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Abstract 
We develop a  new metric, Relative Critical Value De- 

viation (RCVD), for classifying and predicting sojiware 
quality. The RCVD is based on  the concept that the extent 
to which a metric's value deviates from its critical value, 
normalized by the scale of the metric, indicates the degree 
to which the item being measured does not conform to  a 
specijied norm. For example, the deviation in body tem- 
perature above 98.6 Fahrenheit degrees is  a surrogate for 
fever. Similarly, the RCVD is a surrogate for the extent to 
which the quality of sojiware deviates from acceptable 
norms (e.g., Zero discrepancy reports). Early in develop- 
ment, surrogate metrics are needed to make predictions of 
quality before quality data are available. The RCVD can 
be computed for a single metric or multiple metrics. Its 
application is  in assessing newly developed modules by 
their quality in the absence of quality data. The RCVD is a 
part of the larger framework of our measurement models 
that include the use  of Boolean Discriminant Functions 
for classifying software quality. We demonstrate our con- 
cepts using Space Shuttle flight software data. 

Keywords: Quality classijication and prediction, relative 
critical value deviation metrics. 

1. Introduction 

Our  goal is to provide  models and  processes to assist 
software  managers in answering the following questions: 

0 How can I control the quality of  my software? 
0 How can I predict the quality of  my software? 
0 How shall I prioritize my effort to achieve my quality 

0 How can I determine whether my quality goals  are 

0 How much will it cost to achieve my quality goals? 

We develop quality control and prediction models that are 
used to identify modules requiring priority attention dur- 

goals? 

being met? 
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ing  development and  maintenance. This is accomplished 
in  two activities: validation and application. During vali- 
dation, we use a build of the software that has been devel- 
oped as the source of data to compute Boolean Discrimi- 
nant Functions (BDFs), Relative Critical Value  Deviation 
(RCVD)  metrics,  and regression equations that  we  use to 
retrospectively  classify  and predict quality with specified 
accuracy, by build  and  module.  Using these functions and 
equations  during application, we classify and predict the 
quality of  new software that  is being  developed.  This is 
the quality we expect to achieve  during  maintenance. 
During validation, both  quality factor (e.g., discrepancy 
reports of deviations between requirements and imple- 
mentation) and software  metrics (e.g., size, structural) data 
are available; during application, only the latter are avail- 
able. During validation, we construct Boolean discrimi- 
nant functions (BDFs)  comprised  of a set of metrics and 
their critical values (i.e., thresholds) [l, 21. We select the 
best BDF based  on its ability to achieve the  maximum 
relative incremental qualitylcost ratio. During application, 
if at least one of the  module's metrics  has  a  value that ex- 
ceeds its critical value,  the module is identified as "high 
priority" (i.e.,  low quality); otherwise, it is identified as 
"low priority" (i.e., high quality). Our objective is to iden- 
tify  and correct quality problems during  development, as 
opposed  to  waiting  until maintenance when  the cost of 
correction would be high. This  process  addresses the 
question:  "How  can I control the quality of  my software?" 
Because BDFs  only provide an acceptlreject decision on 
module quality, during validation, we also construct 
RCVDs that are used  to prioritize the effort applied to 
rejected  modules.  In other words, an RCVD measures the 
degree to which  quality is low. This  process  addresses the 
question: "How shall I prioritize my effort to achieve my 
quality goals? 

A RCVD is a derived metric, based  on the normalized 
deviation between a metric's value  and its critical value. It 
may be based  on a single or multiple metrics. In our proc- 
ess, we: 1)  identify  the critical values of the metrics  and 2) 
find the optimal BDF and RCVD based  on their ability to 
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satisfy both statistical and application criteria. Statistical 
criteria refer to the ability to correctly classify the software 
(i.e., classify high quality software  as high  quality  and  low 
quality software as low quality). Application criteria refer 
to the  ability to achieve  a high quality/cost ratio. This pro- 
cess addresses the questions: "How  can I determine 
whether my quality goals are being  met?"  and  "How  much 
will it cost to achieve my quality goals?" 

RCVD  values that exceeded the .80 percentile value 
were able to account for two-thirds of the discrepancy 
reports. To round  out our approach, we  use  regression 
equations to predict quality limits. This is desirable be- 
cause, although BDFs  and RCVDs control and  predict 
quality based  on expected values, they are not capable of 
predicting the range of quality values. 

We  show that it is important to perform  a marginal 
analysis (i.e., identification of the incremental contribution 
of each metric to improving quality) when  making a deci- 
sion about how  many metrics to include in  the  BDFs  and 
RCVDs.  If  many metrics are added to the set at once,  the 
contribution of individual metrics is obscured. Also,  the 
marginal analysis provides an effective rule for deciding 
when  to stop adding metrics. 

The contributions of  this research are the  following: 1) 
the Relative Critical Value  Deviation (RCVD)  is a new 
metric for classifying and predicting software quality; 2) 
the RCVDs in combination with  the  BDFs  we  previously 
developed,  allow the software manager to both  control 
quality and prioritize the effort required to achieve quality 
goals; 3) BDFs,  RCVDs,  and regression equations are 
integrated into a  process to assist the software manager  in 
answering the questions posed  in  the introduction; and 4) 
the data and  most of the calculations are implemented  in a 
spreadsheet for easy transfer to practitioners. 

1.1 Related  Research 

Our  models are in the class of  models concerned with 
the classification, control, and prediction of quality. Other 
researchers have had similar objectives but different ap- 
proaches. Porter and  Selby  used classification trees to par- 
tition multiple metric  value  space so that a sequence of 
metrics and their critical values could  be  identified  that 
were associated with either high  quality or low  quality 
software [3]. This  technique is closely related to our ap- 
proach  of identifying a set of metrics and their critical 
values that will satisfy quality and cost criteria. However, 
we  use statistical analysis to make the identification. 

Briand  et al. used logistic regression to classify mod- 
ules as fault-prone or not fault-prone as  a function of vari- 
ous object oriented metrics [4]. In  another  example of 
logistic regression, Khoshgoftaar and  Allen  used it to clas- 
sify modules  as fault-prone or not fault-prone as a function 
of faults, requirements,  performance, and  documentation 
software trouble report metrics [5]. While  one of our ob- 
jectives is similar -- classify modules as either high  quality 
or low quality -- we derive  from this binary classification 

several predictive continuous quality and cost metrics, 
including the  RCVDs. These  metrics are used to predict 
the quality of software that  will  be delivered by develop- 
ment to maintenance  and the cost of achieving it. 

Khoshgoftaar et al. used nonparametric  discriminant 
analysis in each iteration  of a military system project to 
predict fault-prone modules  in  the  next iteration [6] .  This 
approach  provided  early indication of reliability and  the 
risk of implementing the next iteration. They  conducted  a 
similar  study  involving a  telecommunications application, 
again  using  nonparametric discriminant analysis, to clas- 
sify  modules as either fault-prone or  not fault-prone [7]. 
Our approach  has the same objective but we produce 
BDFs  and  RCVDs  in terms of  the original metrics  as  op- 
posed to using  density functions as discriminators. 

Khoshgoftaar  and  Allen have also developed models 
for ranking  modules for reliability improvement  according 
to  their degree of fault-proneness as opposed to whether 
they are fault-prone or  not [8]. They  used Alberg Dia- 
grams [9] that  predict percentage of faults as a function of 
percentage of modules by ordering  modules in decreasing 
order of faults and  noting  the cumulative number of faults 
corresponding to various percentages of  modules. Our 
approach  is similar but we accomplish the same objective 
by sorting  the  modules by RCVD and finding its percen- 
tile distribution and the corresponding drcount percentile 
distribution, as we explain later. 

2. Discriminative  Power  Model 

2.1. Discriminative  Power  Validation 

Using  our  metrics  validation  methodology [lo, 111, 
and the Space Shuttle flight software  metrics and discrep- 
ancy reports (DRs),  we validate metrics with respect to the 
quality factor drcount. This is the  number of discrepancy 
reports written against a module.  In brief, this involves 
conducting statistical tests to determine  whether there is a 
high degree of association  between drcount and candidate 
metrics.  As  shown  in Figure 1,  we validate metrics on 
Build 1 (1397  modules) and  apply them to Build 2  (846 
modules) of the Space Shuttle flight software. Nikora and 
Munson argue for the need  of a measurement baseline 
against which  evolving systems may be compared [12]. 
Our baseline is  Build 1 in Figure 1. The  measurement re- 
sults from Build 1 provide the data source for controlling 
and  predicting  the quality delivered to maintenance and 
for comparing predicted  with actual quality, once the latter 
is  known.  Next, we define Discriminative Power. 

2.1.1. Discriminative  Power 

Given  the elements M,  of a  matrix of n modules and 
m metrics  (i.e., nm metric values), the elements  MCj of a 
vector of m metric critical values, the elements Fi  of a 
vector  of n quality factor values, and scalar FC of quality 



factor critical value, Mi, must  be able to discriminate with 
respect to F,, for a specified FC,  as shown  below: 

M , > M i H F i > F C   m d M g - < M / H F t - < F C  (1) 
for i=1,2 ,..., n,  and j=1,2 ,..., m with  specified a, where a is 
the significance level of various statistical tests that are 
used for estimating the degree to  which a set of  metrics 
can correctly classify software quality. In other words, do 
the indicated metric relations imply corresponding quality 
factor relations in (l)? This criterion assesses  whether MC, 
has sufficient Discriminative Power to be capable of dis- 
tinguishing a set of high quality modules  from a set  of  low 
quality modules. If so, we  use  the critical values in  Quality 
Control and Prediction described below. The validation 
process is illustrated in Figure 1, where  the critical values 
MC, are produced  during the Test phase of Build 1 by us- 
ing the metrics Mi, from the Design phase and  the quality 
factor F,  (e.g., drcount) available in  the Test phase.  (Dis- 
crepancy  Reports are written against the software 
throughout  development but  they  are  not  significantly 
complete until the end  of the Test  phase  during which 
failures are observed).  The desired quality level is  set by 
the choice of  FC. The  lower its value, the  higher the 
quality requirement; conversely, the higher its value, the 
lower the requirement.  A  value of zero is appropriate for 
safety-critical systems like the Space Shuttle. 

2.2. Relative  Critical  Value  Deviation  (RCVD) 
Metric 

The RCVD is  based  on  the concept that  the extent to 
which a metric's value deviates from its critical value, 
normalized by the scale of the metric, is  an indicator of the 
degree to which the entity being  measured does not  con- 
form to a specified norm. For example, the extent to  which 
body temperature  exceeds 98.6 degrees  Fahrenheit is  an 
indicator of the deviation from an established norm  of 
human health. Measurement  involves using surrogates: the 
deviation in temperature  above 98.6 degrees is a surrogate 
for fever. Similarly, the RCVD is a surrogate for the ex- 
tent that software quality deviates from  acceptable norms 
(e.g., zero  discrepancy reports). The  concept of the RCVD 
is shown in Figure 2, where the metric  and quality scales 
are shown,  defined by the  maximum (MX,, and  minimum 
(MN,) metric  boundaries and  the  maximum (FX) and 
minimum (FN) quality boundaries, respectively. The the- 
ory of the RCVD is given by the following relation: 

RCVD v = 
(M v - MC j ) / ( M X ,  - MN j )  ( F i  - FC ) / (FX - FN ) (2) 

This  means that the deviation of a  metric from its 
critical value, normalized by metric length, is  related to 
the degree of quality, as represented by the  normalized 
deviation of a quality factor (e.g., drcount) from its criti- 
cal values: increasing positive deviations are related to 
decreasing quality and increasing negative deviations are 
related to increasing quality. It should  not  be  inferred  that 

the relationship is linear or proportional; in fact, it is non- 
linear. In  the  idealized diagram in Figure 2, the worst 
quality corresponds to MX, and FX, the best quality to MNj 
and FN, and acceptable quality to MC, and  FC. Also, Fig- 
ure 2 does not indicate the mathematical  form of  F,. If FN 
is equal to zero  and F, is set equal to zero, which is fre- 
quently  the case, F, and FX can be replaced by the sum of 
the  quality factor across a set of modules and the total 
quality factor, respectively. This quantity is the proportion 
of drcount computed across a set of modules.  An RCVD 
can also be  comprised of multiple metrics by computing 
their mean.  Note  that although it would not be valid to 
compute the mean  of metrics, the  mean  of RCVDs is an- 
other  story  since these are normalized dimensionless 
quantities. We  experimented with both single and multiple 
metric  RCVDs, as we explain later. 

2.3. Quality  Control  and  Prediction 

Quality control is the evaluation of modules with  re- 
spect to predetermined critical values of metrics. The pur- 
pose of quality control is identify software that does not 
meet  quality requirements early in the development proc- 
ess so corrective action can be  taken  when the cost is low. 
Quality control is applied  during the  Design phase of 
Build 2 in Figure 1 to flag software for detailed inspection 
that  is  below  quality limits. The validated BDFs, com- 
prised of the metrics  Mi,  and their critical values MCj that 
are obtained  from  Build 1, are  used to either accept or 
reject the  modules  of  Build 2 [ l ,  21. At this point during 
the development of Build 2, only the metric data Mi,  and 
MC, are available. The validated RCVDs are used to pri- 
oritize the  attention  and effort devoted to modules that are 
rejected by the BDFs. Details are given later. 

Quality predictions are used  by  the developer to antici- 
pate rather than react to quality problems.  Figure 1 shows 
the  metrics controlling and predicting the quality of soft- 
ware  that  will  be delivered to maintenance early in the 
development of  Build 2. Accompanied by rigorous in- 
spection  and  test, this process will result in  improved 
quality of Build 2 and the software that is released to 
maintenance.  Once  all  of the quality factor data F, (e.g., 
drcount) have  been collected for  Build 2, at the  end  of the 
Test  phase as shown  in Figure 1, the quality of  Build 2 
would  be  known. This, then, becomes the actual quality of 
Build 2 in the maintained software. Regression  equations 
Fi=f(Mij) are developed during the Test  phase of Build 1 
and applied to predicting quality limits during the Design 
Phase  of  Build 2, as shown in Figure 1. This  process ad- 
dresses the question: "How  can I predict the quality of  my 
software?" 

3. Validation  Methodology 

We use a five stage process to select metrics and  met- 
ric functions for quality control and  prediction: 1) com- 



pute critical values of  the candidate metrics; 2) for the set 
of candidate  metrics and critical values, find the optimal 
BDF based  on statistical and application criteria; 3) apply 
a  stopping rule for adding metrics; 4) identify  the  best 
RCVD for prioritizing quality assurance effort; and 5) 
develop a regression equation that  will  accurately  predict 
quality limits (e.g., limits of drcount). Table 1 provides a 
functional description of each stage. The five stages take 
place  during the Test Phase  of  Build 1 of Figure 1, once 
all  the quality factor data Fi  (e.g., drcount) are available. 
The  next sections describe the analysis for each stage. 

3.1.  Stage 1:  Compute  Critical  Values 

Critical values MC, are computed  based  on  the  Kol- 
mogorov-Smirnov  (K-S) test [ l ,  21. Table 1 shows the 
metric definitions, critical values  MC,,  and  K-S distances 
for six metrics of Build  1. These  metrics were  selected 
based on their relatively high  K-S distance compared to 
other metrics that had  been collected on  the Space Shuffle. 
The test statistic is the maximum vertical difference be- 
tween  the CDFs of two  complementary sets of data (e.g., 
the CDFs of  Mi, for drcountsFC and drcounnFC). If the 
difference is significant (i.e., as.O05), the  value of  M, 
corresponding to maximum CDF difference is used for 
MC,. This relationship is expressed in equation (3). Met- 
rics are added to the BDF in order of  their  K-S  Distance. 

K- S(MCi)= 
max{CDF ( M , / ( F ~  s FC ))I- [cDF ( M J ( F ~  > FC >ID (3) 

3.2.  Stage  2:  Form  a  Set of Boolean  Discriminate 
Functions  (BDFs) 

For  each  BDF identified in Stage 1 we  use Table 2 to 
further evaluate the ability of the functions to discriminate 
high quality from low quality, from both statistical (e.g., 
misclassification rates) and application (e.g.,  ability of the 
metric set to correctly classify low  quality  modules) 
standpoints. In Table 2, MCj and  FC  classify  modules  into 
one of four categories. The left column contains modules 
where  none of  the metrics  exceeds its critical value; this 
condition is expressed with a Boolean  AND  function of 
the metrics. This is the ACCEPT column, meaning  that 
according to the classification decision made by the  met- 
rics, these modules  have  acceptable quality. The right col- 
umn contains  modules  where at least one metric exceeds 
its critical value; this condition is expressed by a Boolean 
OR function of the metrics. This is the REJECT column, 
meaning  that according to the classification decision made 
by the metrics, these modules have  unacceptable quality. 
The  top row contains  modules that are high quality; these 
modules  have  a quality factor that does not  exceed its 
critical value (e.g., drcount=O). The bottom  row contains 
modules that are low quality; these modules  have a quality 
factor that exceeds its critical value  (e.g., drcounn0). 

Equation (4) gives the algorithms for making the cell 
counts, using the BDFs of Fi  and  M,  that are calculated 
over the n modules for m metrics. This  equation is an im- 
plementation of the  relation  given  in (1). 

for j=l,  ..., m,  and  where COUNT(i)=COUNT(i-1)+1 FOR 
Boolean expression true and COUNT(i)=COUNT(i-l), 
otherwise; COUNT(O)=O. The  counts (C,,, C,,,  C,,,  and 
C,,) correspond  to the cells of Table 2, where row  and 
column totals are also  shown:  n, n,, n,, N,, and N,. 

In  addition to counting  modules in Table 2, we must 
also count the quality factor (e.g., drcount) that  is incor- 
rectly  classified. This is shown as Remaining Factor, RF, 
in  the ACCEPT column. This is the quality factor count on 
modules  that  should have been rejected. Also shown is 
Total Factor, TF, the total quality factor count  on all  the 
modules  in the build. Table 2 and subsequent  equations 
show an  example validation, where the combination of 
metrics from  Table 1 and  their critical values for  Build 1 is 
prologue  size (P) with a critical value of 63, statements 
(S) with a critical value of 27, and eta2 (E2) with a critical 
value  of 45. This is  the optimal BDF. Later we  will ex- 
plain  how we arrived at this particular combination of 
metrics as the optimal set. The results of the following 
calculations for the optimal  BDF are shown in Table 3. 

3.2.1. Statistical  Criteria 

We validate a  BDF statistically by demonstrating that 
it partitions Table 2 so that C,, and C,, are large relative to 
C,, and  C,,.  If  this  is the case, a large number of  high 
quality  modules  (e.g.,  modules  with drcount=O) would 
have MijsMCj and  would  be correctly classified as high 
quality. Similarly, a large number of  low quality modules 
(e.g.,  modules  with drcounn0) would have M,>MC,  and 
would  be  correctly classified as low quality. We evaluate 
partitioning ability  using the misclassification rates. 

3.2.2. Misclassification 

We  compute the degree of misclassification in Table 
2 by noting  that  ideally CII=nl=NI, C,,=O,  C,,=O, 
C,,=n,=N,. The extent to which  this  is  not the case is esti- 
mated  by Type I misclassifications (i.e., the module  has 
Low Quality and  the metrics "say" it  has High Quality) 
and Type 2 misclassifications  (i.e.,  the module  has High 
Quality and  the  metrics "say" it has Low Quality). Thus, 
we define the following measures of misclassification: 



Proportion of Type 1 : p,  = C2,/n 
For  the  example, p1 = (35/1397)*1oO = 2.51% (5) 

Proportion of Type 2 : p z  = C12/n 
For the  example, p, = (344/1397)*100 = 24.62% 

(6) 

3.2.3.  Application  Criteria 

Because it is the performance of the metrics in  the  ap- 
plication context that counts, we also validate metrics  with 
respect to the application criteria Quality  and Inspection, 
which are related to quality achieved  and  the cost to 
achieve it, respectively [ 1, 21. During  the  Design phase of 
Build 2 in Figure 1, we predict that  the quality computed 
by equations (7)--(9) will be delivered to maintenance, 
assuming that the modules rejected by the  quality control 
process are inspected and  tested  and  that the problems that 
are found are corrected. Furthermore, we predict that  the 
degree of inspection computed by equation (10) will  be 
required to achieve this quality. In  addition to controlling 
and predicting quality, equations (7)--(9) can be  used to 
address the question: "How  can I determine whether  my 
quality goals are being met?"  For example, if a quality 
goal is ~ 3 %  residual defects, the achievement of this  goal 
can  be measured by RFP -- equation (9). Also,  the  degree 
of rigorous inspection -- equation (10) can  be  used  to  ad- 
dress the question: "How  much  will it cost to  achieve my 
quality goals?" 

1 

3.2.4.  Quality 

First, we estimate the metrics' ability to correctly 
classify quality, given  that the quality is known  to  be  low: 

(7) 
LQC:  proportion of low  quality  (e.g.,  drcount > 0) 
software  correctly  classified = Czz/nz 

For the example, LQC=(541/576)*100=93.92%. 
Second, we estimate the metrics' ability to correctly 

classify quality, given  that the BDF  has classified  modules 
as ACCEPT. This is done by summing quality factor in  the 
ACCEPT column in Table  2 to produce Remaining Factor, 
RF (e.g., remaining drcount), given by equation (8). 

(MSJ I MCJ)-. A (Mam I MC,)) 

for j=l, ..., m. This is the sum of Fi (e.g., drcount) on  mod- 
ules incorrectly classified as high quality because, for 
these modules, (Fi>FC)~(Mij~MCj). 

We estimate the proportion of RF by equation (9), 
where TF is the total Fi for the  build. 

RFP = RF/TF (9) 
For the example,  from  Table  2 there are 56 DRs  on  35 
modules that are incorrectly classified (i.e.,  RF=56). The 
total number  of  DRs for the 1397  modules  is 2579.  There- 
fore, RFP=(56/2579)*100=2.17%. 

3.2.5.  Inspection 

Inspection is one of the costs of  high quality. We are 
interested  in  weighing  inspection requirements (i.e., per- 
cent of modules  rejected  and subjected to detailed inspec- 
tion) against the quality that  is achieved, for various 
BDFs. We estimate inspection requirements by noting  that 
all modules  in  the REJECT column of Table  2 must  be 
inspected; this is the count C,2+C22' Thus, the  proportion of 
modules  that  must  be  inspected  is  given by: 

I = ( c ,~  + c u ) / n  (10) 
For  the example, 1=((344+541)/1397)*100=63.35% and 
the percentage accepted  is 1-1 = 36.65%. 

3.2.6.  Summary  of  Validation  Results 

Table 3 summarizes the results of the validation ex- 
ample. The properties of dominance and concordance are 
evident in these validation results and in other data we 
have  analyzed  from the Space Shuttle. That is, a point is 
reached  in  adding metrics where Discriminative Power is 
not  increased  because: 1) the contribution of  the dominant 
metrics  in correctly classifying quality has  already taken 
effect and  2) additional metrics essentially replicate the 
classification results of the dominant  metrics -- the con- 
cordance effect. This result is due to the  property of the 
BDF used as an OR function, causing  a  module to be re- 
jected if only one of its metrics  exceeds its critical value. 

3.3. Stage 3: Apply a Stopping  Rule for Adding 
Metria 

It is important to strike a  balance between quality and 
cost (i.e.,  between  RFP  and  I). Thus we  add  metrics  until 
the ratio of  the relative change in RFP  to the relative 
change in I is  maximum, as given by the Quality  Inspec- 
tion  Ratio in  equation  (1 l), where i refers to the previous 
RFP  and I: 

QIR = (IAR~/RFP$(AI/I~) (1 1) 

For  the example,  QIR(P,S-P,S,  E2)= (( I .2.17- 
2.95 I )/2.95)/((63.35-60.13)/60.13)=4.91. Therefore, we 
stop adding metrics after eta2 (E2)  has been  added. 

3.3.1.  Comparison of BDF Validation  with  Applica- 
tion  Results 

In order to compare validation  with application re- 
sults, we first show  how BDF  Table  looks in the Design 
phase of  Build 2 in Figure 1,  when  only the metrics M, 
and their critical values MC, are available. This is shown 
in Table 4, where  the "?" indicates that the quality factor 
data Fi are not available when the validated metrics are 
used  in  the  quality control function of  Build 2. During the 
Design  phase  of  Build  2,  modules are classified according 



to the criteria that have been described. Whereas 36.65% 
(512/1397) and 63.35%  (885/1397) modules  were ac- 
cepted and rejected, respectively, during Build 1 (see  Ta- 
ble 2), 26.95% (228/846) and  73.05 % (618/846) modules 
were  accepted and rejected, respectively, during Build 2 
(see Table 4). The rejected modules would  be  given prior- 
ity attention (i.e., subjected to rigorous inspection). 

A  comparison of the Validation  (Build 1) with  the  Ap- 
plication (Build 2) with respect to statistical and  applica- 
tion criteria are shown in Table 5. To have a basis for 
comparison with the validation results, we computed  the 
values shown  in Table 5 retrospectively (i.e., after Build 2 
was far enough  along to be able to collect all  of  the  quality 
factor data at the conclusion of the Test phase). The values 
for Build 2 are the actual quality delivered to maintenance, 
as shown during the Test  phase of Figure 1. The results of 
the  two builds are comparable. Note  that  the  same  critical 
values  computed  during Build 1 were  used  on  Build  2. 
This  procedure is necessary because the quality factor data 
that is used  in the K-S test  in Stage 1 is not available dur- 
ing the Design Phase of Build 2 in Figure 1. This transfer- 
ability of model parameters is  key to our  process  because 
the point of validation is to apply its results to other but 
similar software when the quality factor data is not  avail- 
able for the latter. Also, we have found  that to apply  this 
approach, Build 2  does not  have to be a direct descendant 
of  Build 1. Builds 1 and 2 do not  have  this relationship. 

3.4. Stage 4: Form a  Set of Relative  Critical 
Value Metria (RCVD) 

Granularity of data is an issue that does not  seem to 
have been discussed much  in the literature but one that we 
have  found to be  of great importance in metrics analysis. 
By granularity we refer to the level of data (e.g.,  module, 
module sets, build) that will  yield  useful results when  the 
data are used  in a  model.  This was  an  issue  in our research 
to develop an RCVD suitable for use as a second  level 
discriminant in controlling and  predicting  quality. By sec- 
ond level we mean that the RCVD comes into play  after 
the optimal  BDF  has  done its job of either accepting or 
rejecting a  module. Although  the BDF is  very  useful, it 
does not indicate the degree of quality  (e.g.,  number of 
DRs) on a rejected module or set of rejected  modules.  Our 
original objective was to provide discrimination at the 
module level (i.e.,  rank  the drcount in modules by 
RCVD). Due to the large number  of  modules  with  zero 
DRs  (58.77%  and  50.59% for Build 1 and  Build  2,  re- 
spectively) and the large variability of the data, this did 
not prove feasible. However, by sorting the  modules by 
RCVD and finding its percentile distribution and  the cor- 
responding drcount percentile distribution, we were able 
to identify key points in the plots of  these distributions. 
We call these points break points. These are points  in  the 
percentile distributions where  the slope of the percentile 
curve starts to increase sharply. An example is shown  in 

Figure 3, where percentile drcount is plotted against per- 
centile prologue  size. A break point occurs  at .80 percen- 
tile (80%) on  the  X-axis. This  corresponds to RCVD 
(prologue size)=0.517. This value corresponds to a Y-axis 
value  of .35 (35%).  Thus for values  of RCVD greater than 
.0517, we estimate that the RCVD would identify 65%  of 
the drcount. Thus we see that a difference of  only .20 per- 
centile (1.00-30) of the RCVD accounts for a difference 
in  .65 percentile (1.00-.35) of the drcount. In order to im- 
plement  this process, we  validate function (12) for sets of 
metrics during the Test Phase of Build 2, in Figure 1, 
when the quality factor data Fi  are available. Then we ap- 
ply function (12) during the  Design Phase of Build  2, 
when  no quality factor date is available for Build  2. 

V (Mi, > M C j ) A  RCVDg (12) 
This means  that in addition to rejecting modules -- the 
function performed by the BDF -- there is further classifi- 
cation performed by the  RCVD.  Any modules that evalu- 
ate to true in (12), would receive special attention because 
the  likelihood is that  they  would contain multiple DRs. 
This is  illustrated in Table  6 where  65.37% of the drcount 
is identified by RCVD (prologue  size) in combination 
with  the BDF on  Build  1, corresponding to a drcount den- 
sity  of 6.08. This is  in contrast with a density of 30 on 
modules  where (12) does not evaluate to true and 2.85 
when  the BDF alone is used. Similar results are observed 
for Build 2 in Table 6. These results indicate the quality 
that  would  be delivered to maintenance unless action is 
taken  in  inspection  and  test  to correct the defects. 

We experimented with  using all six metrics of Table 1 
in  the  RCVD. We used all six  in order to have sufficient 
data to make the computation feasible. RCVD was  worse 
than RCVD (prologue  size), as can be  seen in Table 6, in 
terms  of  both percentage of drcount classified and drcount 
density. Since RCVD (prologue size) is  much easier to 
compute, it was  the  preferred RCVD to apply  to Build  2, 
as shown  in Table 6. This result is due to the dominance 
and concordance properties of metrics  mentioned earlier. 
In addition, the result is due  to the fact that prologue size 
contains a thorough change history comprised of  the fol- 
lowing notations in  the program listing: module;  purpose 
of the  module; specification reference; change request; 
discrepancy report; release; release date; revision level; 
programmer; description of change; listing of statements 
affected by the change; indication  of whether  a  statement 
is added, deleted, or changed; and program  comments.  We 
use prologue size as a predictor of drcount in the aggre- 
gate (i.e.,  the cumulative quantity  of entries in  the pro- 
gram), not  on a  one-for-one basis of a  change possibly 
resulting in a DR. 

A seemingly trivial but yet important  aspect of this 
stage of  the analysis was demonstrating the usefulness of 
sorting data to examine their distributions and the flexibil- 
ity for doing this  provided by a  spreadsheet  program. 



3.5. Stage 5: Identify  Quality  Limit  Predictors 

The final stage of the analysis involves identifying 
regression equations for predicting the average and limits 
of quality (e.g., drcount) of module sets, F,=f(M,),  during 
the Test  Phase of  Build  1, as  shown in Figure 1. This pro- 
cess is desirable because BDFs  and RCVDs are not  capa- 
ble of predicting quality limits. During the Test phase  of 
Build  1, regression coefficients are estimated and  the  re- 
sultant equation is applied, during the  Design  Phase of 
Build 2, to predict the quality limits that  would  be deliv- 
ered to maintenance unless action is taken to correct the 
defects. As in the case of forming the  RCVDs,  granularity 
of data was  an issue. Again,  because of the large number 
of modules with zero drcount and  the  large  variability  of 
the data, prediction at the individual module level was  not 
feasible. However,  applying our earlier regression  work 
for the Space Shuttle [13], where we  found  that if  we di- 
vided  the data into the appropriate number  of  frequency 
classes (i.e., modules sets), according to Sturges’ rule [ 141, 
usable regression equations could be developed  based  on 
the averages  computed for the classes. In  that  work, we 
only predicted average values. We now extend the  ap- 
proach to include predicting quality limits. We experi- 
mented  with various sets of predictor variables. The model 
results are shown in Table 7. The  equation we  selected is 
the exponential  function using average statements (ave S): 

avedrcount = exp(0.1137 + 0.0056697 * aveS) (13) 

This  equation was selected for application  to  Build 2 for 
the following reasons: 1) lowest Mean Square Error 
(MSE) in Table 7; 2) fair accuracy  in  predicting  Build 1 
drcount; 3) theoretical consideration that the rate of 
change of drcount with module size would  vary  with 
module size (property of exponential distribution); and  the 
relative ease of collecting size data. Although  the F-ratio 
and R2 are impressive for the linear function using nodes, 
this equation  has  a relatively high MSE and  the  collection 
of nodes requires the use of a metrics analyzer. 

Prediction results are shown in Figures  4 -- 7. The 
figures show the following for average drcount for sets of 
100 modules (1  -- 100, 101 -- 200, etc.): Figure 4, actual 
and  predicted values for Build 1;  Figure 5, actual and  pre- 
dicted limits for Build 1;  Figure 6, actual and  predicted 
values for Build 2; and Figure  7, actual and  predicted 
limits for Build 2. Figure  7  shows that  the prediction lim- 
its bracket the actual values for Build 2. This is another 
example of retrospective analysis: once the quality factor 
data Fi are available during the Test Phase of Build 2, Fig- 
ure 1, the actual drcount can  be  compared  with  the  predic- 
tions. In the application of the prediction equation, the 
software  manager would compute the average size of sets 
of modules and predict the drcount and the limits of 
drcount for each  module set, as  shown in Figures 6 and 7, 
respectively. 

4. Summary  and  Conclusions 

We developed  a new metric, Relative Critical Value 
Deviation  (RCVD), for classifying and predicting software 
quality.  When  the granularity of data was considered, the 
RCVD proved  to  be a useful indicator of  the degree to 
which software quality deviates from  a specified norm. 
We  discovered that  the  major application of the RCVD 
was to prioritize the effort required to achieve quality 
goals.  At  the outset we  posed several questions that the 
software manager  wants  answered concerning  software 
quality. We provided  an integrated set of models based  on 
Boolean discriminant functions, RCVDs,  and regression 
equations to address these questions. We  made  a thorough 
evaluation of two  builds - one was  used for validation  and 
the  other for application -- using a five-stage analysis ap- 
proach.  In  the three areas of our  modeling effort, the pre- 
dictions for the application build were close to the actual 
values.  Based  on  these  preliminary results and the fact that 
we  have done analysis on additional Space Shuttle data, 
we feel that the models, not the specific numerical results, 
are transferable to other organizations, if the models are 
applied  within  and  not across application domains. How- 
ever, to increase  our confidence in the results, in future 
research we  will examine several additional builds of the 
Space Shuttle flight software. Finally, we found that  mun- 
dane aspects of the analysis like data sorting to discover 
information  about distributions of data and the use of 
spreadsheet calculations significantly aided the analysis. 
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Table 1 : Kolmogorov-Smirnov  Distance  for drcount=O vs. drcounb0 
Validation: Build 1 (n=1397  modules) 

I Table 2: Boolean  Discriminant  Function:  Validation (Build 1 )  

A(Mij<MC,) 

Pis63ASi~27AE2i~45 Pi>63VSi>27VE2b45 

Low Quality 

RF=56 

m ACCEPT  REJECT - 
K-S Distance 

P: prologue  size, S: statements,  E2: eta2, L: lines of code 

1 Table 4: Boolean  Discriminant  Function:  Application (Build 2) 

A(Mij<MCj) V(Mij>MCj) 

Pi<63ASi<27AE2i<45 Pi>63VSi>27VE2i>45 
I 

High  Quality ? Type  2 i 1  



I Table 5: Comparison of Validation (Build 1, n=1397  modules) with Application (Build 2,  n=846 modules) I 
Critical Values Application  Criteria Statistical Criteria 

Metric Set 

13.05  9.1 1 2.69 93.78 26.11 3.07 45 27 63 Application P, S, E2 
63.35 4.91  2.11  93.92  24.62  2.51 45 21 63 Validation P, S, E2 
I %  QIR RFP % LQC % Pz% P I  % E2 S P 

P prologue  size, S: statements, E2: eta2 

iscriminative  Power 

1. RCVD (six  metrics):  mean  of  RCVDs  of  six  metrics  in  Table 1 
2. drcount  identified:  count  of  DRs  on  modules  rejected  by  BDF A RCVD;  percent  of  total  DRs 
3. modules  with  drcount  identified:  count  of  modules  rejected  by  BDF A RCVD;  percent  of  total  modules 
4. drcount  density:  drcountlmodule  count 
5. drcount  density  for  other  modules:  modules  other  than  those  rejected  by  BDF A RCVD 

4- Development ,-b 
Build 1: Validation Build 2: Application , Maintenance of Build 2, 

Design  Test Design  Test 

MCj +MCj \. 
Mij Mij - Control & Predict -b 

R C W J  RCVDij / Quality 

Fi=f(Mij ) Fi=f(Mij) Fi: Known Quality b 
Metric j on Module  i 
Metric j Critical  Value 
Quality  Factor  on  Module  i 

RCVDu : Relative  Critical  Value  Deviation 
for  Metric  j  on  Module i 

Fi=f(Mi,):  Quality  Limits  Predictor 

Figure 1. Measurement Process 
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arc planning  strategies  and  test  the  continuous  operation of 
the rover while images are being  acquired  and processed. 

Fig. 5. Sample  tracking  sequence. 

have  also  successfully  placed the  instrument  arm  onto a 
boulder  over five meters away. However,  since the visual 
tracking  algorithm  servos  on the local  elevation maximum, 
only targets  on  the  top of rocks  were  specified at this  time. 

Among  several runs  that succeeded, there were a few 
runs  that  did  not  complete.  The  two  primary  reasons  are: 

The visual  tracker  loses  its  target.  This  occurs when 
either  the  target leaves the  camera FOV, no  range  data 
is available due  to lighting  conditions,  multiple  targets 
are visible  inside the search  window, target is  outside 
the search  window, or target is  same  color as back- 
ground. Using 14 different datasets,  the visual  tracker 
succeeded  in maintaining  target lock through 10 com- 
plete  sequences.  Correcting the threshold  increased 
this  to 13 successful datasets. 
The visual tracking succeeds but  the rover cannot  sta- 
bilize about  the goal point. Since we rely  on the mobil- 
ity  system,  positioning  resolution of the vehicle  is less 
than  our goal  tolerances.  This  is  mainly  apparent  on 
sandy  ground where  vehicle  maneuvering  introduces 
much  positional  uncertainty. 

VII. FUTURE WORK 

We are planning to  improve the robustness of the vi- 
sual  tracking  algorithm  (reducing  its  dependency  on  the 
brightness-based  filter) by matching  the  entire  shape of the 
terrain  around  the  target. We also  plan to  improve the 
position  and pose estimates using  visual  feature  tracking 
on the whole  scene[5].  These  improvements  should allow 
tracking of targets  anywhere  on a rock,  which  would  en- 
able a more  general  mast  placement  capability.  Another 
area  that we will be  addressing is the elimination of the 
instabilities that result  from the imprecise  vehicle  motions 
on  loose terrain.  Improving  the  coordination between the 
vehicle and  the  arm  trajectories will improve the overall 
system. We also  like to  introduce  obstacle avoidance in  the 
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1. 
2. 
3. 
4. 

5.  
6. 
7. 
8. 
9. 

10. 

Acquire  stereo  image  pair  with  body  navigation  cameras 
Send left image  over  wireless  network to host 
Scientist/Operator  selects  target  rock  on left image 
Target  location and  intensity  threshold  sent  to rover 

Identify 3-D location of rock based  on  calibrated  camera  models  and  on-board  stereo  image  processing 
Compute single-arc  rover trajectory  to  target 
Drive  rover  toward target 
Periodically  (every 10 cm) poll  tracking  software to  update  target location  using new stereo  pair & current  odometry 
Redirect rover toward new target location  using new single-arc trajectory,  and  repeat  until  target is within 1 cm of goal position 
Deploy sampling arm, sense and pick up rock. 

All subsequent  processing occurs on-board 

TABLE I 
ALGORITHM FOR SMALL-ROCK ACQUISITION USING THE ARM 

1. 
2. 
3. 
4. 

5 .  
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 

Acquire  stereo  image  pair  with  mast  cameras 
Send the left image over wireless  network to host 
Scientist/Operator  selects  target  on left image 
Target  location and  intensity  threshold  sent  to rover 

Identify 3-D location of target region  based  on  calibrated camera models and  on-board  stereo image  processing 
Compute single-arc  rover trajectory to target 
Drive  rover  toward target 
Periodically  (every 50 cm) poll the  target  tracking software to  update  target location  using new stereo  pair  and  current  odometry 
Redirect  rover  toward the new target location  using new single-arc  trajectory,  and  repeat  until  target is within 1 m from  goal 
Compute  a 2-arc trajectory  to a point 0.5 m  from target  with  a final  rover  orientation to  match  the  target’s surface  normal 
Drive  rover  along the two-arc trajectory 
Poll target  tracking  software  for  update on target location and surface  normal 
If target is out of instrument’s  reach, move closer to  target  and  update location 
Deploy mast  arm  instrument  toward  target 
Servo  mast  along  surface  normal  until  mast  touches the rock 

All subsequent  processing  occurs on-board 

TABLE I1 
ALGORITHM FOR INSTRUMENT PLACEMENT USING THE MAST 

E. Target  Grasping 

Once the  arm’s workspace  is  centered to within 1 cm of 
the  target,  the  arm is  deployed. The scoops are opened 
and  the  arm moves downwards  toward the  ground sensing 
obstacles  along its  trajectory. Sensing is done by moni- 
toring changes  between the desired and  actual  trajectories 
of the arm’s  shoulder  joints. The  arm  stops when either 
the  target  or  the  ground  are  sensed.  The  arm  then goes 
into a grasping  mode. As the scoops  sense  resistance, the 
arm is  raised  in  small  amounts while the scoops  continue to 
close. The  arm  exits  this  mode when either a stable  grasp 
is  achieved, the scoops are completely  closed, or  the algo- 
rithm  times  out.  This  algorithm  ensures  that  the  gripper 
has  a good  hold on  the  target. 

F. Instrument Placement 

Table I1 describes the algorithm  used  for  instrument 
placement. The general  strategy is  similar to  the rock  sam- 
ple  acquisition,  except that  the rover must  approach  the 
target  and place the  instrument at a specific orientation 
determined by the  target’s  surface  normal.  In  addition, 
the  instrument  placement  can  be  started from a distance 
of more than five meters away. Because of this long  dis- 
tance, we use the narrow field-of-view cameras of the  mast 

to  track  the  target. We drive the vehicle with  its  mast half- 
way up  to continuously monitor  the  target.  Every 50 cm 
the rover stops  and  acquires a new stereo  pair for the  tar- 
get  tracking  algorithm.  When  the rover  is  within 1 m of its 
target,  it  stops  and plans a two-arc  trajectory  to  adjust  its 
final approach  toward  the  target.  The final approach is de- 
termined  by the surface  normal which  is  computed  from the 
range  data of the  target  area.  The rover  drives  along the 
two-arc trajectory  and  stops in  front of the boulder. The 
mast fully  deploys and  approaches  the  boulder.  It  stops at 
about 20 cm  from the  target’s  surface.  Instrument  sensing 
is  enabled and  the  mast moves along a straight line  toward 
the  target  until  the  instrument  touches  the rock. The  mast 
then  stops  and  the  instrument  takes  its  measurements.  The 
mast  retracts  and stows and  the rover  moves  away  from the 
target  area. 

VI. EXPERIMENTAL RESULTS 
We have  performed  several  experiments  in JPL’s Mars 

Yard1, and successfully demonstrated  the  acquisition of 
small  rocks (3-5 cm) located over 1 meter  in  front of the 
rover.  Figure 5 shows a sample  tracking sequence,  with 
the  target indicated  in  each  frame by a dark  square. We 

lhttp://marscarn.jpl.nasa.gov/ 

lhttp://marscarn.jpl.nasa.gov

