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ABSTRACT: Allelopathy in aquatic environments may provide a competitive advantage to angiosperms, algae, 
or cyanobacteria in their interaction with other primary producers. Allelopathy can influence the competition 
between different photoautotrophs for resources and change the succession of species, for exarnple, in phytoplank- 
ton cornmunities. Field evidence and laboratory studies indicate that allelopathy occurs in all aquatic habitats 
(marine and freshwater), and that ail prirnary producing organisms (cyanobacteria, micro- and macroalgae as well 
as angiospenns) are capable of producing and releasing allelopathically active compounds. Although allelopathy 
also includes positive (stimulating) interactions, the majority of studies describe the inhibitory activity of 
ailelopathicaily active compounds. Different mechanisms operate depending on whether allelopathy takes place 
in the Open water (pelagic zone) or is Substrate associated (benthic habitats). Allelopathical interactions are 
especiaily common in fully aquatic species, such as submersed macrophytes or benthic algae and cyanobacteria. 
The prevention of shading by epiphytic and planktonic primary producers and the competition for space may be 
the ultimate cause for allelopathical interactions. Aquatic ailelochemicals often target multiple physiological 
processes. The inhibition of photosynthesis of competing primary producers seems tobe a frequent mode of action. 
Multiple biotic and abiotic factors determine the strength of allelopathic interactions. Bacteria associated with the 
donor or target organism can metabolize excreted aiielochemicals. Frequently, the impact of surplus or limiting 
nutrients has been shown to affect the overail production of allelochemicals and their effect on target species. 
Similarities and differences of ailelopathic interactions in marine and freshwater habitats as well as between the 
different types of producing organisms are discussed. 
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Aquatic photoautotrophs often face severe 
competition for resources, either space, light, or 
nutrients. The release of allelopathically active 
compounds interfering with settlement and/or 
growth of competitors in their vicinity is an adap- 
tive trait developed by primary producers against 
competitors. According to Molisch (1937), allel- 
opathy covers biochemical interactions, both 
stimulatory and inhibitory, among different pri- 
mary producers or between primary producers 
and microorganisms. Similar to terrestrial habi- 
tats, final proof for allelopathic interactions in 
aquatic systems is almost impossible. Most aquatic 
studies Cover only a few of the six requirements 
demanded by Willis (1985), often neglecting eco- 

logical aspects of allelopathy. Even so, many stud- 
ies point toward allelopathic interactions among 
aquatic photoautotrophs, sometimes substantiated 
by both field and laboratory evidence. 

This review has the following objectives: (1) 
to sumrnarize current knowledge of allelopathic 
interactions in all aquatic systems, (2) to name 
factors and constraints for allelopathy in these en- 
vironments, and (3) to emphasize cornmon pat- 
terns in both freshwater and marine habitats. The 
main attention was given to studies published within 
the last decade, and reference was made to general 
reviews of this topic (Gopal and Goel, 1993; Inderjit 
and Dakshini, 1994; Gross, 1999). First, the article 
covers current knowledge on allelopathically ac- 
tive primary producers in marine and freshwater 
habitats. Within these habitats, different groups of 
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primary producers involved (angiosperms, macro- 
and rnicroalgae, cyanobacteria) have been distin- 
guished. Cyanobacteria were separated from other 
microalgae because they are prokaryotes and are 
generally known to produce a vast array of novel 
secondary metabolites. Secondly, general aspects 
of allelopathy, such as the mode of action of 
allelopathically active compounds and environmen- 
tal and biotic factors acting on the production of 
allelochemicals, are discussed. This part bridges 
insights from different habitats and producing or- 
ganisms. Apparently there are general principles to 
all aquatic habitats and most primary producers. 

A. Differences between Terrestrial and 
Aquatic Habitats 

Generally, allelopathic interactions in aquatic 
habitats resemble those in terrestrial systems, al- 
though some fundamental differences exist. One 
major difference is that most aquatic photoau- 
totrophs are surrounded by water instead of air. 
Allelochemicals released by donor organisms into 
the water need to be sufficiently hydrophilic and 
reach their target organisms in effective concen- 
trations despite considerable dilution. We might 
expect less lipophilic allelochemicals in this habi- 
tat compared with terrestrial sites where transfer 
through the air is possible. Further, algae, 
cyanobacteria, and fully aquatic angiosperms are 
'leaky', maybe even more than terrestrial plants. 
Submersed leaves of aquatic angiosperms have 
no stomata, a reduced cuticula, and less tight cell 
connections compared with emergent or floating 
leaves (Hutchinson, 1975), all of which should 
facilitate the release of organic compounds. Leaves 
of terrestrial plants are generally protected by a 
thick cuticula. However, leakage through Open 
stomata or from epidermal cells may occur. To 
my knowledge, a direct comparison between 
aquatic and terrestrial photoautotrophs for quali- 
tative andlor quantitative differences in organic 
leachates was never done. Both algae (Sieburth, 
1968; Wood et al., 1992), and higher plants 
(Wetzel, 1969; Wetzel and Manny, 1972; 
SQndergaard, 1981; Nalewajko and Godmaire, 
1993) release organic compounds, usually referred 
to as DOC (dissolved organic carbon/compounds) 

or EOC (extracellular organic carbon/compounds). 
Leachates contain mainly carbon-based organic 
compounds, considered to be surplus photosyn- 
thates (Wetzel, 1969; Hough and Filbin, 1990). 
Besides pure carbon-based compounds, dissolved 
organic nitrogen compounds are also found 
(Wetzel and Manny, 1972). 

Allelopathic interactions of aquatic photoau- 
totrophs may also occur via root exudation. Com- 
monly, simplified model systems are used to evalu- 
ate allelopathic root exudates (Gallardo et al., 
1998b; Kato-Noguchi and Ino, 2001). Yet, 
physico-chemical processes in root compartments 
(of terrestrial plants) are diverse and may be com- 
plex. Their effect on various interactions, among 
them allelopathy, was discussed recently by El- 
Shatnawi and Makhadmeh (2001). The impor- 
tance of soil processes in terrestrial systems for 
allelopathic interactions involving phenolic com- 
pounds were analyzed in detail by Blum et al. 
(1999). A major difference in aquatic habitats 
compared with terrestrial systems is that the sedi- 
ment is waterlogged, creating anaerobic environ- 
ments. Most aquatic macrophytes manage to cre- 
ate small oxygenic boundary layers around their 
roots (Christensen et al., 1994; Flessa, 1994; 
Sorrell and Armstrong, 1994; Brix and Sorrell, 
1996; Wigand et al., 1997; Jackson and Armstrong, 
1999). Aerobic microzones around roots of aquatic 
angiosperms are small (approx. 1 mm), but may 
significantly alter the redox potential of the soil 
(Flessa, 1994). Certainly, these microzones have 
an impact on the transfer of allelopathically active 
compounds, although few direct studies have been 
performed so far. The relevance of aquatic 
bioactive metabolites in the rhizosphere and 
around roots was discussed recently by Neori et 
al. (2000). 

Two different types of allelopathic interac- 
tions occur in aquatic habitats. First, pelagic algae 
and cyanobacteria may use allelopathically active 
compounds to outcompete other species, to gain 
dominance over predecessors, or infiuence the 
type of conspecifics and successors. Fundamental 
studies have been done by Keating (1977, 1978) 
on allelopathy and the cyanobacterial dominance 
in eutrophic lakes. Allelopathy in pelagic envi- 
ronments depends on sufficient production and 
excretion of allelopathically active compounds 



into the water and their effective distribution to 
reach target species at active concentrations. Di- 
lution is the major problem in this type of allelo- 
pathic interaction (Lewis, 1986). We rnay con- 
sider the pelagic Zone as a three-dimensional 
habitat compared with littoral or benthic zones, 
where the competition for space is more severe 
and the colonized surface represents rather a two- 
dimensional habitat. Thus, secondly, in aquatic 
environments we are dealing with allelopathic 
interactions between organisms living adjacent to 
each other, sometimes even touching other spe- 
cies in littoral or benthic zones. In these habitats 
angiosperms and macroalgae, so-called 'macro- 
phytes' (see Wetzel, 2001), compete with other 
macrophytes, epiphytes, andfor phytoplankton. 
Allelopathically active compounds produced by 
benthic photoautotrophs that affect phytoplank- 
ton rely on similar mechanisms than described for 
the pelagic habitat. When macrophytes excrete 
allelochemicals targeting epiphytes, these com- 
pounds rnay be passed along either via the water 
or by direct contact, that is, compounds located in 
secretory trichomes, epidermal glands, or other- 
wise associated with the surface of the plant. In 
this case we can assume high local concentrations 
of allelochemicals directly acting on target spe- 
cies. We rnay consider more hydrophilic com- 
pounds acting on plankton species, whereas com- 
pounds translocated by direct contact should be 
more lipophilic. Leaf washings, as used with ter- 
restrial plants to remove lipophilic substances from 
the surface, are difficult with aquatic angiosperms. 
Surface concentrations of natural products on 
marine macroalgae have been quantified using 
short hexane washings (de Nys et al., 1998; 
Dworjanyn et al., 1999). 

The presence of surface-associated allelo- 
chemicals does not exclude allelochemicals with 
low water solubility in pelagic allelochemical in- 
teractions, since lipophilic compounds rnay bind to 
small particles or form micelles (Fischer and 
Quijano, 1985; Perez, 1999; Perez and Martin, 
2001). Micelle formation as a means of increasing 
the solubility of lipophilic allelochemicals in wa- 
ter, however, has been debated, and other mecha- 
nisms rnay also be involved (Fischer et al., 1994). 

Some studies report allelopathic interactions 
between terrestrial and aquatic photoautotrophs. 

In the last decade, many studies have investigated 
the algicidal effect of (deciduous) leaf litter and 
(barley) straw (i.e., Dasneves and Gaspar, 1990; 
Newman and Barrett, 1993; Pillinger et al., 1994; 
Lege et al., 1995; Martin and Ridge, 1999; Ridge 
et al., 1999; Al Harndi et al., 2001). Especially in 
small lakes and rivers, leaf litter rnay strongly 
infiuence algal communities. The use of straw to 
prevent cyanobacterial blooms represents, how- 
ever, an artificial coupling of terrestrial and aquatic 
organisms. Wetland plants are at the interface of 
terrestrial and aquatic systems. Some of them 
have allelopathic properties (Elakovich and 
Wooten, 1989; Rojo et al., 2000). Rice, an impor- 
tant wetland crop, was affected by allelopathic 
interference from cyanobacteria (Inderjit and 
Dakshini, 1997) or aquatic plants (Quayyum et 
al., 1999a, 1999b). 

B. Suitable Target Organisms and 
Impact of Stressors on Allelopathy 

The debate on the existence of allelopathy in 
situ and how to transfer laboratory results to field 
situations is ongoing for both terresirial and aquatic 
systems and will not be settled on in the near 
future, as already mentioned. Much controversy 
arises from the use of adequate bioassays, above 
normal concentrations of inhibitors, or wrong tar- 
get organisms. Reviews on laboratory bioassays 
are available by Inderjit and Dakshini (1995) and 
Inderjit (this issue). Some of the constrains of 
allelopathy occuning in situ have been discussed 
recently by Reigosa et al. (1999). 

Allelopathic interactions apparently are en- 
hanced under abiotic or biotic Stress (Lovett et al., 
1989; Tang et al., 1995; Reigosa et al., 1999). 
This is corroborated by many studies showing the 
impact of nutrient limitation of both donor and 
target organisms on the outcome of allelopathic 
interactions (see Section V1.A). Complex field 
situations rnay have one or multiple stressors act- 
ing at the same time, a facet not yet much re- 
flected in aquatic allelopathy research. Further, 
temporal and spatial changes in stressors acting 
on competing primary producers occur. Inorganic 
phosphoms is the major limiting nutrient for al- 
gae and cyanobacteria in summertime (Schindler, 



1977). Ultraviolet radiation is strongest in sum- 
mer; the depth reached in aquatic systems strongly 
depends on the clarity of the water (Haeder et al., 
1998). Generally, UV-stress seems less important 
for most freshwater systems (Williamson, 1995) 
but has strong impacts on many marine habitats 
(Suzuki et al., 1998; Farjalla et al., 2001). Water 
stress (i.e., drought) is seldom a Stressor in aquatic 
systems. It is not unlikely that the presence or 
absence of allelopathic interactions in a given 
system is related to changes in stressors acting on 
the organisms. There is some potential that stud- 
ies incorporating common stressors may resolve 
contradicting results on allelopathic activity. 

The question of whether target species have 
to be from the same habitat than the donor organ- 
ism is also discussed as controversial. It seems 
obvious that aquatic allelochemicals should not 
be tested on terrestrial plants since there is no 
ecological relevance. The argument that proper 
ecological studies should use donor and target 
species from the same habitat refers mainly to the 
use of artificial systems for allelopathic studies. 
In spite of that, terrestrial plants or plant parts are 
sometimes used additionally to aquatic target or- 
ganisms because they may provide the better model 
systems for a detailed investigation of the mode 
of action (e.g., spinach chloroplasts for photosyn- 
thesis inhibition [see Section IV.B.1). The use of 
cultured algae or cyanobacteria in aquatic allel- 
opathy is frequent because they allow bioassays 
to be run under controlled and replicated condi- 
tions. Reigosa et al. (1999) argued that organisms 
within one habitat should be adapted to 
allelochemicals in this system. Therefore, allelo- 
pathic interactions should only be expected be- 
tween organisms from different habitats. Allelo- 
pathic interactions among aquatic photoautotrophs 
would consequently be more likely if the organ- 
isms originate from different lakes or streams, 
maybe even from different geographical regions. 
Unfortunately, we are lacking studies directly 
addressing this aspect. It would be interesting to 
see if Reigosa's hypothesis (Reigosa et al., 1999) 
is also generally applicable for aquatic ecosys- 
tems. More insight could arise from a comparison 
of the allelopathical potential of aquatic neophytes 
and their native relatives. Nevertheless, allelopa- 
thy may act between organisms of one habitat or 

between those from different sites. Considering 
that some allelochemicals are inducible and their 
production controlled by stress or other environ- 
mental factors (see Sections 1.A and V.A), we 
should expect a changing susceptibility of target 
organisms to allelopathically active species within 
one habitat. Further, the studies by Keating (1977, 
1978) showed that allelopathy might explain phy- 
toplankton succession within one lake. Thus, not 
only spatial concems (same or different original 
habitat of interfering species) but also temporal 
aspects (climax of stressors, seasonal succession 
of species) need reference. 

II. MARINE SYSTEMS 

Allelopathy in marine ecosystems may occur 
between phytoplankton species or in benthic areas 
where macroalgae, corals, and a few species of 
angiosperms are present. Benthic zones are small 
compared with the vast pelagic zones in the sea. 
Phytoplankton densities are extremely low in mid 
ocean, but may increase considerably along the 
shores as a result of eutrophication. Angiosperms, 
macroalgae, and corals produce inhibitory com- 
pounds interfering with epiphytes and other 
epibionts, competing for light andlor space 
(Harrison and Chan, 1980; Harlin, 1987; Endean et 
al., 1997; Jeong et al., 2000). Allelochemical inter- 
actions among planktonic algae have been de- 
scribed, mainly when bloom-forming microalgae 
were involved (Smayda, 1997). 

A. Angiosperms 

Only few aquatic angiosperms live in marine 
littoral areas. Their distribution depends on sedi- 
ment characteristics (sandy, not rocky shore) and 
turbidity caused by biotic or abiotic factors (see, 
e.g., Orth et al., 2000). Zostera nzarina often domi- 
nates worldwide seagrass communities. Water- 
soluble extracts from both green and dead leaves 
of Z. marina inhibited algae and bacteria (Harrison 
and Chan, 1980; Hanison and Durance, 1985). 
Dead leaves were active only shortly after senes- 
cence. It is likely that phenolic allelochemicals 
were responsible for the observed effect 



(Quackenbush et al., 1986; Harrison and Durance, 
1989). The highest concentrations of phenolic 
compounds (1.5% based on dry mass) were found 
in September, at the end of the active growing 
season (Harrison and Durance, 1989). One might 
expect algicidal compounds to be highest during 
maximum phytoplankton or epiphyte develop- 
ment, but in this case phenolic allelochemicals 
were not correlated to maximum densities of 
microalgae or cyanobacteria. Whether antimicro- 
bial phenolic acid sulfate esters (Todd et al., 1993) 
also act on epiphytic algae or cyanobacteria has 
not yet been elucidated. Ruppia maritima 
(Potamogetonaceae) growing in brackish or salt 
water produces antialgal diterpenes (Della Greca 
et al., 2000a). To my knowledge, no other marine 
angiosperms produce allelopathically active com- 
pounds. 

B. Macroalgae 

Macroalgae in marine environments belong to 
various groups, predominantly to the phaeophytes, 
chlorophytes, and rhodophytes. Depending on their 
growth form (crustose or erect, sometimes canopy 
forming), they experience different interactions with 
other photoautotrophs, and also sometimes with 
heterotrophs. Allelochemical interference of 
macroalgae with microalgae has long been known 
(Shapiro, 1957; McLachlan and Craigie, 1964; 
Sieburth, 1968). 

Prevention of epiphyte growth on macroalgal 
tissue by allelopathic mechanisms occurs fre- 
quently (Harlin, 1987). Extracts of various 
macroalgae inhibited the settlement and growth 
of the chlorophyte Enteromorpha prolifera (Young 
Cho et al., 2001), a common epiphyte on other 
macroalgae. Antifouling activity of macroalgae 
against bacteria and fungi was shown by Hellio et 
al. (2000). In their study, some macroalgae pos- 
sessed antifungal activity, others antibacterial, and 
only Laurencia pinnatifida (Rhodomelaceae) ex- 
hibited both antifungal and antibacterial activity. 
Extracts from this rhodophyte also exhibited a 
strong antifouling activity against microalgae, 
comparable to that of heavy metals and biocides 
currently used in antifouling paints (Hellio et al., 
2002). Several extracts from other macroalgae 

were also active. Allelopathy was apparently not 
involved in the prevention of epiphyte growth on 
the siphonaceous macroalgae Avrainvillea 
(Bryopsidales, Chlorophyta). The major cause for 
low epiphyte densities was identified as the real- 
location of protoplasm for new growth through 
protoplasmic streaming, subsequent blade aban- 
donment and proliferation (Littler and Littler, 
1999). Exuded phlorotannins apparently were not 
allelopathically active since they did not affect 
the abundance and distribution of epiphytes on 
the phaeophyte Ecklonia radiata (Jennings and 
Steinberg, 1994; Jennings and Steinberg, 1997). 

Crustose algae are prone to shading by canopy- 
forming macroalgae. Allelopathy may be an ef- 
fective defensive trait preventing severe light limi- 
tation. Crustose coralline algae of the genus 
Lithophyllum (Rhodophyceae) produced a lipo- 
philic allelopathic substance of low molecular 
weight that destroyed zoospores of the phaeophyte 
Laminaria religiosa (Suzuki et al., 1998). 
Plocamium hamatum (Rhodophyceae) produces 
allelopathically active monoterpenes affecting both 
microalgae (König et al., 1999) and adjacently 
growing soft corals (de Nys et al., 1991). Certain 
marine macroalgae (Corallina pilulifera, Ulva 
pertusa, Ishige foliacea, and Endarachne 
binghamiae) exuded allelochemicals into the cul- 
ture medium that inhibited toxic bloom-forming 
microalgae, such as Cochlodinium polykrikoides 
(Jeong et al., 2000). No seasonal variation was 
found for the algicidal activity, and extracts of 
C. pilulifera did not inhibit other, nontoxic 
microalgae. 

C. Microalgae 

Most of the 60 to 80 harmful marine phy- 
toplankton species are flagellates, particularly 
dinoflagellates. To counteract low nutrient uptake 
affinities compared with diatoms, four major ad- 
aptations, arnong them allelopathy and grazing 
deterrence, have evolved in harmful flagellates 
(Smayda, 1997). Dominance of harmful di- 
noflagellate blooms in marine phytoplankton com- 
munities is considered to be mediated by the pro- 
duction of poisoning toxins, okadaic acid (OA), 
and dinophysistoxin- 1 (DTX- 1) (Lewis and 



Holmes, 1993; Windust et al., 1996; Plumley, 
1997). Some studies suggested that OA and DTX-1 
derived from Prorocentrum lima may have al- 
lelopathic properties and inhibit microalgae not 
forming toxins (Windust et al., 1996). However, 
a refined study showed that although OA had 
growth inhibitory activity, it was not the major 
allelopathically active compound present in 
P. lima. Three CO-occuning dinoflagellates of P. 
lima exhibited reduced growth by another, yet 
unidentified allelochemical than OA (Sugg and 
van Dolah, 1999). Similar evidence that bloom- 
forming microalgae may dominate phytoplankton, 
not only because they have feeding deterrents, but 
also because of allelopathic interactions wiih other 
phytoplankton species, has been reported recently. 
Culture filirates of two raphidophytes (Heterosigma 
akashiwo and Chattonella antiquea) from the late 
logarithmic growth phase strongly inhibited the 
growth of the diatom Skeletonema costatunz 
(Matsuyama et al., 2000). Three toxin-producing 
Alexandrium species exuded allelopathically ac- 
tive compounds inhibiting other microalgae 
(Chaetoceros gracile, Gymnodinium mikimotoi, and 
Scrippsiella trochoidea), both in the exponential 
and stationary growth phase (Arzul et al., 1999). 
Recent evidence indicates, however, that also bac- 
teria might be involved in both induction and inhi- 
bition of cyst formation in the toxic A. tamarense 
(Adachi et al., 1999; Adachi et al., 2002), thus 
infiuencing the life cycle and bloom formation in 
this bloom-forming dinoflagellate. 

D. Cyanobacteria 

Despite the plethora of novel bioactive sec- 
ondary metabolites isolated from marine 
cyanobacteria (e.g., Fish and Codd, 1994a; Moore, 
1996; Abarzua et al., 1999; Nagle and Paul, 1999), 
almost nothing is known about allelopathic inter- 
actions. The production of grazer deterrents or 
antifouling metabolites (antifungal, antibacterial 
activity) is generally considered to determine 
competitive strength and allow toxin-producing 
strains to outcompete others. Many dominant spe- 
cies, for example, Lyngbya nzajuscula, produce a 
vast array of bioactive compounds (Nagle and 
Paul, 1999), but no allelopathically active com- 

pounds were isolated so far. Recently, it was shown 
that Nodularia harveyana, a nitrogen-fixing 
cyanobacterium isolated from the Mediterranem 
Sea, exhibited strong allelopathic activity against 
other axenic cyanobacteria, antibiotic activity 
against Gram-positive pathogenic bacteria, and 
antifungal activity against two plant pathogens 
(Pushparaj et al., 1998). Since many freshwater 
cyanobacteria (see below), especially benthic 
forms, produce allelopathically active compounds, 
we should expect similar activities in marine 
(benthic) cyanobacteria. 

E. Corals 

Corals were included in this review because 
anthozoa usually live in symbiosis with primary 
producers, zooxanthellae. The sessile nature of 
corals makes them vulnerable, being overgrown 
by macroalgae, especially under conditions of 
nutrient enrichment along reefs. In addition, com- 
petition for space with other corals exists. There- 
fore, it seems adaptive for corals to produce and 
release allelopathically active compounds deter- 
ring epibionts or adjacent organisms. Competi- 
tion between scleractinian corals and benthic al- 
gae has been considered important for the 
structuring of coral reef communities (McCook et 
al., 2001). The regular spacing of massive coral 
blocks can be a result of allelopathic interference 
(Endean et al., 1997). The absence of higher plants 
at the Great Barrier Reef led to a screening for 
plant growth inhibitors. Specific inhibitors of C, 
plants were found in exudates of coral reef organ- 
isms by Jim Burnell and Lyndon Llewellyn 
(Thwaites, 2000). Nothing is yet known about the 
producing organisms, the chemical nature of the 
allelochemicals, and their ecological function. 

Soft corals (e.g., Sinulariaflexibilis, Lobophytum 
hedleyi) inhibited growth and produced tissue ne- 
crosis in neighboring scleractinian corals due to ihe 
exudation of inhibitory terpenes (Aceret et al., 1995). 
The competition for space arnong some scleractinian 
corals seems to depend On allelopaihy. Lipophilic 
extracts containing indole alkaloids isolated from 
Tubastrea faulkneri inhibited other scleractinians 
(Koh and Sweatman, 2000). Allelochemicals from 
alcyonacean octocorals (soft corals) have multiple 



functions; they may enhance reproductive success 
or act as antipredator, antifouling, and antialgal com- 
pounds (Sarnmarco, 1996; Gfiith, 1997). Even 
antarctic soft corals produced allelopathically active 
compounds (as in the broader sense of allelopathy 
including anirnals) that prevented the growih of 
sponges on their surface (Slattery and McClintock, 
1997). 

Compounds active against fouling by epibionts 
may also interfere with other organisms colonizing 
neighboring space and therefore be adaptive for the 
coral. Corals are sometimes susceptible to 
allelochemicals released by neighboring sponges. 
The liver sponge Plakortis halichondroides caused 
necrosis of Agaricia lamarcki, a sheet coral (Porter 
and Targett, 1988). In addition, stimulating allelo- 
pathic effects have been observed. Allelochemicals 
released by alcyonacean corals enhanced the settle- 
ment and growth of scleractinian corals adapted to 
these compounds (Maida et al., 1995a,b). 

However, often corals are target and not do- 
nor organisms, that is, they are susceptible to 
(inhibitory) allelochemicals released by co-oc- 
cuning algae (McCook et al., 2001). Algae ex- 
erted allelopathic effects on both soft (de Nys et 
al., 1991) and hard corals (Littler and Littler, 
1997). 

III. FRESHWATER SYSTEMS 

In freshwater Systems we find allelopathic 
interactions among photoautotrophs both in pe- 
lagic zones and in benthic or littoral zones. In 
contrast to marine benthic areas, freshwater lit- 
toral zones are generally dominated by diverse 
aquatic angiosperms of different growth form, 
but only few macroalgae occur. Phytoplankton 
density may be high as a result of lake morphom- 
etry and trophic state (Wetzel, 2001). Different 
types of interaction among those primary produc- 
ers occur, as illustrated below. Members of all 
groups of primary producers in freshwater have 
been shown to be involved in allelopathic interac- 
tions (Gopal and Goel, 1993; Inderjit and Dakshini, 
1994; Gross, 1999). Apart from stagnant waters, 
primary producers grow also in running waters. 
In rivers and streams, the current would rapidly 
carry exuded allelochemicals away. With the ex- 

ception of benthic macroalgae (Dodds, 1991), no 
reports on allelopathy have been reported for this 
System. 

A. Angiosperms 

A comprehensive review of competition and 
allelopathy in aquatic plant comrnunities was pre- 
sented by Gopal and Goel (1993). Further refer- 
ences on allelopathy or secondary metabolites in 
aquatic angiosperms can be found in McClure 
(1970), Ostrofsky and Zettler (1986), Wium- 
Andersen (1987), and Gross (1999). Therefore, I 
do not extensively Cover all literature given there, 
but rather focus on more recent publications and 
selected macrophytes. Aquatic angiosperms are 
presented in three sections - emergent, floating- 
leaved, and submerged macrophytes - because of 
differences in habitat characteristics and growih 
form. Emergent plants seldom face competition 
with epiphytes or phytoplankton. However, these 
largely clonally dispersing species may compete 
with other emergents for nutrients and space. Float- 
ing leaved macrophytes cause shading for sub- 
merged growing macrophytes and phytoplankton. 
Rooted floating-leaved plants also compete for 
space because they predominantly spread vegeta- 
tively. True aquatic angiosperms living fully sub- 
merged face the strongest light and space compe- 
tition with other primary producers, both higher 
plants and microalgae. Allelopathic interaction 
should be an efficient counteractive strategy for 
many of them. Sudden switches between phy- 
toplankton or macrophyte dominance in many shal- 
low eutrophic lakes occur frequently (Scheffer et 
al., 1993; Jeppesen et al., 1998). These changes are 
influenced by many abiotic and biotic factors, 
among them allelopathic interference of macro- 
phytes with phytoplankton development (Crawford, 
1977; Phillips et al., 1978; Gross, 1999; Scheffer, 
1999). 

1. Emergent Macrophytes 

Allelopathic interactions in helophytes were 
reviewed by Szczepanska (1987). She focussed 
on interspecific effects of emergent macrophytes, 



such as Phragmites australis and Typha latifolia, 
both growing frequently in the same littoral area. 
Much is known about common reed species, such 
as Typha or Juncus, and only few studies deal with 
other emergent macrophytes. Acorus gramineus 
(Araceae) contains several phenylpropanoids with 
antialgal and anticyanobacterial activity (Della 
Greca et al., 1989). 

Juncus ef i sus ,  a cosmopolitan clonal an- 
giosperm, is highly competitive and possesses al- 
lelopathic activity. The algicidal activity was re- 
lated to dihydrophenanthrene and tetrahydropyrene 
aglykones (Della Greca et al., 1996) and Stere- 
ochemical requirements for inhibition were eluci- 
dated by synthesis of these and related compounds 
(Della Greca et al., 2000b, 2001b). Similar com- 
pounds are found in J.  acutus (Della Greca et al., 
2002a, 2002b), suggesting that this class of com- 
pounds is widespread in this genus. Additionally, 
antialgal phenylpropane glycerides were isolated 
from J .  effusus (Della Greca et al., 1998). 
Leachates of dead, aboveground tissue of adult 
plants are autotoxic to seedlings (Ervin and Wetzel, 
2000). Whether autotoxicity is based on the above- 
mentioned algicidal compounds or other second- 
ary metabolites present in this species (Corsaro et 
al., 1994; Della Greca et al., 1992a, 1993a, 1993b, 
1994, 1995, 1996) remains to be elucidated. 
Autotoxicity toward seedlings in this otherwise 
vegetatively spreading plant may benefit tempo- 
ral dispersal of seedling establishment and popu- 
lation regeneration after disturbance (Ervin and 
Wetzel, 2000). A very detailed review on 
autotoxicity, mainly in terrestrial plants, and its 
ecological significance was presented recently in 
this joumal (Singh et al., 1999). 

Autotoxicity was also reported for Typha 
latifolia (McNaughton, 1968). Phenolic com- 
pounds present in aqueous leachates from leaves 
completely inhibited seed germination in this spe- 
cies. However, autotoxicity was reevaluated 15 
years later by Grace (1983), who could not con- 
fm the earlier findings. Similar to J. effusus, 
antialgal secondary metabolites (sterols, fatty ac- 
ids) have been isolated from T.  latifolia (Aliotta 
et al., 1990; Della Greca et al., 1990). Aqueous 
extracts of leaves, stems, and roots of 
T. domingensis inhibited the growth of the water 
fern Salvinia minima in bioassays (Gallardo et al., 

1998b). The most active phenolic compounds were 
2-chlorophenol and salicylaldehyde, especially 
when extracted from roots. The concentration of 
these compounds was several micrograms per 
gram fresh mass of plant tissue (Gallardo et al., 
1999). Recently, Gallardo-Williams et al. (2002) 
isolated several compounds from aqueous extracts 
and leachates of T. domingensis, among them 
linoleic and a-linolenic acids and trace amounts 
of various phenolic acids. Linoleic and a-lino- 
lenic acids have also been found in T. latifolia 
(Aliotta et al., 1990). These compounds are gen- 
erally recognized to be phytotoxic; however, in 
the study by Gallardo-Williams et al. (2002) no 
bioassays with ecologically relevant concentra- 
tions were made. An annotated literature review 
of Typha, including citations on competitive abili- 
ties of this species, was provided by Gallardo et 
al. (1998a). 

2. Floating Leaved Macrophytes 

Both rooted and free-floating macrophytes 
have been included in this section. Rooted species 
obtain their nutrients predominantly from the sedi- 
ment, and generally no nutrient competition with 
algae or epiphytes takes place. In contrast, free- 
floating macrophytes get all nutrients from the 
water, and may compete with phytoplankton or 
epiphytes. Floating leaved macrophytes grow only 
in stagnant waters, protected from wind or wave 
exposure. Few seedlings of other species can es- 
tablish in extensive stands of rooted floating leaved 
macrophytes. Aqueous extracts of Nuphar lutea 
inhibited the growth of lettuce seedlings at low 
concentrations compared with 16 other macro- 
phytes (Elakovich and Wooten, 1991; Elakovich 
and Wooten, 1995). Osmotic effects or changes 
in pH due to extract addition were ruled out in 
these assays. Alkaloids were considered respon- 
sible for the allelopathical activity (Elakovich and 
Yang, 1996). However, active concentrations used 
in the Lemna bioassay were too high for ecologi- 
cal relevance (2 ppm equivalent to approx. 4 mM). 
Aqueous leaf extracts and whole seedlings of 
Nelumbo lutea exhibited no allelopathic activity 
against the submerged macrophytes Myriophyllum 
spicatum and Potanzogetonpectinatus (Vance and 



Francko, 1997). In exudates of Nuphar lutea, re- 
sorcinol was found in relatively high concentra- 
tions (Sütfeld et al., 1996). Some cryptophycean 
algae apparently polymerized resorcinol, but died 
after prolonged exposure (Sütfeld, 1998). 
Cyanobacteria and chlorophytes were not inhib- 
ited (Sütfeld et al., 1996). 

Eichhornia crassipes is a dominant free-float- 
ing macrophyte in many tropical and subtropical 
lakes and waterways. Eichhornia may spread very 
fast and cause deleterious effects to lakes and 
waterways (Center et al., 1989; Mehra et al., 1999). 
Low phytoplankton densities may occur in these 
Systems, either due to nutrient or light competi- 
tion or the exudation of allelopathically active 
compounds. An axenic culture of Eichhornia was 
established, which allowed a controlled testing of 
exudates. Water, in which E. crassipes seedlings 
were cultivated, inhibited the growth of Chlamy- 
domonas reinhardtii (Sun et al., 1990). Axenic as 
well as nonaxenic root exudates contained 
N-phenyl- 1-naphthylarnine and N-phenyl-2-naph- 
thylamine; both highly algicidal compounds (Sun 
et al., 1993). Additionally, several phenalene me- 
tabolites have been isolated (Della Greca et al., 
1992b; 1992~). However, their allelopathic activ- 
ity in vitro against several algae was low. A 
benzoindenone isolated from plant tissue was 
shown to inhibit Candida albicans (Della Greca 
et al., 1991). Eichhornia itself was susceptible to 
allelopathic inhibition by residues and aqueous 
extracts of Parthenium hysterophorus (Asteraceae) 
(Pandey et al., 1993a; 1993b; Pandey, 1996). 
However, the concentrations of Parthenium 
allelochemicals needed for a deleterious effect in 
situ have been very high. Aqueous leachates of 
the terrestrial plant Lantana camara (Verbenaceae) 
killed Eichhornia when added to the culture me- 
dium (Saxena, 2000). 

Pistia stratiotes is another free-floating mac- 
rophyte causing severe problems in many inland 
waters. Water lettuce, as it is also called, contains 
lipophilic algicidal compounds, among them 
a-asarone, various fatty acids, and steroid deriva- 
tives (Aliotta et al., 1991). Two unusual hydroxy 
fatty acids were especially inhibitory. They may 
have originated from lipoxygenase oxidation of 
a-linolenic acid. The inhibitory activity of linoleic 
and y-linolenic acid; however, is probably due to 

the formation of hydroperoxide derivatives in the 
bioassay (Aliotta et al., 1990; Aliotta et al., 1991). 

Potamogeton natans, a species with both float- 
ing-leaved and submersed leaves, produces vari- 
ous diterpenes with antialgal activity (Cangiano et 
al., 2001; Della Greca et al., 2001a; Cangiano et 
al., 2002). These studies are not explicit whether 
only floating leaves were used; such leaves emerge 
only after submersed leaves are decomposed. Most 
other Potamogetonaceae live fully submersed and 
exhibit no or only very weak allelopathic activity 
(personal observation). Hasler and Jones (1949) 
are sometimes cited for allelopathy in Potamogeton; 
however, in this study only small amounts of 
P. foliosus grew together with Elodea (Anacharis) 
canadensis. The latter exhibits allelopathic activity 
(Erhard and Gross, unpublished results). 

3. Submersed Macrophytes 

The major limiting resource for submersed 
macrophytes is shading by epiphytes and phy- 
toplankton, or turbidity caused by sediment 
resuspension or humic compounds (Sand-Jensen, 
1990). Effective defensive traits may include fast 
apical growth, canopy formation and the release 
of allelopathically active compounds. Evidence 
from field studies shows that allelopathy may be 
involved in macrophyte-microphyte interactions 
(Phillips et al., 1978; Scheffer et al., 1993). How- 
ever, in situ no direct proof has been possible so 
far. Thus, we have to extrapolate from laboratory 
and mesocosm studies to investigate the ecologi- 
cal and evolutionw impact of allelopathy in this 
System. 

Ceratophyllum demersum, a nonrooting , 
canopy-forming submersed angiosperm, showed 
allelopathic activity toward phytoplankton (Kogan 
and Chinnova, 1972; Wium-Andersen et al., 1983; 
Jasser, 1994; Jasser, 1995). Sulfur or a lipophilic, 
labile sulfur compound have been described as the 
major algicides in lipophilic extracts (Wium- 
Andersen et al., 1983). Later studies showed that 
intact C .  demersum released allelopathically active 
compounds inhibiting especially cyanobacteria 
(Jasser, 1994). Exudates caused species-specific 
allelopathic effects on various freshwater algae and 
cyanobacteria (Körner and Nicklisch, 2002). In a 



series of shallow eutrophic Norwegian lakes, 
C. demersum hampered phytoplankton develop- 
ment (Mjelde and Faafeng, 1997). The dominance 
of C. demersum in these lakes could best be ex- 
plained by competition for nitrogen with phy- 
toplankton. Ceratophyllum spp. appeared to be 
sensitive to allelopathic interference by Hydrilla 
verticillata (Kulshretha and Gopal, 1983). How- 
ever, the active compounds of this interaction have 
not been identified. 

Members of the genus Myriophyllunz (Halo- 
ragaceae) are highly competitive submersed mac- 
rophytes (Grace and Wetzel, 1978; Smith and 
Barko, 1990; Madsen et al., 1991; Weisner et al., 
1997). Many studies report their allelopathic activ- 
ity against algae and cyanobacteria (Fitzgerald, 
1969; Planas et al., 198 1; Agami and Waisel, 1985; 
Saito et al., 1989; Aliotta et al., 1992; Gross et al., 
1996; Nakai et al., 2000). Several phenolic com- 
pounds with algicidal activity against cultured al- 
gae and natural phytoplankton assemblages have 
been isolated from M. spicatum (Planas et al., 198 1). 
The cyanobacterium Synechocystis [Anacystis] 
nidulans was most sensitive compared with the 
chlorophytes Selenastrum and Scenedesmus. In a 
later study M. spicatum, grown in mesocosms, 
stimulated phytoplankton growth (Godrnaire and 
Planas, 1986). Nutrients or light did not account 
for higher phytoplankton productivity, suggesting 
that other, not yet identified factors caused this 
effect. Whether this is an example of stimulatory 
allelopathy remains to be elucidated. 

Gallic, ellagic, and tannic acid were isolated 
from M. spicatum tissue after acid hydrolysis and 
shown to inhibit phytoplankton species (Planas et 
al., 1981). The presence of these phenolic com- 
pounds already indicated that hydrolyzable 
polyphenols might be responsible for the allelo- 
pathic interaction. Tellimagrandin I1 and other 
hydrolyzable polyphenols were later identified as 
the major algicidal compounds (Gross and Sütfeld, 
1994; Gross et al., 1996). M. spicatunz contains 
10 to 25% polyphenols based on dry weight in 
leaves or apical meristem (Gross, 2000; Gross, 
unpublished results). This is much higher than 
concentrations of phenolic compounds observed 
in submersed macrophytes of other families 
(Gross, 1999; Smolders et al., 2000; Choi et al., 
2002). Tellimagrandin 11, also known as eugeniin 

(see Haslam, 1989; Gross, 1999), is also the ma- 
jor algicidal compound with strong activity against 
bloom-forming cyanobacteria in M. brasiliense, a 
South American partly emergent aquatic an- 
giosperm (Saito et al., 1989). Planas (1981) de- 
scribed 3,5-dimethoxy-4-hydroxycinnarnic acid 
(sinapic or sinapinic acid) to be present in high 
concentrations in M. spicatum. Algicidal esters of 
sinapic (sinapinic) acid, other phenylpropanoic 
acids and gallic acid were isolated from 
M. verticillatum by Aliotta et al. (1992). Extracts 
of M. spicatunz exhibited the strongest inhibitory 
activiiy toward Selenastrum capricornutum and 
Microcystis aeruginosa compared with extracts 
from Egeria densa and Cabomba caroliniana 
(Nakai et al., 1996). M. spicatum actively releases 
allelochemicals to the environment (Gross et al., 
1996), but the allelochemicals are readily me- 
tabolized after exudation (Gross et al., 1996; Gross, 
1999), and a continuous release is required for 
the algicidal activity (Nakai et al., 1999). 
Tellimagrandin 11, ellagic acid, and several other 
not yet identified low molecular polyphenols have 
been found in exudates of this plant (Gross and 
Sütfeld, 1994). Similar results have been reported 
by Nakai et al. (2000), who found gallic, pyrogal- 
lic, and ellagic acid as well as (+)-catechin in 
exudates. Gallic and pyrogallic acids were more 
inhibitory toward Microcystis aeruginosa than 
ellagic acid and (+)-catechin. Glomski et al. (2002) 
recently doubted that exudation of polyphenols 
by M. spicatum occurs to any significant amount. 
However, their method was not adjusted to opti- 
mal trapping of polyphenols, and no exact con- 
centrations of plants used in the exudation experi- 
ment were provided. 

B. Macroalgae 

The most prominent macroalgae in freshwa- 
ter (and brackish) Systems are charophytes 
(Characeae, Nitellaceae). Chara-dominated lakes 
are generally clear and exhibit low phytoplankton 
densities (Crawford, 1977; van den Berg et al., 
1998). Multiple factors may account for this, for 
example, reduced sediment resuspension, compe- 
tition for nutrients, and refuge for herbivorous 
zooplankton (Scheffer et al., 1993; van Donk and 



van de Bund, 2002). In addition, allelopathy was 
frequently considered as an adaptive trait of Chara 
to prevent dense phytoplankton and epiphyte de- 
velopment. Bioactive cyclic sulfur compounds 
have been isolated from Chara globularis (Anthoni 
et al., 1980) and other brackish and freshwater 
Chara species (Wium-Andersen et al., 1982). 
These compounds are very labile and may release 
sulfur after decay. Whether the cyclic sulfur com- 
pounds, their presumed precursors in the plant, or 
sulfur itself caused the inhibition of photosynthe- 
sis in phytoplanktonic algae has never been re- 
solved (Wium-Andersen et al., 1982; Wium- 
Andersen, 1987). The ecological significance of 
these laboratory fmdings with extracted material 
has been debated. Based on the relation of phy- 
toplankton chlorophyll to phosphorus concentra- 
tion in Chara-dominated and Chara-free lakes, 
Forsberg et al. (1990) argued that allelopathy is 
unlikely to be of ecological importance in situ. 
Lack of allelopathic activity might be due to 
nonallelopathic Chara species present in these 
lakes. Ch. globularis, the only species with promi- 
nent allelopathic activity (Wium-Andersen et al., 
1982), was not dominant but Ch. tomentosa 
(Forsberg et al., 1990); other occurring species 
were Ch. contraria, Ch. vulgaris, and Ch. aspera. 
Laboratory studies revealed that only exudates of 
Chara globularis significantly limited microalgal 
growth, exudates of Ch. tomentosa, Ch. delicatula, 
or Ch. hispida either had no or stimulatory effects 
on Scenedesmus (Hootsmans and Blindow, 1994). 
These findings indicate that the release of 
allelopathically active compounds in Chara is 
species specific. They further point out that such 
effects might be possible in situ. However, we are 
still lacking conclusive field evidence for the pro- 
posed allelopathic activity of Chara. New evi- 
dence for allelopathy in Chara was provided re- 
cently by van Donk and van de Bund (2002). 

Tuft-forming Cladophora species are frequent 
both in running and stagnant waters. They can 
form big mats, competing with other macroalgae 
or macrophytes for light and space. They also 
suffer from dense epiphyte Cover. Extracts of 
C. glomerata lowered the photosynthetic rates of 
epiphytic Nitzschia sp. (Dodds, 1991). Low epi- 
phyte densities were also found on Spirogyra and 
may be related to tannin-like compounds present 

in viable cells of this macroalga (Pankow, 1961; 
also See Section 1V.A). Furthermore, positive al- 
lelopathic interactions were described for Spiro- 
gyra. Aqueous extracts stimulated growth and 
microcystin production in Oscillatoria agardhii 
(Mohamed, 2002). Oscillatoria formed only 
blooms in inigation channels when Spirogyra was 
present. 

C. Microalgae 

Only few recent studies reveal allelopathic 
interactions of freshwater microalgae. Inderjit and 
Dakshini (1994) published a review on algal al- 
lelopathy. Many algae or cyanobacteria produce a 
distinct Pattern of volatile organic compounds 
(VOC). Their ecological role is largely unknown. 
To test whether they are allelopathically active, 
various VOC commonly found in cyanobacteria 
and algae were used as synthetic compounds in an 
agar diffusion assay, and they inhibited Chlorella 
pyrenoidosa (Ikawa et al., 2001). However, the 
concentrations needed were extremely high (up to 
10 mglml, equivalent to the mM range), and the 
bioassay design does rather implicate a direct 
effect on the cells and not via airborne chemicals. 

In contrast to marine dinoflagellates, those 
living in freshwater are generally considered to be 
nontoxic and harmless algae. Peridinium 
gatunense, a bloom-forming dinoflagellate in Lake 
Kinneret, Israel, influences toxin production in 
Microcystis sp., bloom-forming cyanobacteria in 
this lake (Vardi et al., 2002, and see Section III.D). 
P. bipes was also shown to have an algicidal 
effect on M. aeruginosa (Wu et al., 1998). 
P. aciculiferum caused cell lysis of the cryptophyte 
Rhodomonas lacustris (Rengefors and Legrand, 
2001). This cryptophyte is a naturally co-occur- 
ring competitor for P. aciculiferum. The authors 
suggest that allelopathy in this dinoflagellate is an 
adaptive strategy to outcompete other winter phy- 
toplankton. 

D. Cyanobacteria 

Cyanobacteria may be dominant in both pe- 
lagic and benthic freshwater habitats. They can 



produce effective allelochemicals interfering with 
the growth of competing cyanobacteria and algae. 
The control of photoautotrophic biofdms by al- 
lelopathic interactions was recently reviewed by 
Jüttner (1999), with Special emphasis on benthic 
cyanobacteria. Further references are given in 
Gross (1999). Bloom-forming pelagic cyanobac- 
teria are well known for their neuro- or hepato- 
toxic metabolites (Ostensvik et al., 1998; Skulberg, 
2000; Kaebemick and Neilan, 2001). The eco- 
logical role of these cyanotoxins, especially with 
regard to allelopathy, is debated. The dominance 
of a colonial cyanobacterium in an acidic Swed- 
ish lake, Merismopedia tenuissima, was thought 
to depend on allelopathical control of other phy- 
toplankton species (Blomqvist, 1996). Because 
not much is known on allelopathic interactions of 
bloom-foming cyanobacteria, I have included all 
available studies on the potential allelopathic ac- 
tivity of cyanotoxins in this review. Reference to 
allelopathically active nonbloom-forming or 
benthic cyanobacteria is provided in this section 
and in Section 1V.B. 

The benthic cyanobacterium Scytonema 
hofmannii produces cyanobacterin, an effective 
allelochemical-inhibiting cyanobacteria (Gleason 
and Paulson, 1984), eukaryotic algae (Gleason 
and Baxa, 1986), and higher plants (Gleason and 
Case, 1986). A second chlorinated aromatic com- 
pound with algicidal activity was later isolated 
from this cyanobacterium (Lee and Gleason, 
1994). No further reports on halogenated second- 
ary metabolites in freshwater cyanobacteria exist 
to date. The mode of action of these lipophilic, 
low-molecular-weight secondary metabolites is 
inhibition of photosystem I1 (see Section 1V.B). 
Cyanobacterin is toxic to a variety of higher plants 
when applied as Spray on the leaves but not via 
root uptake (Gleason and Case, 1986). The float- 
ing macrophyte Lemna gibba was severely inhib- 
ited when cyanobacterin was added in concentra- 
tions as low as 2.3 pA4 to the cultivation medium 
(Gleason and Case, 1986). 

Members of the genus Fischerella (especially 
F. ambigua and F. nzuscicola), benthic cyano- 
bacteria, exhibit allelopathic activity toward many 
cyanobacteria and eukaryotic algae, but almost 
none against bacteria. F. muscicola UTEX 1829 
was the most active strain in a screening of 65 

filamentous, nitrogen-fixing cyanobacteria for 
cyanobactericidal compounds (Flores and Wolk, 
1986). Fischerella strains were also the most ac- 
tive species in a screening of new cyanobacterial 
isolates from Australia and Asia for allelopathy 
against chlorophytes and cyanobacteria (Schlegel 
et al., 1998). F. muscicola apparently produces 
cyanobactericidal metabolites at all growth Stages 
(Srivastava et al., 1999). The major inhibitor 
fischerellin A was isolated (Gross et al., 1991), 
and its structure identified to contain an enediyne 
moiety and two heterocyclic ring Systems 
(Hagmann and Jüttner, 1996). Other minor com- 
pounds with similar chemical and physiological 
characteristics are present in Fischerella 
(e.g., fischerellin B), which has only one hetero- 
cyclic ring and a similar side chain as fischerellin 
A (Papke et al., 1997). The alkaloids 12-epi- 
hapalindole E isonitrile from Fischerella and 
calothrixin A from Calothrix inhibited RNA syn- 
thesis of various organisms (Doan et al., 2000), 
indicating another mode of action for allelo- 
pathically active secondary metabolites in 
cyanobacteria. 

Exudates of the filamentous cyanobacterium 
Trichormus doliolum inhibited other cyanobacteria 
and some chlorophytes (von Elert and Jüttner, 
1996). The inhibition was enhanced when the 
donor species was kept in phosphorus limitation, 
and target species were more susceptible to inhi- 
bition under light limitation. Allelochemicals in 
exudates from phosphorus-limited T. doliolum 
cultures inhibited Anabaena variabilis ATCC 
29413 even when the biomass of this target spe- 
cies was 20-fold greater (von Elert and Jüttner, 
1997). 

Oscillatoria sp. produced and released 
allelopathically active compounds inhibiting other 
cyanobacteria and chlorophytes but not het- 
erotrophic organisms (Chauhan et al., 1992; 
Bagchi et al., 1993). Later, a lipophilic low mo- 
lecular inhibitor of photosystem I1 from 
Oscillatoria late-virens was isolated (Bagchi et 
al., 1993; Bagchi, 1995). Nutrients interfered with 
the production of these allelopathically active 
compounds (Ray and Bagchi, 2001). Nostoc 
linckia produced and released another allelo- 
chemical named cyanobacterin LU-1 that inhib- 
ited the growth of many cyanobacteria and eu- 



karyotic algae but not heterotrophic bacteria and 
fungi (Gromov et al., 1991). Nostoc strain 31 
produces cyclic heptapeptides, nostocyclamide and 
nostocyclamide M, which are allelopathically 
active against cyanobacteria and algae (Todorova 
and Jüttner, 1995; Jüttner et al., 2001). 

Several bloom-forming, pelagic cyanobacteria 
produce cyanotoxins, neurotoxins such as anatoxin 
and hepatotoxins such as microcystins (see 
Carmichael, 1992; Skulberg, 2000). These toxins 
act primarily on vertebrates, and there is little evi- 
dence that intact cells release these compounds in 
significant concentrations to the surrounding me- 
dium. The physiological, ecological, and evolu- 
tionary aspects of cyanotoxin production for the 
producing cyanobacteria is not well known 
(Kaebernick and Neilan, 2001), although some 
reports indicate allelopathic activity in Microcystis 
(Lam and Silvester, 1979), and see Maestrini and 
Bonin (198 1) for discussion. Chlorella pyrenoidosa 
was inhibited by lipids from Microcystis aeruginosa 
(Ikawa et al., 1996). The compounds responsible 
for the observed allelopathic effect were linoleic 
and linolenic acid. Other studies caution against 
the bioactivity of these fatty acids, since they may 
oxidize during the bioassay procedure (Aliotta et 
al., 1990; Aliotta et al., 1991). 

Recently, anatoxin and microcystin LR from 
Anabaenaflos-aquae were reported to be involved 
in chemical signaling between competing phy- 
toplankton organisms, that is, A. flos-aquae and 
Chlamydomonas reinhardtii, a flagellated unicel- 
lular chlorophyte (Kearns and Hunter, 2000; 
Keams and Hunter, 2001). Extracellular products 
of A.  flos-aquae inhibited the growth of 
C .  reinhardtii but not vice versa. Microcystin LR 
but not anatoxin used as purified compound in- 
hibited growth of the chlorophyte. C. reinhardtii 
and the extracellular products of this chlorophyte 
had no impact on microcystin LR, but signifi- 
cantly increased the anatoxin content in A. flos- 
aquae (Keams and Hunter, 2000). Motility and 
settling rate of C .  reinhardtii were temporarily 
increased in the presence of purified cyanotoxins 
or extracellular products from A. flos-aquae 
(Kearns and Hunter, 2001). However, there is 
some inconsistency in the two studies conceming 
the extracellular concentration of the cyanotoxins, 
and at present it may as well be that other, not yet 

identified allelochemicals in the exudates of A. 
flos-aquae are responsible for the inhibition of 
motility and growth in C .  reinhardtii. Exudates 
from C .  reinhardtii inhibited heterocyst forma- 
tion in A. flos-aquae (Keams and Hunter, 2002) 

Allelopathic activity of an unidentified 
microcystin was suggested by Singh et al. (2001). 
Photosynthetic oxygen evolution, '4C0,-carbon 
uptake and nitrogenase activity of Nostoc 
muscorum and Anabaena BTl were inhibited in 
concentrations of 25 to 300 pik! by a compound 
strongly resembling microcystin LR based on TLC 
and HPLC findings. No final identification of the 
active compound was made. The concentration of 
the microcystin-like compound used was, how- 
ever, at the upper limit of or even above 
microcystin concentrations found in German lakes 
(Fastner et al., 1999). Microcystin LR was con- 
sidered allelopathically active against various 
submersed macrophytes (Pflugmacher, 2002). 
Kasumigamide, a tetrapeptide isolated from 
M. aeruginosa, inhibited green algae at concen- 
trations of approx. 2.5 rnM (MIC), thus also well 
above possible natural concentrations (Ishida and 
Murakami, 2000). 

A novel allelopathic mode of action was 
discovered recently whereby exudates from 
Microcystis inhibited photosynthesis of the di- 
noflagellate Peridinium gatunense by interfer- 
ence with its intemal carbonic anhydrase activ- 
ity (Sukenik et al., 2002). Microcystin LR is 
apparently not responsible for this action, since 
this mechanism occurred also with strains not 
producing this heptapeptide. Exudates also in- 
duced oxidative stress in P.  gatunense and acti- 
vated certain protein kinases (Vardi et al., 2002). 
Interestingly, both Microcystis and P.  gatunense 
exerted reciprocal, density-dependent allelopathic 
activity. In the presence of P .  gatunensis, 
Microcystis cells lost buoyancy, followed by cell 
lysis and a dramatic increase of McyB, a subunit 
of the peptide synthetase complex involved in 
microcystin biosynthesis (Vardi et al., 2002). 
These two species might be a highly interesting 
model system for aquatic allelopathy: both oc- 
cur in the same lake, exudates exerted the allelo- 
pathic activity, and the modes of action could be 
identified using modern physiological and mo- 
lecular techniques. 



IV. MODES OF ACTION 

Allelochemicals can interfere with many pro- 
cesses of target organisms (see, e.g., Reigosa et 
al., 1999; Einhellig, 2001). From the above-men- 
tioned studies it is apparent that allelopathically 
active compounds are often directed at two physi- 
ological processes, photosynthesis and enzyme 
activity. Only those are considered in detail in the 
following. 

A. Inhibition of Enzymes 

Enzyme function is essential for all organ- 
isms. Many aquatic organisms produce extracel- 
lular enzymes that enable them to use complex 
substrates or are involved in the colonization of 
surfaces (Chrost, 199 1 ; Wetzel, 199 1). Interfer- 
ence with these enzymes can alter competitive 
interactions among organisms, change the sett- 
ling of organisms, and interfere with biofilm for- 
mation andlor epiphyte growth. 

Many microalgae and cyanobacteria produce 
glycosidase (Cannell et al., 1987) and Protease 
inhibitors (Cannell et al., 1988b), some are re- 
leased into the culture medium. Approximately 
20% of all isolates of filamentous cyanobacteria 
from biofilms in Taiwan possessed a-glucosidase 
inhibitory activity, as well as allelopathic activity 
and grazer toxicity (Jüttner and Wu, 2000). 
Pentagalloylglucose was identified as the major 
inhibitor of a-glucosidase from the chlorophyte 
Spirogyra varians (Cannell et al., 1988a). Fur- 
ther, tetra- to undecagallotannins were isolated 
from Spirogyra at concentrations of 2 to 6% of 
the dry mass (Nishizawa et al., 1985). Most hy- 
drolyzable polyphenols effectively complex pro- 
teins, and thus might inhibit enzymes (Haslam, 
1989). The occurrence of hydrolyzable polyphe- 
nols in chlorophytes is limited to species be- 
longing to the 'phragmoplast' group (see 
Sawitzky and Grolig, 1995; Pickett-Heaps et 
al., 1999) such as Spirogyra. Tannins are stored 
in vacuoles of this filamentous chlorophyte, 
comparable to higher plants. Another extracel- 
lular, low-molecular-weight a-amylase inhibi- 
tor was isolated from Anabaena 80s-aquae 
(Winder et al., 1989). 

Tellimagrandin I1 and other hydrolyzable 
polyphenols present in and released by the fresh- 
water submersed angiosperm Myriophyllum 
spicatum are effective inhibitors of alkaline phos- 
phatase (Gross and Sütfeld, 1994; Gross et al., 
1996; Gross, 1999). The inhibitory activity of 
complex polyphenols was much larger than com- 
parable amounts of the simple phenolic compound 
gallic acid (Gross et al., 1996). 

B. Allelochemicals Affecting 
Photosynthesis 

The inhibition of photosynthesis, the central 
physiological process of competing primary pro- 
ducers, is an effective defense strategy of many 
aquatic angiosperms, algae, and cyanobacteria. 
Methods used by several authors to investigate 
the impact of allelochemicals on photosynthesis 
focus either on measuring oxygen evolution with 
Clark-type electrodes, or carbon incorporation with 
the radiocarbon method. The former allows a more 
detailed study of the site of inhibition because 
artificial electron acceptors and donors allow a 
decoupling of photosystem I and I1 (PSI and PSII), 
and comparison with known synthetic herbicides. 
These studies indicate that the majority of the 
allelochemicals interfere with PSII. However, in 
most cases they act at different sites than most 
synthetic herbicides, whose primaty target is the 
quinone-B binding site (Trebst et al., 1984; Ohad 
and Hirschberg, 1990; Huppatz, 1996). This con- 
f h s  that natural herbicides exhibit a wider range 
of target sites than synthetic inhibitors (Duke et 
al., 2001). 

1. Cyanobacteria 

A recent review summarized allelochemicals 
affecting photosynthesis produced by cyanobacteria 
(Smith and Dom, 1999), indicating that this mode 
of action is widespread among cyanobacteria. Con- 
versely, in a large screening of cyanobacteria, 
Schlegel et al. (1998) concluded that bioactivity 
directed against algal photosynthesis might be rela- 
tively rare because of differential effects observed 
under photoautotrophic or heterotrophic conditions. 



Yet, no direct measurements of photosynthetic elec- 
tron transport were made in this study. Lipophilic 
inhibitors produced by benthic cyanobacteria are 
best investigated for their impact on photosystem 
I1 of other cyanobacteria and algae. Cyanobacterin 
from Scytonema hofmannii (Pignatello et al., 1983) 
inhibits PSI1 at the oxidizing site of the quinone-B 
electron acceptor, but not at the site where DCMU 
(3-(3,4-dichlorpheny1)- 1,l -dimethylwea) interacts 
with PSIi (Gleason and Paulson, 1984; Gleason 
and Baxa, 1986; Gleason and Case, 1986; Gleason 
et al., 1986). Electron microscope studies revealed 
that cyanobacterin also specifically disrupted the 
thylakoid membrane stnicture in Euglena gracilis 
(Gleason, 1990). These findings show that 
allelopathically active compounds may have mul- 
tiple modes of action, as was postulated before 
(Einhellig, 1995; Einhellig, 200 1). 

Fischerellin A isolated from Fischerella 
muscicola inhibited PSII (Gross et al., 1991; 
Srivastava et al., 1998) and acted at four different 
sites in PSII with different times of interaction 
(Srivastava et al., 1998). PSII of cyanobacteria 
and eukaryotic algae but not of purple bacteria 
was affected by fischerellin A. Many other 
cyanobacteria inhibit photosynthesis, and some 
of the allelochemicals involved act specifically 
on PSII. Examples are allelochemicals released 
by Trichormus doliolum (von Elert and Jüttner, 
1997) or the inhibitor isolated from Oscillatoria 
late-virens (Bagchi, 1995). 

2. Macrophytes 

Aqueous extracts, possibly including phenolic 
allelochemicals, from the marine angiosperm 
Zostera marina decreased the primary production 
of epiphytic diatoms (Harrison and Durance, 
1985). For freshwater systems, the cyclic sulfur 
compounds dithiolane and trithiane from Chara 
globularis are the best known allelochemicals 
affecting carbon uptake by cultured diatoms and 
natural phytoplankton assemblages (Wium- 
Andersen et al., 1982). In a later study, the same 
author proposed that a labile sulfur compound in 
Ceratophyllum demersunz was responsible for the 
observed reduction in primary productivity and 
concluded that elemental sulfur released from these 

labile compounds might be the ultimate cause 
(Wium-Andersen et al., 1983). Whether sulfur is 
also the effective allelochemical in Chara has 
never been investigated. Exudates of C .  demersum 
inhibited PSII but not growth of algae and 
cyanobacteria (Körner and Nicklisch, 2002). 

Extracts and exudates from Myriophyllum 
spicatum inhibit photosynthesis of various 
cyanobacteria, chlorophytes, and diatoms (Körner 
and Nicklisch, 2002; Leu et al., 2002). Using 
dialysis membranes and controlling for nutrient 
competition, Körner and Nicklisch (2002) showed 
that M. spicatum causes species-specific effects 
in a range of cyanobacteria, chlorophytes, and 
diatoms and inhibits both growth and PSII in 
natural relevant concentrations. The mechanism 
of interference with PSII was studied in detail by 
Leu et al. (2002). Lipophilic extracts and purified 
tellimagrandin I1 interfered with photosynthetic 
electron transport of the cyanobacterium Ana- 
baena sp. PCC 7120. Tellimagrandin I1 andlor 
other polyphenols in M. spicatum probably cause 
a higher redox midpoint potential for the non- 
heme iron, located between the primary and the 
secondary quinone electron acceptors, QA and QB 
in PSII. This mode of action is different from 
those of synthetic herbicides, apparently a com- 
mon characteristic of many natural herbicides 
(Duke et al., 2000). 

From the above-mentioned studies it is ap- 
parent that many allelopathic interactions in 
aquatic systems occur surface-associated, either 
in benthic communities or between photoautotro- 
phs and their epiphytes. Benthic algal or 
cyanobacterial mats and epiphytic communities 
are complex systems, differing, for example, in 
stratification or recycling capacity (Peterson and 
Tuchman, 1992; Wetzel, 1993). Biofilms are 
formed through a complex succession of organ- 
isms, usually starting with carbohydrates, followed 
by bacteria, photoautotrophs, and animals (Wahl, 
1989). Microorganisms, thus bacteria and fungi, 
are explicitly incorporated in the original defini- 
tion of allelopathy by Molisch (1937). However, 
we have only little insight into the role of bacteria 



in allelopathic interactions of aquatic primary pro- 
ducers. The following section presents some in- 
formation on allelopathic interference between 
bacteria and aquatic photoautotrophs. 

Several cyanobacteria produce antibiotic com- 
pounds against heterotrophic bacteria (Borowitzka, 
1995; Ostensvik et al., 1998; Kreitlow et al., 1999; 
Skulberg, 2000). Some planktonic cyanobacteria 
(Aphanizomenonflos-aquae, Cylindrospermopsis 
raciborskii, Microcystis aeruginosa, Tychonema 
bourrellyi) exhibited extractable antibiotic activ- 
ity in various bioassay Systems (Ostensvik et al., 
1998). A strain of Phormidium produced extra- 
cellular antirnicrobial compounds inhibiting a wide 
range of Gram-positive and Gram-negative het- 
erotrophic bacteria (Fish and Codd, 1994b). 

Although bacteria do not compete with 
cyanobacteria for light or most nutrients, they 
may enhance attachment of other primary pro- 
ducing microalgae on benthic cyanobacterial mats. 
Nostoc muscorum produced antibiotic and anti- 
fungal compounds of medium molecular weight 
(M, 2000 to 3000) (Bloor and England, 1989). 
The release of these compounds into the culture 
medium was controlled by nitrate and iron (Bloor 
and England, 1991). However, it has never been 
investigated whether these antibiotic compounds 
are ecologically relevant in preventing or delay- 
ing the development of biofilms. Direct interac- 
tions between bacteria and certain cyanobacteria 
have been described. Bacteria CO-occurring with 
Microcystis aeruginosa exhibited a higher 
attractance to this cyanobacterium than to other 
cyanobacteria and were less inhibited by exudates 
(Casamatta and Wickstrom, 2000). The marine 
bacterium Pseudoalteromonas tunicata effectively 
inhibited algal spore germination through extra- 
cellular inhibitors (Egan et al., 2001a; Egan et al., 
2001b). Some marine fungi growing epiphyti- 
cally on the surface of macroalgae produce algi- 
cidal compounds inhibiting the growth of 
microalgae (Chen et al., 1996; Jenkins et al., 1998). 
Hence, in some instances not the host plant itself 
but associated microorganisms account for allelo- 
pathic effects. 

To avoid bacterial metabolization of 
allelochemicals, many studies use axenic organ- 
isms. Axenic [Greek] meaning "without strang- 
ers" was originally coined as term by Baker and 

Ferguson (1942). Bacterial metabolization of 
allelochemicals released by plants happens fre- 
quently. Juglone would not be active without the 
glycosidase activity of soil bacteria. Non-axenic 
Fischerella tisserantii (Cyanobacteria) contained 
lower concentrations of fischerellin A compared 
with the axenic strains F. ambigua and 
F. muscicola (Gross et al., 1991; Gross, unpub- 
lished results). Exudates of Myriophyllum 
spicatum loose their inhibitory activity on algae 
and cyanobacteria over time, indicating bacte- 
rial degradation (Gross et al., 1996; Nakai et al., 
1999). 

VI. ABIOTIC INTERFERENCE 

A. Nutrient Stress 

AUelopathy is considered to be especially effec- 
tive in stress situations (Reigosa et al., 1999), for 
exarnple, under nutrient limitation. Target organ- 
isms might be more susceptible to allelochemicals 
under stress, and/or donor organisms might induce 
or augment the production of allelopathically active 
compounds under such conditions. 

In the soft coral Sarcophyton ehrenbergi 
(Octocorallia: Acyonaceae) the mtio of allelochernicals 
to lipids was strongly infiuenced by the nuirient status 
of the tissue (Fieury et al., 2000). The active com- 
pounds are cembranoid diterpenes, some of which are 
ichthyotoxic and others may be involved in allelo- 
pathic interactions (see Section 1I.E). Increased nitro- 
gen availability leads to higher ratios, whereas under 
surplus phosphorus the ratio declined compared with 
nutrient satumtion. At times of greatest coral gmwih, 
more nitrogen resulted in more biomass production of 
the zooxanthellae and less transfer of metabolites to 
the coral. In response, the terpenoid biosynthesis of 
the latter increased (Fieury et al., 2000). 

Fitzgerald (1969) recognized that nitrogen 
limitation but not phosphorus limitation caused a 
decline in epiphyte growth on various macroalgae 
and aquatic angiosperms. He considered either a 
"nitrogen sink" effect or antagonistic (allelopathic) 
interference to be responsible for the inhibition of 
epiphytes in cultures of Myriophyllum sp., 
Ceratophyllum sp., Lemna minor, Cladophora sp., 
and Pithophtora oedogonium. Myriophyllum, the 



only rooted species in this list, can take up nitro- 
gen both with shoots and roots, depending on the 
concentrations in the respective compartments 
(Nichols and Keeney, 1976a). All others obtain 
nitrogen primarily from the water. Ceratophyllum 
demersum appeared to act as a nitrogen sink, 
especially in spring (Mjelde and Faafeng, 1997): 
Many clearwater shallow Norwegian lakes exhib- 
iting low phytoplankton densities, high phospho- 
rus concentrations but indication of nitrogen limi- 
tations were dominated by C .  demersum. 
Unfortunately, allelopathy was not investigated 
in this study. 

Nutrients frequently interfere with the allelo- 
pathic activity of cyanobacteria (von Elert and 
Jüttner, 1996; von Elert and Jüttner, 1997; Ray 
and Bagchi, 2001). Phosphorus limitation of phy- 
toplankton and epiphytes during summer is com- 
mon in many freshwater lakes, even when the 
lake is eutrophic (Vrba et al., 1993). Polyphenolic 
allelochemicals present in Myriophyllum spicatum 
interfere with alkaline phosphatase, an exoenzyme 
used by many algae and cyanobacteria to over- 
come inorganic phosphorus limitation (Gross et 
al., 1996; Gross, 1999). The macrophyte obtains 
phosphorus predominantly through the roots (Best 
and Mantai, 1978; Carignan and Kalff, 1980; 
Barko and Smart, 1981), but phytoplankton and 
epiphytes (Carignan and Kalff, 1982) rely on 
phosphorus in the water. Thus, the inhibition of 
alkaline phosphatase provides a competitive ad- 
vantage for this submersed macrophyte. In con- 
trast to marine systems, freshwater phytoplankton 
is seldom nitrogen limited (Weithoff and Walz, 
1999; Wetzel, 2001). M. spicatum, yet, was fre- 
quently reported to be nitrogen limited (Nichols 
and Keeney, 1976b; Barko and Smart, 1986; 
Sytsma and Anderson, 1993). Algicidal polyphe- 
nols in M. spicatum are inversely related to tissue 
nitrogen (Gross, 1999; Gross, unpublished results). 
Especially active growing tissues (apical mer- 
istems) have high spring and summer levels of 
polyphenols, whereas in fall polyphenols decline 
and nitrogen tissue concentration increases. The 
differential responses of the donor organism 
(M. spicatum) and target organisms (phytoplank- 
ton, epiphytes) to phosphorus and nitrogen limi- 
tation strongly affects the allelopathic interac- 
tions in this System. Because nutrients often 

interfere with allelopathic interactions, Inderjit 
(1997) recently asked whether it is realistic to 
separate resource competition from allelopathy. 

B. Other Environmental Impacts 

The soft coral Sinularia flexibilis produces 
allelochemicals preventing the growth of bacteria 
and algae on its surface (Aceret et al., 1998). 
Bleaching caused a loss of zooxanthellae in this 
coral, and resulted in a short-term loss of the 
principal algicidal terpenoid sinulariolide to 8% 
compared with controls (Michalek-Wagner and 
Bowden, 2000). In contrast, the levels of the an- 
tibacterial secondary metabolite flexibilid more 
than doubled. Surprisingly, low levels of algicide 
did not result in increased algal growth on the 
surface of Sinularia (Michalek-Wagner and 
Bowden, 2000). Considering the succession of 
epibionts (see above Wahl, 1989), bacteria have 
to colonize first before algae will attach. In this 
context, stressed S.  flexibilis would reallocate the 
secondary metabolites to the primary target of 
epibiosis (bacteria) and still get sufficient protec- 
tion against algal overgrowth. More studies are 
needed to investigate the mutual effect of bacteria 
and algae in aquatic biofilms. Important insights 
are currently emerging from the study of the 
rhodophyte Delisea pulchra and its secondary 
metabolites that interfere with bacterial quorum- 
sensing signals (Kjelleberg et al., 1997; Rice et al., 
1999; Charlton et al., 2001; Steinberg et al., 2001). 

Terrestrial humic compounds are frequently 
reported to disturb aquatic cornmunities (phy- 
toplankton, macroalgae, higher plants) both in 
marine and freshwater systems (Inderjit and Gross, 
2002). Precipitation run-off from land to water is 
one possibility how terrestrial vegetation can 
impact aquatic primary producers. Lower run-off 
of forest humic compounds caused a shift in the 
macroalgal community stnicture from phaeophytes 
to crustose coralline rhodophytes on the coast of 
Japan. Laboratory experiments showed that 
allochthonous humic compounds inhibit crustose 
coralline spore germination and promoted 
phaeophyte oogonium formation, the latter prob- 
ably through complexation of iron by fulvic acids 
(Matsunaga et al., 1999). 
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VII. MATHEMATICAL MODELING 
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