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Abstract
Face recognition has many challenges. For instance, the

illumination, various facial expression and different view-
points add difficulties to identify the same person from a
bunch of images. Searching over a huge set of images will
only amplify such difficulties. We introduce the location
aware face recognition framework for mobile-taken photos
to alleviate the hardness. With the help of location sensor on
the mobile devices, we collect images with location informa-
tion. We propose an algorithm to reduce the search space of
face recognition and therefore achieve better accuracy. Pho-
tos are clustered by locations on the server. Each location is
then associated with a face classifier. Every client can send
a “Who is Here” type query to the server by uploading an
image with the location. The algorithm on the server will
search over the given location and identify the person on the
image. Experiments are conducted on mobile devices. The
results are quite promising that higher accuracy is achieved
and the query can be answered in near real-time.

1 Introduction
Face recognition is a well studied area, due to its impor-

tance in security and intelligent social network applications.
However, it still has many challenges. For a single per-
son, he can have many facial expressions which are difficult
to match. Similarly, hair style, cosmetics, with or without
glasses, the illumination and the varied viewpoints can cause
strikingly different features of the face. For a system that an-
swers a query of identifying a random person in the image,
searching over all images and doing pairwise comparisons
between face features will amplify all these difficulties and
make the task extremely hard.

The new generation of mobile devices sheds light of so-
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lutions to alleviate this problem. There are many sensors
embedded in the smart, small, thin and light mobile devices.
They can tell where users are standing and what direction
they are moving. Some even have sensors for temperature
and humidity, combining with microphones to better de-
termine the location and surroundings. In addition, smart
phones are used as go-to cameras by more and more peo-
ple, because they are easy to carry and convenient to use. A
study said smartphones took 27 percent of all photos in 2011,
while regular cameras account for 44 percent. In Flickr, an
online social photo sharing website, iPhone 4 is responsible
for more photos posted to this site than any other devices.
These facts show that we can easily obtain a huge data set
of mobile-taken photos with extra sensor information asso-
ciated to each photo.

Among all sensors, we are interested in the location in-
formation. We introduce the location aware face recognition
problem and investigate how we can take advantage of lo-
cation information of the image. The intuition is that given
information of where the user is, we can narrow down the
search space of who the user is. People took photos at a cer-
tain place. A user will have different probabilities to appear
in photos which are taken at some places than other places
that the user has never been to. For instance, supposing Alice
lives at Palo Alto, California, photos taken at Alice’s home
have very high chance that belong to Alice, her family and
friends, instead of a random resident from the south of China.
Therefore, when we want to identify the person in a photo,
we can save some effort and gain accuracy by only com-
paring photos which are taken at places that person usually
appears.

Based on these assumptions, we build the system with a
location based data structure to organize photos and recog-
nize faces. Formally the face recognition problem is : Given
a set of face images labeled with the person’s identify (the
training set) and an unlabeled set of testing photos from the
same group of people (the testing set), we aim at identify-
ing each person in the testing photos. In our system, each
face image associates with a location. The server creates
many clusters of locations from the training set. Each loca-
tion cluster contains a set of users who have photos in that
location, their photos, besides photos of their friends. The
client can take a photo and attach its location information,
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then send it to the server and query for the person in the
photo. The server will answer the query and return the iden-
tification of the person in the photo. Challenges lie in how
to form the location clusters and what granularity we choose
for locations; how to process the photo and extract useful
features; how to search smartly to recognize the face and
identify the person; what we can do to accelerate the whole
process and avoid long response time on the client side. We
will explain our approach to tackle each challenge in the pa-
per.

We conducted experiments on a dataset containing about
two thousand images with the ground truth. We compared
the face recognition accuracy between our approach with
an algorithm which does not consider locations. The result
shows a significant improvement on the accuracy. We also
present that the system runs quite fast and the whole process
takes less than two seconds.

Our main contributions are as follows.
1. We make use of the location information from mobile-

taken photos and propose a face recognition algorithm
which reduces the search space to a large extent. We
build a hybrid face recognition algorithm. We will
firstly searching and matching photos within the given
location, if this fails, we then search over all photos.

2. We take into account of the social network information.
When we identify a user appearing frequently in a lo-
cation, his friends also have high chance to show up in
that location. Thus friends photos are also used to train
the face classifier for the location.

3. We transmit the compressed face descriptor to the
server for the query rather than sending the original im-
age, which saves the network traffic and reduces the re-
sponse time.

The paper is organized as follows: Section 2 outlines the
recent work in the mobile computing and the face recogni-
tion. Our system and algorithm are presented in Section 3.
Experimental evaluations are shown in Section 4. Finally, we
conclude the paper and discuss the future work in Section 5.
2 Related Work

With the improvement on the computation power on mo-
bile devices, many researchers seek to shift the computation
to the mobile client. In [4], the authors propose a tool called
Kobe that aids mobile classifier development, which helps to
optimize mobile classiers for accuracy and cost. PhoneGuide
[2] is one of the first object recognition systems perform-
ing the computation on a mobile phone, instead of sending
the images to a remote server. The system employs a neu-
ral network trained to recognize normalized color features
and is used as a museum guide. Seifer et al. [13] use a mo-
bile system based on a hand-held device, GPS sensor, and
a camera for roadside sign detection and inventory. Their
algorithm was efficient enough to ensure good quality re-
sults in mobile settings. In the context of augmented reality,
Fritz et al. [6] use a modified version of the SIFT algorithm
[10] for object detection and recognition in a relatively small
database of mobile phone imagery of urban environments.
The system uses a client-server architecture, where a mobile
phone client captures an image of an urban environment and

sends it to the server for analysis. Takacs et al. [14] build
an outdoor augmented reality system for mobile phones that
matches camera-phone images against a large database of
location-tagged images using a robust image retrieval algo-
rithm. Their idea to store a set of informative features for
each location is similar to ours but their goal is to recognize
rigid objects such as buildings or road signs.

Besides the general object recognition, there has been
considerable work on automatic face recognition. The de-
scriptor based methods [3] [21] and subspace based meth-
ods [16] [1] [20] are two representative appearance-based
approaches. The descriptor based methods extract dis-
criminative information from the facial landmarks, and the
subspace-based algorithms learn an optimal subspace for
recognition. Context information has also been exploited to
help face recognition [7]. Context information that has been
investigated includes body and clothes, GPS tags and time
stamps, people co-occurrence, etc. In the most recent work,
people, location and event have been jointly recognized by a
generic probabilistic model [9].

Several face recognition algorithms are implemented on
mobile devices. In [8], the authors prototype and test a face
recognition tool on the smartphone for blind users. The tool
utilizes smartphone technology in conjunction with a wire-
less network to provide audio feedback of the people in front
of the blind user. Qin et al. [12] build an automatic tagging
system on a mobile phone that senses the people, activity,
and context in a picture. They develop three different meth-
ods based on posing, compass, and movement, to identify
the people in a picture.

3 The Framework
Figure 1 shows the overview of our idea. On the client

side, the user uses the mobile phone to take a photo of the
people and sends the recognition query to the server via
wireless networks. The face features are extracted and com-
pressed on the phone. Both face features and location in-
formation are transmitted to the server for recognition. On
the server side, we organize the face database by locations.
The face database at one location contains images of people
appeared there in the past. We also augment images from
friends in the social network. The intuition is that people
may invite their friends to visit their home or office with
some probability so we need to include them into our face
database associated with this location. Some public locations
such as landmarks, streets, and parks might contain many
random people; while other locations like home and office
mainly contain a specific group of people. The latter type of
locations is more useful for our algorithm. Images within a
location are then used to train a classifier. We also maintain
a backup classifier when is obtained from all images in our
database. When the query at one location fails, we use the
backup query to identify the person.

3.1 Location Clustering
When we have a collection of labeled photos with geo-

location information, we use the agglomerative clustering to
discover location clusters. We consider each geo-location
data including the longitude and the latitude as a point in the
two dimensional space. Initially, we have n points and assign



Face Descriptor 

Location 

Rose’s Backyard 

Rose and her friends 

Jack’s Home 

Jack and his friends 

Ann’s Office 

Ann and her officemates 

All people 

The Server 

Mobile Phone 

The Client 
Recognition 

Result 

Backup Query 

Backup Database 

Figure 1. The overview of our location aware face recognition algorithm.

them to n different clusters. In each iteration of the clustering
algorithm, we merge two clusters if the distance between two
clusters is the minimum among all pairs of clusters. The
distance between two clusters A and B is defined as:

d(A,B) =
1
|A||B| ∑a∈A

∑
b∈B

d(a,b) (1)

where d(a,b) is the Euclidean distance between point a and
b. We keep merging clusters until the minimum distance in
each iteration is above a threshold or the number of clusters
we want to obtain is reached.
3.2 Face Feature
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Figure 2. The pipeline of the face feature extraction.

To train a classifier for each location, we need to convert
photos associated with the location to feature descriptors. To

describe each face, we adopt local descriptor based face fea-
ture pipeline, which is shown in Figure 2. The Viola-Jones
face detector [18] is used to detect face patches from the in-
put image. To obtain high accuracy, a nested nose detector
is applied to reduce the false positive rate. All face patches
are normalized to the same size. We use the algorithm in
[17] to detect seven facial landmarks from each face patch
including four eye corners, two mouth corners and the nose.
To align each face patch, four landmarks (outer eye corners
and mouth corners) are registered to the pre-defined canon-
ical positions using the affine transformation. The canon-
ical position of each landmark is obtained from averaging
landmarks of all faces. Then all seven facial landmarks are
aligned by the computed affine matrix. Let x f = (x f

0 ,x
f
1 ,1)

T

be the homogeneous coordinates for the landmark f of a non
aligned image, and y f = (y f

0 ,y
f
1)

T the desired coordinates for
the same landmark. We want to obtain the affine transforma-
tion A2×3 such that y f = Ax f . To obtain the six parameters
of A only three landmarks are needed, however, we can use
more landmarks to obtain the set of parameters which mini-
mize the least squares error.

We use the method similar to [15] to remove the effects
of illumination. First, Gamma correction is used, i.e. a trans-
formation of the pixel gray level values I using the non-linear
transform Î = Iγ, with 0 < γ < 1. This enhance the dynamic
range by increasing the intensity in dark regions and decreas-
ing it for bright regions. Next, the image is convolved with
a Difference of Gaussians (DoG) kernel, a bandpass filter



which is intended to remove gradients caused by shadows
(low frequency), to suppress noise (high frequency), and
maintaining the useful signal for recognition (middle fre-
quency). Finally, the histogram equalization is used to have
a standard contrast spectrum for the image.

From each landmark, two SIFT descriptors [10] of dif-
ferent scales are extracted and concatenated to form the face
feature descriptor.

3.3 System
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Figure 3. The client server architecture of the system.

Figure 3 shows the architecture of our system which is
divided into two major components, the mobile client and
the server. These components communicate over a wireless
network.

On the server side, face descriptors are extracted from
photos and trained by a Support Vector Machine (SVM) clas-
sifier [5] with the linear kernel. Each location has its own
SVM classifier and is represented by the coordinate of the
cluster center. We store all locations in an Approximate
Nearest Neighbor (ANN) [11] structure for the fast nearest
neighbor search. When a query is received on the server, it
checks the location information of the query and finds the
nearest location in the database. The classifier associated
with the nearest location is used for the face recognition. A
confidence score is defined for each location based query,
which reflects how well the query is classified. If the confi-
dence score is below a threshold, we can infer that the query
people may not appear at the current location. We then redi-
rect the query to our backup database to search over all pho-
tos.

On the client side, the face descriptor is computed using
the same pipeline in Section 3.2. To save the bandwidth,
we transmit the compressed descriptor over the wireless net-
work. The Lempel-Ziv-Welch (LZW) compression algo-
rithm [19] is used to compress the descriptor before it is sent
to the server. We are able to produce an efficient encoding
for the descriptor that is 1/3 smaller than the original at the
same recognition performance.

4 Evaluations
We use the dataset to validate our approach which con-

tains 2,001 images taken from 60 people. The dataset has 6
locations. We know the names and the social network rela-
tions among these 60 people as the ground truth. After this
step, each location is augmented with images from friends

Table 1. Evaluation Summary. Each row represents the
accuracy of 5 fold cross validation at one location. In
each test, 80% images are used as the training set and
20% images are used as the testing set.

Test 1 Test 2 Test 3 Test 4 Test 5 Average
L1 0.876 0.907 0.814 0.897 0.887 0.876
L2 0.861 0.861 0.806 0.750 0.722 0.800
L3 1.000 1.000 1.000 0.941 0.941 0.976
L4 0.581 0.645 0.516 0.742 0.548 0.606
L5 0.563 0.688 0.625 0.750 0.688 0.663
L6 0.714 0.762 0.619 0.810 0.857 0.752
L7 0.574 0.525 0.495 0.535 0.525 0.531

in the social network. We also store a backup database con-
taining images of all people, which is used when the location
based query fails. The distribution of people at each location
is shown in Figure 4.
4.1 Face Recognition Accuracy
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Figure 4. The distribution of the number of people at
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Figure 5. The performance of our method compared with
the baseline method. The error bar represents the stan-
dard deviation in 5 tests.

To extract the face descriptor, each face patch is normal-
ized to 128× 128 pixels and is registered to the canonical
pose using the affine transformation. To remove the illumi-
nation, we use the DoG filter with σ0 = 1 and σ1 = 2. The



Table 2. The time cost of each step on the phone.
Face Detection Feature Extraction Compression Transmission Total

Time (second) 0.73 0.39 0.14 0.38 1.64

final face descriptor is formed by the concatenation of SIFT
descriptors, obtained from two different scales (4 and 8 pix-
els width) at each landmark. From our experiments, we find
that the selection of SIFT scales is very important.

The five-fold cross validation is conducted to test our ap-
proach. We compare our approach with the baseline method
which uses no location information. On this dataset, we im-
prove the accuracy from 0.531 to 0.745, which is shown in
Figure 5. Each validation result is shown in Table 1.
4.2 Computation on the Phone

We test our algorithm on the Samsung galaxy S II i9100
1.2GHz with 2 cores and 1GB RAM to obtain the bench-
mark. The phone is running on Android 2.3.6 and our algo-
rithm is written in the native code. The captured image is
down-sampled to the resolution of 640×480 for the follow-
ing processing. Table 2 shows the cost of each step on the
phone. Each SIFT descriptor has 128 dimensional floating
point numbers and 7× 2 descriptors are extracted per face.
Therefore, each face descriptor takes 7k bytes before com-
pression. After the compression the size of the descriptor is
around 4.8k bytes. It takes 0.38 seconds in average to trans-
mitted the compressed descriptor via 3G networks.
4.3 Computation on the Server

A single workstation with Intel i7 1.6GHz with 4 cores
and 8GB RAM is deployed as the server. The nearest loca-
tion of the query is first found from the ANN structure. The
complexity of querying the ANN structure is O(logk), where
k is the number of locations in our system. The average time
to find the nearest location is 0.001ms. After we know the
current location of the user, we query the SVM at this loca-
tion to get the recognition result. The average running time
is 0.27ms. The complexity of querying the SVM is O(n),
where n is the number of people at one location. The space
requirement of SVM only depends on the number of people
at one location not the number of training data, which saves
lots of space when the training set is huge.
5 Conclusion

We propose a novel face recognition algorithm on mobile
phones, which leverages the location information to improve
the recognition accuracy. It is an interesting problem and has
many potential applications. One example is that the police
can use our application to query any suspect and search for
his identity without stopping him. There are many future
works that can be done. Scalability will be one issue. When
there are too many locations, is it better to build an index
or ontology of locations to improve the search? Our system
now supports querying persons who exist in the training set.
It’s useful to have some mechanisms to increase the train-
ing set incrementally through the aid of social network or
the crowd wisdom. Another direction is handling the situa-
tion that people move from one place to another. In current
system, one person can be in many locations, which causes

some duplications. It will be interesting if we can build a
local graph of locations for a single person, such that we can
easily search all possible locations a person will appear. The
last but not the least, other sensors including audio or mo-
tion sensors might contribute to face recognition and person
identification as well.
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