
wgo01, wgo05, wgo09), where 01 means α = 0.1 , and so on.

Secondly, regarding discussion of the research values, the decision matrix with
α = 0.9 is selected for the application of DSAO-2.

δ w1 w2 w3 w4 w5

0.1 0.851 0.061 0.038 0.028 0.022
0.2 0.725 0.108 0.070 0.053 0.044
0.3 0.617 0.143 0.098 0.077 0.065
0.4 0.525 0.168 0.122 0.099 0.085
0.5 0.447 0.185 0.142 0.120 0.106
0.6 0.381 0.196 0.159 0.139 0.125
0.7 0.324 0.202 0.173 0.156 0.145
0.8 0.276 0.205 0.184 0.172 0.163
0.9 0.235 0.203 0.193 0.187 0.182
1 0.200 0.200 0.200 0.200 0.200

Table 7. W Generated by owaW (δ) , δ ∈ {0.1, 0.2, . . . , 1}

8.2. Properties of Individual AOs. Ten decision matrices of the variation of
weight sets are aggregated by ten AOs. The weight sets are generated by owaW (δ) , δ ∈
{0.1, 0.2, . . . , 1} and are shown in Table 7. The larger δ means the less gap among
the individual weights. When δ = 1, all weights are of equal values. The data are
plotted in Figures 5 and 6 .

Figures 5 and 6 show that different AOs behave differently for different decision
matrices. This means that each AO has a different style. wrp and wgo with different
α produce different results and likely different ranks. This means that a different
AO with different α can have its own style.

Although w1 > w2 > . . . > w5 except for δ = 1, the distribution among the
weights are narrowed whilst δ increases. The sensitivity of each AO for the changes
of weight is different. When the difference among the weights get less (e.g. increase
of δ), the outputs of wgo05 and wgo09 decrease while the outputs of others AOs
increase. In addition, wmed has relative sensitivity of the change of the values of
weights.

Regarding the patterns of the AO population in the figures, the figures show
that the lines of AOs are closer while δ decreases. When δ increases, which means
the gap of the weights of the criteria is reduced, the lines get farther apart. The
main reason is that the criteria in a high index becomes more significant, and the
values of the criteria in a higher index are more than the values of the criteria in a
lower index.

Regarding the patterns of CSAO, the number of the AOs in Opt should be more
than the number of the AOs in Pes. The main reason is that more lines are located
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Figure 5. Results of Individual Aggregation Operators (Part I)

in upper position of the y-axis. In the next sub-section this issue is investigated in
depth.

8.3. Selection of AO by CSAO. What a decision maker finally feels of interest is
not the properties of the aggregation operators, but which AO is the most suitable.
In fact, there is likely no absolute answer. In the real world, no decision maker can
always guarantee an absolutely accurate answer (except for those who are arrogant),
but the best and the most appropriate answer which he think it is correct (but others
may not agree). Similarly, why they make different decisions when the objective
situation and background are the same? One of the explanations is that they
have different cognitive styles or individual differences. Some make clever decisions
whilst some do not. In the mathematician’s view, how they make decision can be
modeled by equations. In the CSAO model, each AO reflects a different cognitive
style. CSAO is used to classify the cognitive styles. This research proposes that
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Figure 6. Results of Individual Aggregation Operators (Part II)

CSAO is represented by DAAO-1 and DAAO-2. The rating interface can be referred
to Figure 4.

Tables 8 and 9 show the
{
d∗β (k)

}∗
and

{{
d∗j
}
β

}∗
of DAAO-1 of the proposed

decision matrix where W = owaW (0.9). Interestingly, no matter which alternative
input set of the decision matrix is used, the order of the AOs (k) is preserved to be
the same.

(k) Agg d∗1 (k) d∗2 (k) d∗3 (k) d∗4 (k) d∗5 (k)
{
d∗β (k)

}∗
1 wrp01 Pes Pes Pes Pes Pes Pes
2 wrp05 Ntl Ntl Ntl Ntl Ntl Ntl
3 wgo05 Ntl Ntl Ntl Ntl Ntl Ntl
4 wam Opt Opt Opt Ntl Ntl Opt
5 wrp20 Opt Opt Opt Ntl Opt Opt
6 wgo01 Opt Opt Opt Opt Opt Opt
7 wgo09 Opt Opt Opt Opt Opt Opt
8 wmed Opt Opt Opt Opt Opt Opt
9 wgm Opt Opt Opt Opt Opt Opt
10 whm Opt Opt Opt Opt Opt Opt

Table 8. The Linguistic Presentation of the Style of the Decision

Attitude for the AOs of the Decision Matrix {d∗ (k)}∗
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j d
{
d∗j
}

1

{
d∗j
}

2

{
d∗j
}

3

{
d∗j
}

4

{
d∗j
}

5

{{
d∗j
}
β

}∗
1 Pes 1 1 1 1 1 1
2 Ntl 3 3 3 3 3 3
3 Opt 10 10 10 10 10 10

Table 9. The AO of the Style of the Decision Attitude for the

Linguistic Terms of the Decision Matrix
{{
d∗j
}
β

}∗
If the decision maker chooses Opt, there are seven options to represent the Op-

timistic AO. It is too subjective to use ArgMax in equation 21, thus DAAO-2 is
needed. From DAAO-2 (Algorithm 5.1),

{
d∗ij
}

1
,
{
d∗ij
}

2
,
{
d∗ij
}

3
,
{
d∗ij
}

4
,
{
d∗ij
}

5
are

as below respectively:

∅ 0 3
∅ 2 5
∅ 0 9
1 0 10
0 3 ∅
0 3 ∅
2 5 ∅


,



∅ 0 3
∅ 2 5
∅ 0 9
1 0 10
0 3 ∅
0 3 ∅
2 5 ∅


,



∅ 0 3
∅ 2 5
∅ 0 9
1 0 10
0 0 ∅
0 3 ∅
2 5 ∅


,



∅ 2 4
∅ 2 7
∅ 0 9
1 0 10
0 3 ∅
0 4 ∅
2 7 ∅


,



∅ 0 3
∅ 2 5
∅ 0 9
1 0 10
0 0 ∅
0 3 ∅
2 6 ∅


From equation 32 in Definition 7.3, then

{
d∗ij
}∗

= Max
(
Mode

(
Join

({{
d∗ij
}
β

})))
=



∅ 0 3
∅ 2 5
∅ 0 9
1 0 10
0 3 ∅
0 3 ∅
2 5 ∅


If a decision maker chooses “Pes” for the AO in the decision system, in the first

rating step, there is only one choice, wrp01, as it is indicated in Table 8. The
second rating category in Vhd is unnecessary.

If “Ntl” is chosen, for the representation of AO, wrp05 and wgo05 are the can-
didates, by using equation 7, where wgo05 is for “Ntl”.

When “Opt” is chosen, there are seven candidates. It is too straightforward to
use ArgMax (equation 21). Thus the second rating category in Vhd is needed. The

index of the AO can be found in
{
d∗ij
}∗

. wgo05,wrp20,wgo09 and wgm are the
options with respect to the choice of the second rating linguistic term.

9. Conclusions

As different aggregation operators produce different results, these results can
be described by the possibility likelihoods of the cognitive styles. The selection of
the aggregation operators is related to the likelihoods of the cognitive styles of the
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operators. To achieve the proposal, the Cognitive Style and Aggregation Operator
(CSAO) model is proposed to analyze the mapping relationship between aggrega-
tion operators and cognitive style on the basis of fuzzy set theory. The CSAO model
has two types of Decision Attitude and Aggregation Operator (DAAO) model:
DAAO-1, DAAO-2. The difference is that DAAO-1 applies classical single dimen-
sion linguistic terms whilst DAAO-2 applies the compound linguistic terms. Three
Algorithms for AO selection are developed.

The appropriate operators will be chosen according to the linguistic terms of the
decision attitudes in the CSAO model. The cognitive style is characterized by the
decision attitude. The CSAO model is useful for measuring the distribution of the
AOs.

Examples 4.12 and 6.6 test 17 AOs. On the basis of the result pattern, Examples
4.13 and 6.7 select only 7 AOs. From the numerical examples, it can be concluded
that the weighted median with other t-connorms and t-norms, owmax, owmin, and
owa is not appropriate for the aggregation of the decision matrix. The reasons are
stated after the numerical Examples 4.12 and 4.13.

In the section of numerical analyses, 10 AOs are tested for 10 decision matrices.
The best practices of AO selection are illustrated using the combination of DAAO-1
and DAAO-2.

Limitation of the CSAO model is that the CSAO relies on the definitions of the
candidates. If some candidates are abnormal, the CSAO pattern will be abnormal
too. Usually the abnormal operators produce excessively optimistic or excessively
positive results. In this case, the expert can remove the abnormal AO by his
perception, and then recalculate the patterns again. After several refinements of
the patterns, the appropriate CSAO model can be developed.

The CSAO is devoted to a proposal as how to map a collection of aggregation
operators into a collection of decision attitudes by the CSAO model. This model is
typically useful for those unsolved issues in the selection of aggregation operators.
The OA candidates are determined by the decision maker with respect to the cog-
nitive styles, which are characterized by decision attitudes. Thus the CSAO model
is useful for the decision making applications with consideration of the cognitive
styles (or decision attitudes) of the decision makers.
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