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Abstract—Feedback polynomials with low degree multiples of
low weight should be avoided in linear feedback shift registers
when used in nonlinear combiners. We consider another class
of weak feedback polynomials, namely the class when taps
are located in small groups. This class was introduced in
2004 demonstrating that the resulting distinguishing attack can
sometimes be better than the one using low weight multiples. In
this paper we take another look at these polynomials and give
further insight to the theory behind the attack complexity. Using
the Walsh transform we show an easy way to determine the
attack complexity given a polynomial. Further, we show that the
size of the vectors should sometimes be larger than previously
known. We also give a simple relation showing when the new
attack will outperform the simple attack based on low weight
multiples.

I. INTRODUCTION

Symmetric key encryption primitives are either imple-
mented as stream ciphers or block ciphers. Whereas a block
cipher takes a b-bit input string and outputs a b-bit output
using a key dependent permutation on b-bit strings, a stream
cipher traditionally operates on single bits. Each output bit
depends on an internal state and an output function and the
internal state is updated for each output. To take advantage of
modern processors it is also common to design stream ciphers
operating on words instead of bits. While block ciphers are
practically always based on either the Feistel structure or the
SP-network, see [1], there are many ways to design stream
ciphers. One of the most common building blocks is the Linear
Feedback Shift Register (LFSR). It is used in some of the
most common stream ciphers, e.g., A5/1 in GSM and E0 in
Bluetooth. Two important design ideas based on LFSRs are
the nonlinear combiner and the nonlinear filter generator. This
paper will focus on the nonlinear combiner. It is well known
that LFSRs with feedback polynomials of low weight should
be avoided in stream ciphers. An attack exploiting low weight
feedback polynomials is the fast correlation attack, proposed
by Meier and Staffelbach [2]. Such polynomials provide a low
weight parity check equation which can be exploited together
with a bias in the output function. Because of this attack, low
weight feedback polynomials can be considered weak in the
context of stream cipher design. Much research has been put
into the fast correlation attack and several improvements have
been found, resulting in the fact that this attack is one of
the most important cryptanalytic attacks on stream ciphers. In

2004, Englund, Hell and Johansson introduced a new class of
weak feedback polynomials [3]. These polynomials were not
necessarily of low weight, but instead had their feedback taps
located in groups. The groups can be far apart but the distance
between the first and last tap in each group should be small.
In this paper we take another look at these polynomials and,
using the Walsh transform, we show better and more efficient
ways of how to compute the complexity of the resulting attack.
Using our analysis we show that the length of the vectors used
in the attack should sometimes be larger than used in [3]. We
also use our analysis to give a simple relation stating when
these weak feedback polynomials can be used to mount a more
efficient attack than the attack first proposed by Meier and
Staffelbach. The paper is outlined as follows. In Section II we
give some background theory. In Section III we discuss the
previous work done in [3], give the open problems from that
paper and motivate why further analysis is needed. Then we
give our analysis of the problem in Section IV. In Section V
we show an example of a polynomial giving a very efficient
attack using a relatively large vector length. In Section VI
we give an easy way to check whether the new attack will
outperform the basic attack by Meier and Staffelbach when
considering low weight multiples of the feedback polynomial.
Finally, the paper is concluded in Section VII.

II. PRELIMINARIES

Consider the fast correlation attack [2]. The ideas behind
the fast correlation attack, originally given as a key recovery
attack on a nonlinear combiner, can easily be turned into a
distinguishing attack on the same nonlinear combiner. The
nonlinear combiner uses a set of T LFSRs, preferably with
primitive feedback polynomials, and a nonlinear Boolean
output function. We denote the ith LFSR by Ri and its size
by Li. The output of Ri at time t is denoted xi(t).

The correlation attack relies on the fact that there is always
a subset of the shift registers such that

Pr(z(t) = xi1(t)⊕ xi2(t)⊕ . . .⊕ xib
(t)) =

1
2
(1 + ε) (1)

where z(t) is the output of the Boolean function, or the
keystream. The largest value of b such that ε = 0 for all
choices of i1, . . . , ib is called the resiliency m of the Boolean
function, assuming that the function is balanced. Relating



this to information theory, we can also say that the mutual
information between the output and any subset of b inputs to
the Boolean function is zero if b ≤ m. A well known result [4]
is the relationship m + d < n where n is the number of
variables, d the algebraic degree and m the resiliency of a
balanced Boolean function. The only exception is the parity
check function with d = 1 and m = n− 1. This result shows
that a subset of inputs will always give us information about
the output in a nonlinear combiner.

The characteristic polynomial f(x) of the sequence s(t) =
xi1(t)⊕ . . .⊕ xib

(t) is given by

f(x) = lcm(fi1(x), fi2(x), . . . , fib
(x)), (2)

= c0 + c1x + c2x
2 + . . . cLxL, (3)

where fij is the characteristic polynomial of the sequence
generated by Rij

and lcm is the least common multiple. If
the polynomials are primitive, (2) is reduced to the product of
the involved polynomials and the degree of f(x), equivalent
to the size of the corresponding LFSR, is L =

∑b
j=1 Lij

. The
fast correlation attack takes advantage of the fact that we can
find a multiple of f(x) which is of low weight, giving us a
parity check equation of low weight that holds with probability
6= 0.5. In the remainder of this paper, we will assume that the
set of LFSRs has been replaced by one LFSR according to (2)
and for clarity of presentation we will from now on use the
notation st to denote the value of sequence s at time instance
t.

In this paper we will use the Walsh transform of a proba-
bility distribution in our analysis. Let ω and x be vectors of
the same length and let ω · x be the scalar (or dot) product
of the two vectors taken modulo 2. Then the ωth order Walsh
function of x is defined as

hω(x) = (−1)ω·x. (4)

Denote the probability distribution function of the random
variable X by PX(x). Then the Walsh transform of PX(x)
is defined as the expectation of hω(X),

WPX
(ω) = E[hω(X)] =

∑
x

hω(x)PX(x). (5)

Combining (4) and (5) we get

WPX
(ω) = Pr(ω ·X = 0)− Pr(ω ·X = 1), (6)

a relation which will turn out to be helpful in Section IV. Note
that from (4) it follows that

hω(x) = 1− 2(ω · x). (7)

For a more thorough treatment of the Walsh transform and its
applicability in statistics we refer to [5].

Hypothesis testing is a central component in a distinguishing
attack. It can be used to decide if an observed collection of
samples are drawn from a biased distribution, here called the
cipher distribution PC , or from a uniform distribution P0.
For an overview of hypothesis testing we refer to [6]. Its
application to cryptanalysis is treated in e.g., [7], [8]. Here

we only give the prerequisites necessary for the presentation
of our results. The Kullback-Leibler distance, also known as
divergence or relative entropy, between two distributions is
defined as

D(PC‖P0) =
∑

x

PrPC
(x) log

PrPC
(x)

PrP0(x)
. (8)

The number of samples needed in the hypothesis test is in the
order of O(1/D(PC‖P0)).

III. PREVIOUS WORK

In this section we review the results given in [3]. Consider
Eq. (1). Replacing the LFSRs used in the stream cipher by
f(x) as given in (2) we can write zt = st ⊕ et, where et is
the noise introduced by the approximation referred to in (1).
We see that

Pr(et = 0) =
1
2
(1 + ε), (9)

assuming that the Boolean output function is balanced. The
linear polynomial f(x) defines the recurrence

L⊕
i=0

cist+i = 0, t ≥ 0. (10)

Thus, we can write
L⊕

i=0

cizt+i =
L⊕

i=0

cist+i ⊕
L⊕

i=0

ciet+i =
L⊕

i=0

ciet+i. (11)

We assume that all noise variables ei are independent, an
assumption that will be implicit throughout the paper. Then,
according to the Piling-up Lemma [9] we know that

Pr

(
L⊕

i=0

cizt+i = 0

)
= Pr

(
L⊕

i=0

ciet+i = 0

)
=

1
2
(1 + εw),

(12)
where w is the Hamming weight of (c0, c1, . . . , cL). This
results in a distinguishing attack requiring O(L + 1/ε2w)
keystream bits. L is the distance between the first and last
keystream bit in each sample and 1/ε2 is a common rule
of thumb widely used in cryptanalysis to approximate the
number of samples needed to detect the bias ε in (9). The
complexity of the attack is highly dependent on the weight
w of f(x) and thus, it is usually favourable to consider low
weight multiples of f(x) instead. The degree L of a multiple
is of course larger than the degree of the original f(x), a
property which constitutes a tradeoff when considering the
number of required keystream bits, i.e., smaller weight w is
traded for larger degree L. We will refer to this attack as the
basic attack. The idea proposed in [3] was to generalize this
attack and consider the case when f(x) can be written as

f(x) = g0(x)+xM1g1(x)+xM2g2(x)+. . .+xM`g`(x), (13)

where gi(x) are polynomials of small degree (≤ k) and M1 <
M2 < . . . < M`. It is also possible to consider multiples of
this form. The polynomial (13) corresponds to an LFSR with
taps placed in groups. Each group has taps at most k shift



LFSR- -

Fig. 1. The polynomial f(x) = g0(x)+xM1g1(x)+xM2g2(x) corresponds
to an LFSR with taps concentrated to three groups.

register cells apart and groups are located far away from each
other, see Fig. 1.

Now, introduce the variable Qi,

Qi = g0 · e[i, i + k]⊕ . . .⊕ g` · e[M` + i, M` + i + k] (14)

where e[i, j] = (ei, . . . , ej)T and gi = (gi,0, gi,1, . . . , gi,k),
gi,j is the jth coefficient in the polynomial gi(x). The obser-
vation is now that even though consecutive noise variables ei

are independent, variables Qi close together will be dependent.
The reason is that the same noise variable will be used in Qi’s
close together. Hence, we consider the noise vector of length
N given by

Ei = (QN ·i, QN ·i+1, . . . , QN(i+1)−1). (15)

Ei can also be written as

Ei =
⊕̀
j=0

Gj · (eN ·i+Mj , . . . , eN(i+1)+Mj+k−1)T , (16)

where ⊕ denotes bitwise xor of binary vectors, M0 = 0 and
Gj is the size N × (N + k) matrix

Gj =


gj,0 gj,1 . . . gj,k

gj,0 . . . gj,k−1 gj,k

...
gj,0 gj,1 . . . gj,k

 . (17)

The efficiency of the distinguishing attack depends on the dis-
tribution of the vector Ei. We can note that since the different
gi are far apart their contribution to the total noise vector can
be computed independently. In [3], different combinations of
gi’s were tested and it was noted that for some combinations,
the number of keystream bits needed in the distinguishing
attack was significantly lower than in the basic binary attack.
In particular, when comparing vectors of length N and N +1,
for some values of N the attack was improved significantly,
while for other values of N the attack did not improve at
all. For some combinations of gi’s the attack even seemed
to give the same performance as the basic attack. However,
the authors did not manage to find the exact reason for this
behaviour. Questions that remained to be answered were
• Which combinations of gi’s will give a more efficient

attack?
• Which vector length is needed to get a significant im-

provement?
In Section IV we will provide very simple relations that can
be used to answer these questions. We also show how to
efficiently calculate the number of keystream bits needed in
the attack.

IV. ANALYSIS USING THE WALSH TRANSFORM

In order to answer the questions given above we will look at
the Walsh transform of the probability distributions. The nota-
tion from the previous sections will be used. As mentioned be-
fore, when we compute the probability distribution of the vec-
tor Ei we consider the contribution from different gi indepen-
dently. Thus, for the moment, we look only at the size N + k
random variable vector X = (x0, x1, . . . , xN+k−1)T where xi

are independent binary random variables corresponding to the
noise introduced by the linear approximation of the Boolean
output function. Thus, we have Pr(xi = 0) = 1

2 (1 + ε). In
the attack, we look at the sequence Qi =

∑k
j=0 g·,jei and

construct a vector of N consecutive bits of Qi. We introduce
the size N random variable Y = (y0, y1, . . . , yN−1)T and
write

Y = GX. (18)

Our goal is then to find D(Y ‖P0) which approximates the
inverse of the number of samples needed by the distinguisher.
A straight forward algorithm is to assign all possible 2N+k

values to the vector X , and then compute the resulting Y .
This will give us PY (y). Then, the distributions for all ` + 1
parts in (15) are combined and D(Y ‖P0) can be computed.

Instead, consider

D(PY ‖P0) =
∑

y

PrY (Y = y) log
PrY (Y = y)

2−N
. (19)

If the distribution PY is close to the uniform distribution, we
can write PrY (Y = y) = 2−N + εy , where |εy| is small. By
using log2 x = ln x/ ln 2, the Taylor expansion ln(1 + x) ≈
x− x2/2 and the fact that

∑
y εy = 0, we can write (19) as

D(PY ‖P0) ≈ 1
2 ln 2

∑
y

(PrY (y)− 2−N )2

2−N
(20)

=
1

2 ln 2

∑
ω 6=0

WY (ω)2. (21)

The last equality follows from Parseval’s relation∑
y

g(y)2 = 2−N
∑
ω

Wg(ω)2, (22)

and the fact that the Walsh transform for the probability
distribution PY (y) is the same as for PY (y) − 2−N except
when ω = 0. Then we instead have WPY

(0) = 1 and
WPY −2−N (0) = 0. Thus, ω = 0 is excluded in the right hand
part of (21).

The approximation (21) is only useful if it turns out to be
much easier to compute WPY

than to compute the probability
distribution PY . Next, we show that this is indeed the case.
Recall that we define Pr(xi = 0) = 1

2 (1 + ε) and from this it
follows that the xor sum of w independent xi has probability
Pr(x0 ⊕ x1 ⊕ . . .⊕ xw−1 = 0) = 1

2 (1 + εw). Thus, we have

Pr

w−1⊕
j=0

xi = 0

− Pr

w−1⊕
j=0

xi = 1

 = εw. (23)



We can relate this to the Walsh transform of the probability dis-
tribution of the random variable X = (x0, x1, . . . , xN+k−1)T

which is given by

WPX
(ω) = Pr(ω ·X = 0)− Pr(ω ·X = 1) = ε‖ω‖1 , (24)

where ‖ω‖1 is the 1-norm, or Hamming weight, of ω. If
we instead look at the Walsh transform of the probability
distribution PY we get

WPY
(ω) = Pr(ωY = 0)− Pr(ωY = 1) (25)

= Pr(ωGX = 0)− Pr(ωGX = 1) (26)
= ε‖ωG‖1 . (27)

The relative entropy can now be written as

D(PY ‖P0) ≈
1

2 ln 2

∑
ω 6=0

ε2‖ωG‖1 . (28)

If ε is small, (28) is dominated by the term for which we have
the smallest ‖ωG‖1 and we can write

D(PY ‖P0) ≈
1

2 ln 2
ε2·minω(‖ωG‖1). (29)

Since the number of samples needed in the distinguisher is
given by O(1/D(PY ‖P0)), (29) can be immediately used to
determine this number, as well as to determine which vector
length results in a significant improvement of the attack.

Up to this point we have only considered one polynomial g0

in (13). Now we extend the analysis to include ` polynomials
g0, g1, . . . , g`, a more practical situation. We show that using
the Walsh transform, this extension is very simple compared
to the case when the probability distributions are combined.
The random variable vector Y will be given by

Y = Y0 ⊕ Y1 ⊕ . . .⊕ Y`, (30)
= G0X0 ⊕G1X1 ⊕ . . .⊕G`X`, (31)

where ⊕ is bitwise xor of vectors and X0, . . . , X` are inde-
pendent. Then we can write

WPY
(ω) = Pr(ωY = 0)− Pr(ωY = 1) (32)

= Pr(ωG0X0 ⊕ . . .⊕ ωG`X` = 0) (33)
−Pr(ωG0X0 ⊕ . . .⊕ ωG`X` = 1) (34)

= ε‖ωG0‖1+‖ωG1‖1+...+‖ωG`‖1 . (35)

This can be seen as a generalization of (27). Similarly, a
generalization of (29) is given by

D(PY ‖P0) ≈
1

2 ln 2
ε2·minω(∑`

i=0 ‖ωGi‖1). (36)

Thus, the complexity of the attack depends on the smallest sum
of the Hamming weights ‖ωGi‖1. Note that this is not the same
as the sum of the smallest Hamming weights. This tells us that
we can not use (29) independently for each polynomial since
the minimum Hamming weight might stem from different ω
for different gi.

N
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)

Fig. 2. The logarithm of the number of samples needed as a function of the
vector length.

V. SIMULATIONS

Using the theory from Section IV we can find the number
of samples needed in the distinguisher very easily. The theory
also allows us to consider vectors of size much larger than
given in [3]. In that paper results were given for vectors of
length up to N = 14. We have simulated the efficiency of the
distinguisher for all possible combinations of two polynomials
of degree k ≤ 8. Further, vectors of length up to N = 25
have been tested for all combinations. The simulations show
that there are several cases in which the distinguisher is
considerably better for vectors of larger length than N = 14.
One example is f(x) = g0(x) + xM1g1(x) with

g0(x) = 1 + x2 + x3 + x4 + x6 + x7, (37)
g1(x) = 1 + x + x2 + x5 + x6 + x8. (38)

In this case we get

minω(‖ωG0‖1 + ‖ωG1‖1) N
12 1 ≤ N ≤ 2
10 3 ≤ N ≤ 21
6 22 ≤ N ≤ 28

when considering vectors of length N ≤ 28. As can be seen, if
we would use vectors of length 3 ≤ N ≤ 21 we would require
in the order of ε−20 samples in order to distinguish the cipher
distribution from a uniform distribution. If the vector size is
N ≥ 22 we would need at most in the order of ε−12 samples.
The 2-logarithm of the number of samples needed as a function
of the vector length, assuming ε = 2−4, is given in Fig. 2. The
basic attack, corresponding to N = 1, would require about 296

samples to distinguish the cipher distribution from a uniform
distribution. Using distributions of vectors, vector size at least
22, will allow the distinguishing attack to succeed with only
about 248 samples.

VI. COMPARISON WITH BASIC ATTACK

While the example in Fig. 2 is a bit extreme and not very
representative for a random combination of two polynomials
of degree k ≤ 8, it does show that this type of attack must
be considered when constructing ciphers based on nonlinear
combiners.

In practice, one would take advantage of the fact that a low
weight multiple of the characteristic polynomial can be used



in the distinguisher. In [10], it was shown that the degree L′

at which we expect to find a multiple of weight w is given by

L′ ≈ 2
L

w−1 . (39)

In [3], it was shown that if we are looking for a polynomial of
the form (13) with t groups (t = `+1) of smaller polynomials
gi of degree at most k, we expect it to be of degree

L′ ≈ 2
L−tk
t−1 . (40)

From this we can conclude that it will practically never be
advantageous to consider multiples of the form (13). The
degree of a multiple with t groups is just slightly less than
the degree of a multiple with weight w, when k is moderate.
Thus, considering a low weight multiple will result in a better
attack. Instead, we consider the case when the polynomial
f(x) turns out to be of the desired form (or perhaps a multiple
of surprisingly low degree). We now compare this case with
the basic attack when low weight multiples are used. The
number of keystream bits T required in the basic attack is
given by

T = 2
L

w−1 + ε−2w. (41)

The smallest amount of keystream bits is achieved by choosing
the w that minimizes (41). In practice this means choosing w

such that 2
L

w−1 ≈ ε−2w. We use ŵ to denote this choice which
depends on both L and ε. In Table I, we give ŵ for some values
of L and ε. The number of keystream bits needed in the attack

TABLE I
VALUE OF ŵ FOR SOME CHOICES OF L AND ε.

L
100 200 300 400 500

ε = 2−3 5 6 8 9 10
ε = 2−5 4 5 6 7 8
ε = 2−7 3 4 5 6 7
ε = 2−9 3 4 5 5 6

when f(x) is of the form (13) is approximately 1/D(PY ‖P0)
where D(PY ‖P0) is given by (36). Ignoring small constants,
this attack will be more efficient than the basic attack when

ε2·minω(∑`
i=0 ‖ωGi‖1) > ε2w. (42)

⇒ min
ω

(∑̀
i=0

‖ωGi‖1

)
< ŵ. (43)

This can be seen as a rule of thumb and should be checked
when designing stream ciphers based on the nonlinear com-
biner. We can note that for small ε and small L the basic attack
is likely to still outperform our attack, whereas for large values
of ε and L our attack is likely to be the most efficient.

VII. CONCLUSIONS

A distinguishing attack taking advantage of LFSR feedback
taps located close together has been considered. The attack
was first given in [3] and in this paper we have shown further
results related to the attack. An easier and more efficient way

to determine the efficiency of the attack has been given using
the Walsh transform of probability distributions. Also, a simple
relation showing if the attack will outperform the basic attack
for a given feedback polynomial has been given.

Finally, we note that this analysis shows that there is an
interesting relation to coding theory. The matrix Gi corre-
sponds to the generator matrix of a cyclic code with generator
polynomial gi(x). Thus, it might be possible to find further
improvements by considering results from coding theory. This
will be left as future work.
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