
Predicting Deviations in Software Quality by Using
Relative Critical Value Deviation Metrics

Norman F. Schneidewind, Ph.D.
Division of Computer and Information

Sciences and Operations
Naval Postgraduate School

Monterey, CA 93943
Email: nsChneid@nps.navy.mil

Abstract
We develop a new metric, Relative Critical Value De-

viation (RCVD), for classifying and predicting sojiware
quality. The RCVD is based on the concept that the extent
to which a metric's value deviates from its critical value,
normalized by the scale of the metric, indicates the degree
to which the item being measured does not conform to a
specijied norm. For example, the deviation in body tem-
perature above 98.6 Fahrenheit degrees is a surrogate for
fever. Similarly, the RCVD is a surrogate for the extent to
which the quality of sojiware deviates from acceptable
norms (e.g., Zero discrepancy reports). Early in develop-
ment, surrogate metrics are needed to make predictions of
quality before quality data are available. The RCVD can
be computed for a single metric or multiple metrics. Its
application is in assessing newly developed modules by
their quality in the absence of quality data. The RCVD is a
part of the larger framework of our measurement models
that include the use of Boolean Discriminant Functions
for classifying software quality. We demonstrate our con-
cepts using Space Shuttle flight software data.

Keywords: Quality classijication and prediction, relative
critical value deviation metrics.

1. Introduction

Our goal is to provide models and processes to assist
software managers in answering the following questions:

0 How can I control the quality of my software?
0 How can I predict the quality of my software?
0 How shall I prioritize my effort to achieve my quality

0 How can I determine whether my quality goals are

0 How much will it cost to achieve my quality goals?

We develop quality control and prediction models that are
used to identify modules requiring priority attention dur-

goals?

being met?

Allen P. Nikora, Ph.D.
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 9 1 109-8099

Email: Allen.P.Nikora@jpl.nasa.gov

ing development and maintenance. This is accomplished
in two activities: validation and application. During vali-
dation, we use a build of the software that has been devel-
oped as the source of data to compute Boolean Discrimi-
nant Functions (BDFs), Relative Critical Value Deviation
(RCVD) metrics, and regression equations that we use to
retrospectively classify and predict quality with specified
accuracy, by build and module. Using these functions and
equations during application, we classify and predict the
quality of new software that is being developed. This is
the quality we expect to achieve during maintenance.
During validation, both quality factor (e.g., discrepancy
reports of deviations between requirements and imple-
mentation) and software metrics (e.g., size, structural) data
are available; during application, only the latter are avail-
able. During validation, we construct Boolean discrimi-
nant functions (BDFs) comprised of a set of metrics and
their critical values (i.e., thresholds) [l, 21. We select the
best BDF based on its ability to achieve the maximum
relative incremental qualitylcost ratio. During application,
if at least one of the module's metrics has a value that ex-
ceeds its critical value, the module is identified as "high
priority" (i.e., low quality); otherwise, it is identified as
"low priority" (i.e., high quality). Our objective is to iden-
tify and correct quality problems during development, as
opposed to waiting until maintenance when the cost of
correction would be high. This process addresses the
question: "How can I control the quality of my software?"
Because BDFs only provide an acceptlreject decision on
module quality, during validation, we also construct
RCVDs that are used to prioritize the effort applied to
rejected modules. In other words, an RCVD measures the
degree to which quality is low. This process addresses the
question: "How shall I prioritize my effort to achieve my
quality goals?

A RCVD is a derived metric, based on the normalized
deviation between a metric's value and its critical value. It
may be based on a single or multiple metrics. In our proc-
ess, we: 1) identify the critical values of the metrics and 2)
find the optimal BDF and RCVD based on their ability to

mailto:nsChneid@nps.navy.mil
mailto:Allen.P.Nikora@jpl.nasa.gov

satisfy both statistical and application criteria. Statistical
criteria refer to the ability to correctly classify the software
(i.e., classify high quality software as high quality and low
quality software as low quality). Application criteria refer
to the ability to achieve a high quality/cost ratio. This pro-
cess addresses the questions: "How can I determine
whether my quality goals are being met?" and "How much
will it cost to achieve my quality goals?"

RCVD values that exceeded the .80 percentile value
were able to account for two-thirds of the discrepancy
reports. To round out our approach, we use regression
equations to predict quality limits. This is desirable be-
cause, although BDFs and RCVDs control and predict
quality based on expected values, they are not capable of
predicting the range of quality values.

We show that it is important to perform a marginal
analysis (i.e., identification of the incremental contribution
of each metric to improving quality) when making a deci-
sion about how many metrics to include in the BDFs and
RCVDs. If many metrics are added to the set at once, the
contribution of individual metrics is obscured. Also, the
marginal analysis provides an effective rule for deciding
when to stop adding metrics.

The contributions of this research are the following: 1)
the Relative Critical Value Deviation (RCVD) is a new
metric for classifying and predicting software quality; 2)
the RCVDs in combination with the BDFs we previously
developed, allow the software manager to both control
quality and prioritize the effort required to achieve quality
goals; 3) BDFs, RCVDs, and regression equations are
integrated into a process to assist the software manager in
answering the questions posed in the introduction; and 4)
the data and most of the calculations are implemented in a
spreadsheet for easy transfer to practitioners.

1.1 Related Research

Our models are in the class of models concerned with
the classification, control, and prediction of quality. Other
researchers have had similar objectives but different ap-
proaches. Porter and Selby used classification trees to par-
tition multiple metric value space so that a sequence of
metrics and their critical values could be identified that
were associated with either high quality or low quality
software [3]. This technique is closely related to our ap-
proach of identifying a set of metrics and their critical
values that will satisfy quality and cost criteria. However,
we use statistical analysis to make the identification.

Briand et al. used logistic regression to classify mod-
ules as fault-prone or not fault-prone as a function of vari-
ous object oriented metrics [4]. In another example of
logistic regression, Khoshgoftaar and Allen used it to clas-
sify modules as fault-prone or not fault-prone as a function
of faults, requirements, performance, and documentation
software trouble report metrics [5]. While one of our ob-
jectives is similar -- classify modules as either high quality
or low quality -- we derive from this binary classification

several predictive continuous quality and cost metrics,
including the RCVDs. These metrics are used to predict
the quality of software that will be delivered by develop-
ment to maintenance and the cost of achieving it.

Khoshgoftaar et al. used nonparametric discriminant
analysis in each iteration of a military system project to
predict fault-prone modules in the next iteration [6] . This
approach provided early indication of reliability and the
risk of implementing the next iteration. They conducted a
similar study involving a telecommunications application,
again using nonparametric discriminant analysis, to clas-
sify modules as either fault-prone or not fault-prone [7].
Our approach has the same objective but we produce
BDFs and RCVDs in terms of the original metrics as op-
posed to using density functions as discriminators.

Khoshgoftaar and Allen have also developed models
for ranking modules for reliability improvement according
to their degree of fault-proneness as opposed to whether
they are fault-prone or not [8]. They used Alberg Dia-
grams [9] that predict percentage of faults as a function of
percentage of modules by ordering modules in decreasing
order of faults and noting the cumulative number of faults
corresponding to various percentages of modules. Our
approach is similar but we accomplish the same objective
by sorting the modules by RCVD and finding its percen-
tile distribution and the corresponding drcount percentile
distribution, as we explain later.

2. Discriminative Power Model

2.1. Discriminative Power Validation

Using our metrics validation methodology [lo, 111,
and the Space Shuttle flight software metrics and discrep-
ancy reports (DRs), we validate metrics with respect to the
quality factor drcount. This is the number of discrepancy
reports written against a module. In brief, this involves
conducting statistical tests to determine whether there is a
high degree of association between drcount and candidate
metrics. As shown in Figure 1, we validate metrics on
Build 1 (1397 modules) and apply them to Build 2 (846
modules) of the Space Shuttle flight software. Nikora and
Munson argue for the need of a measurement baseline
against which evolving systems may be compared [12].
Our baseline is Build 1 in Figure 1. The measurement re-
sults from Build 1 provide the data source for controlling
and predicting the quality delivered to maintenance and
for comparing predicted with actual quality, once the latter
is known. Next, we define Discriminative Power.

2.1.1. Discriminative Power

Given the elements M, of a matrix of n modules and
m metrics (i.e., nm metric values), the elements MCj of a
vector of m metric critical values, the elements Fi of a
vector of n quality factor values, and scalar FC of quality

factor critical value, Mi, must be able to discriminate with
respect to F,, for a specified FC, as shown below:

M , > M i H F i > F C m d M g - < M / H F t - < F C (1)
for i=1,2 ,..., n, and j=1,2 ,..., m with specified a, where a is
the significance level of various statistical tests that are
used for estimating the degree to which a set of metrics
can correctly classify software quality. In other words, do
the indicated metric relations imply corresponding quality
factor relations in (l)? This criterion assesses whether MC,
has sufficient Discriminative Power to be capable of dis-
tinguishing a set of high quality modules from a set of low
quality modules. If so, we use the critical values in Quality
Control and Prediction described below. The validation
process is illustrated in Figure 1, where the critical values
MC, are produced during the Test phase of Build 1 by us-
ing the metrics Mi, from the Design phase and the quality
factor F, (e.g., drcount) available in the Test phase. (Dis-
crepancy Reports are written against the software
throughout development but they are not significantly
complete until the end of the Test phase during which
failures are observed). The desired quality level is set by
the choice of FC. The lower its value, the higher the
quality requirement; conversely, the higher its value, the
lower the requirement. A value of zero is appropriate for
safety-critical systems like the Space Shuttle.

2.2. Relative Critical Value Deviation (RCVD)
Metric

The RCVD is based on the concept that the extent to
which a metric's value deviates from its critical value,
normalized by the scale of the metric, is an indicator of the
degree to which the entity being measured does not con-
form to a specified norm. For example, the extent to which
body temperature exceeds 98.6 degrees Fahrenheit is an
indicator of the deviation from an established norm of
human health. Measurement involves using surrogates: the
deviation in temperature above 98.6 degrees is a surrogate
for fever. Similarly, the RCVD is a surrogate for the ex-
tent that software quality deviates from acceptable norms
(e.g., zero discrepancy reports). The concept of the RCVD
is shown in Figure 2, where the metric and quality scales
are shown, defined by the maximum (MX,, and minimum
(MN,) metric boundaries and the maximum (FX) and
minimum (FN) quality boundaries, respectively. The the-
ory of the RCVD is given by the following relation:

RCVD v =
(M v - MC j) / (M X , - MN j) (F i - FC) / (FX - FN) (2)

This means that the deviation of a metric from its
critical value, normalized by metric length, is related to
the degree of quality, as represented by the normalized
deviation of a quality factor (e.g., drcount) from its criti-
cal values: increasing positive deviations are related to
decreasing quality and increasing negative deviations are
related to increasing quality. It should not be inferred that

the relationship is linear or proportional; in fact, it is non-
linear. In the idealized diagram in Figure 2, the worst
quality corresponds to MX, and FX, the best quality to MNj
and FN, and acceptable quality to MC, and FC. Also, Fig-
ure 2 does not indicate the mathematical form of F,. If FN
is equal to zero and F, is set equal to zero, which is fre-
quently the case, F, and FX can be replaced by the sum of
the quality factor across a set of modules and the total
quality factor, respectively. This quantity is the proportion
of drcount computed across a set of modules. An RCVD
can also be comprised of multiple metrics by computing
their mean. Note that although it would not be valid to
compute the mean of metrics, the mean of RCVDs is an-
other story since these are normalized dimensionless
quantities. We experimented with both single and multiple
metric RCVDs, as we explain later.

2.3. Quality Control and Prediction

Quality control is the evaluation of modules with re-
spect to predetermined critical values of metrics. The pur-
pose of quality control is identify software that does not
meet quality requirements early in the development proc-
ess so corrective action can be taken when the cost is low.
Quality control is applied during the Design phase of
Build 2 in Figure 1 to flag software for detailed inspection
that is below quality limits. The validated BDFs, com-
prised of the metrics Mi, and their critical values MCj that
are obtained from Build 1, are used to either accept or
reject the modules of Build 2 [l , 21. At this point during
the development of Build 2, only the metric data Mi, and
MC, are available. The validated RCVDs are used to pri-
oritize the attention and effort devoted to modules that are
rejected by the BDFs. Details are given later.

Quality predictions are used by the developer to antici-
pate rather than react to quality problems. Figure 1 shows
the metrics controlling and predicting the quality of soft-
ware that will be delivered to maintenance early in the
development of Build 2. Accompanied by rigorous in-
spection and test, this process will result in improved
quality of Build 2 and the software that is released to
maintenance. Once all of the quality factor data F, (e.g.,
drcount) have been collected for Build 2, at the end of the
Test phase as shown in Figure 1, the quality of Build 2
would be known. This, then, becomes the actual quality of
Build 2 in the maintained software. Regression equations
Fi=f(Mij) are developed during the Test phase of Build 1
and applied to predicting quality limits during the Design
Phase of Build 2, as shown in Figure 1. This process ad-
dresses the question: "How can I predict the quality of my
software?"

3. Validation Methodology

We use a five stage process to select metrics and met-
ric functions for quality control and prediction: 1) com-

pute critical values of the candidate metrics; 2) for the set
of candidate metrics and critical values, find the optimal
BDF based on statistical and application criteria; 3) apply
a stopping rule for adding metrics; 4) identify the best
RCVD for prioritizing quality assurance effort; and 5)
develop a regression equation that will accurately predict
quality limits (e.g., limits of drcount). Table 1 provides a
functional description of each stage. The five stages take
place during the Test Phase of Build 1 of Figure 1, once
all the quality factor data Fi (e.g., drcount) are available.
The next sections describe the analysis for each stage.

3.1. Stage 1: Compute Critical Values

Critical values MC, are computed based on the Kol-
mogorov-Smirnov (K-S) test [l , 21. Table 1 shows the
metric definitions, critical values MC,, and K-S distances
for six metrics of Build 1. These metrics were selected
based on their relatively high K-S distance compared to
other metrics that had been collected on the Space Shuffle.
The test statistic is the maximum vertical difference be-
tween the CDFs of two complementary sets of data (e.g.,
the CDFs of Mi, for drcountsFC and drcounnFC). If the
difference is significant (i.e., as.O05), the value of M,
corresponding to maximum CDF difference is used for
MC,. This relationship is expressed in equation (3). Met-
rics are added to the BDF in order of their K-S Distance.

K- S(MCi)=
max{CDF (M , / (F ~ s FC))I- [cDF (M J (F ~ > FC >ID (3)

3.2. Stage 2: Form a Set of Boolean Discriminate
Functions (BDFs)

For each BDF identified in Stage 1 we use Table 2 to
further evaluate the ability of the functions to discriminate
high quality from low quality, from both statistical (e.g.,
misclassification rates) and application (e.g., ability of the
metric set to correctly classify low quality modules)
standpoints. In Table 2, MCj and FC classify modules into
one of four categories. The left column contains modules
where none of the metrics exceeds its critical value; this
condition is expressed with a Boolean AND function of
the metrics. This is the ACCEPT column, meaning that
according to the classification decision made by the met-
rics, these modules have acceptable quality. The right col-
umn contains modules where at least one metric exceeds
its critical value; this condition is expressed by a Boolean
OR function of the metrics. This is the REJECT column,
meaning that according to the classification decision made
by the metrics, these modules have unacceptable quality.
The top row contains modules that are high quality; these
modules have a quality factor that does not exceed its
critical value (e.g., drcount=O). The bottom row contains
modules that are low quality; these modules have a quality
factor that exceeds its critical value (e.g., drcounn0).

Equation (4) gives the algorithms for making the cell
counts, using the BDFs of Fi and M, that are calculated
over the n modules for m metrics. This equation is an im-
plementation of the relation given in (1).

for j=l, ..., m, and where COUNT(i)=COUNT(i-1)+1 FOR
Boolean expression true and COUNT(i)=COUNT(i-l),
otherwise; COUNT(O)=O. The counts (C,,, C,,, C,,, and
C,,) correspond to the cells of Table 2, where row and
column totals are also shown: n, n,, n,, N,, and N,.

In addition to counting modules in Table 2, we must
also count the quality factor (e.g., drcount) that is incor-
rectly classified. This is shown as Remaining Factor, RF,
in the ACCEPT column. This is the quality factor count on
modules that should have been rejected. Also shown is
Total Factor, TF, the total quality factor count on all the
modules in the build. Table 2 and subsequent equations
show an example validation, where the combination of
metrics from Table 1 and their critical values for Build 1 is
prologue size (P) with a critical value of 63, statements
(S) with a critical value of 27, and eta2 (E2) with a critical
value of 45. This is the optimal BDF. Later we will ex-
plain how we arrived at this particular combination of
metrics as the optimal set. The results of the following
calculations for the optimal BDF are shown in Table 3.

3.2.1. Statistical Criteria

We validate a BDF statistically by demonstrating that
it partitions Table 2 so that C,, and C,, are large relative to
C,, and C,,. If this is the case, a large number of high
quality modules (e.g., modules with drcount=O) would
have MijsMCj and would be correctly classified as high
quality. Similarly, a large number of low quality modules
(e.g., modules with drcounn0) would have M,>MC, and
would be correctly classified as low quality. We evaluate
partitioning ability using the misclassification rates.

3.2.2. Misclassification

We compute the degree of misclassification in Table
2 by noting that ideally CII=nl=NI, C,,=O, C,,=O,
C,,=n,=N,. The extent to which this is not the case is esti-
mated by Type I misclassifications (i.e., the module has
Low Quality and the metrics "say" it has High Quality)
and Type 2 misclassifications (i.e., the module has High
Quality and the metrics "say" it has Low Quality). Thus,
we define the following measures of misclassification:

Proportion of Type 1 : p, = C2,/n
For the example, p1 = (35/1397)*1oO = 2.51% (5)

Proportion of Type 2 : p z = C12/n
For the example, p, = (344/1397)*100 = 24.62%

(6)

3.2.3. Application Criteria

Because it is the performance of the metrics in the ap-
plication context that counts, we also validate metrics with
respect to the application criteria Quality and Inspection,
which are related to quality achieved and the cost to
achieve it, respectively [1, 21. During the Design phase of
Build 2 in Figure 1, we predict that the quality computed
by equations (7)--(9) will be delivered to maintenance,
assuming that the modules rejected by the quality control
process are inspected and tested and that the problems that
are found are corrected. Furthermore, we predict that the
degree of inspection computed by equation (10) will be
required to achieve this quality. In addition to controlling
and predicting quality, equations (7)--(9) can be used to
address the question: "How can I determine whether my
quality goals are being met?" For example, if a quality
goal is ~ 3 % residual defects, the achievement of this goal
can be measured by RFP -- equation (9). Also, the degree
of rigorous inspection -- equation (10) can be used to ad-
dress the question: "How much will it cost to achieve my
quality goals?"

1

3.2.4. Quality

First, we estimate the metrics' ability to correctly
classify quality, given that the quality is known to be low:

(7)
LQC: proportion of low quality (e.g., drcount > 0)
software correctly classified = Czz/nz

For the example, LQC=(541/576)*100=93.92%.
Second, we estimate the metrics' ability to correctly

classify quality, given that the BDF has classified modules
as ACCEPT. This is done by summing quality factor in the
ACCEPT column in Table 2 to produce Remaining Factor,
RF (e.g., remaining drcount), given by equation (8).

(MSJ I MCJ)-. A (Mam I MC,))

for j=l, ..., m. This is the sum of Fi (e.g., drcount) on mod-
ules incorrectly classified as high quality because, for
these modules, (Fi>FC)~(Mij~MCj).

We estimate the proportion of RF by equation (9),
where TF is the total Fi for the build.

RFP = RF/TF (9)
For the example, from Table 2 there are 56 DRs on 35
modules that are incorrectly classified (i.e., RF=56). The
total number of DRs for the 1397 modules is 2579. There-
fore, RFP=(56/2579)*100=2.17%.

3.2.5. Inspection

Inspection is one of the costs of high quality. We are
interested in weighing inspection requirements (i.e., per-
cent of modules rejected and subjected to detailed inspec-
tion) against the quality that is achieved, for various
BDFs. We estimate inspection requirements by noting that
all modules in the REJECT column of Table 2 must be
inspected; this is the count C,2+C22' Thus, the proportion of
modules that must be inspected is given by:

I = (c ,~ + c u) / n (10)
For the example, 1=((344+541)/1397)*100=63.35% and
the percentage accepted is 1-1 = 36.65%.

3.2.6. Summary of Validation Results

Table 3 summarizes the results of the validation ex-
ample. The properties of dominance and concordance are
evident in these validation results and in other data we
have analyzed from the Space Shuttle. That is, a point is
reached in adding metrics where Discriminative Power is
not increased because: 1) the contribution of the dominant
metrics in correctly classifying quality has already taken
effect and 2) additional metrics essentially replicate the
classification results of the dominant metrics -- the con-
cordance effect. This result is due to the property of the
BDF used as an OR function, causing a module to be re-
jected if only one of its metrics exceeds its critical value.

3.3. Stage 3: Apply a Stopping Rule for Adding
Metria

It is important to strike a balance between quality and
cost (i.e., between RFP and I). Thus we add metrics until
the ratio of the relative change in RFP to the relative
change in I is maximum, as given by the Quality Inspec-
tion Ratio in equation (1 l), where i refers to the previous
RFP and I:

QIR = (IAR~/RFP$(AI/I~) (1 1)

For the example, QIR(P,S-P,S, E2)= ((I .2.17-
2.95 I)/2.95)/((63.35-60.13)/60.13)=4.91. Therefore, we
stop adding metrics after eta2 (E2) has been added.

3.3.1. Comparison of BDF Validation with Applica-
tion Results

In order to compare validation with application re-
sults, we first show how BDF Table looks in the Design
phase of Build 2 in Figure 1, when only the metrics M,
and their critical values MC, are available. This is shown
in Table 4, where the "?" indicates that the quality factor
data Fi are not available when the validated metrics are
used in the quality control function of Build 2. During the
Design phase of Build 2, modules are classified according

to the criteria that have been described. Whereas 36.65%
(512/1397) and 63.35% (885/1397) modules were ac-
cepted and rejected, respectively, during Build 1 (see Ta-
ble 2), 26.95% (228/846) and 73.05 % (618/846) modules
were accepted and rejected, respectively, during Build 2
(see Table 4). The rejected modules would be given prior-
ity attention (i.e., subjected to rigorous inspection).

A comparison of the Validation (Build 1) with the Ap-
plication (Build 2) with respect to statistical and applica-
tion criteria are shown in Table 5. To have a basis for
comparison with the validation results, we computed the
values shown in Table 5 retrospectively (i.e., after Build 2
was far enough along to be able to collect all of the quality
factor data at the conclusion of the Test phase). The values
for Build 2 are the actual quality delivered to maintenance,
as shown during the Test phase of Figure 1. The results of
the two builds are comparable. Note that the same critical
values computed during Build 1 were used on Build 2.
This procedure is necessary because the quality factor data
that is used in the K-S test in Stage 1 is not available dur-
ing the Design Phase of Build 2 in Figure 1. This transfer-
ability of model parameters is key to our process because
the point of validation is to apply its results to other but
similar software when the quality factor data is not avail-
able for the latter. Also, we have found that to apply this
approach, Build 2 does not have to be a direct descendant
of Build 1. Builds 1 and 2 do not have this relationship.

3.4. Stage 4: Form a Set of Relative Critical
Value Metria (RCVD)

Granularity of data is an issue that does not seem to
have been discussed much in the literature but one that we
have found to be of great importance in metrics analysis.
By granularity we refer to the level of data (e.g., module,
module sets, build) that will yield useful results when the
data are used in a model. This was an issue in our research
to develop an RCVD suitable for use as a second level
discriminant in controlling and predicting quality. By sec-
ond level we mean that the RCVD comes into play after
the optimal BDF has done its job of either accepting or
rejecting a module. Although the BDF is very useful, it
does not indicate the degree of quality (e.g., number of
DRs) on a rejected module or set of rejected modules. Our
original objective was to provide discrimination at the
module level (i.e., rank the drcount in modules by
RCVD). Due to the large number of modules with zero
DRs (58.77% and 50.59% for Build 1 and Build 2, re-
spectively) and the large variability of the data, this did
not prove feasible. However, by sorting the modules by
RCVD and finding its percentile distribution and the cor-
responding drcount percentile distribution, we were able
to identify key points in the plots of these distributions.
We call these points break points. These are points in the
percentile distributions where the slope of the percentile
curve starts to increase sharply. An example is shown in

Figure 3, where percentile drcount is plotted against per-
centile prologue size. A break point occurs at .80 percen-
tile (80%) on the X-axis. This corresponds to RCVD
(prologue size)=0.517. This value corresponds to a Y-axis
value of .35 (35%). Thus for values of RCVD greater than
.0517, we estimate that the RCVD would identify 65% of
the drcount. Thus we see that a difference of only .20 per-
centile (1.00-30) of the RCVD accounts for a difference
in .65 percentile (1.00-.35) of the drcount. In order to im-
plement this process, we validate function (12) for sets of
metrics during the Test Phase of Build 2, in Figure 1,
when the quality factor data Fi are available. Then we ap-
ply function (12) during the Design Phase of Build 2,
when no quality factor date is available for Build 2.

V (Mi, > M C j) A RCVDg (12)
This means that in addition to rejecting modules -- the
function performed by the BDF -- there is further classifi-
cation performed by the RCVD. Any modules that evalu-
ate to true in (12), would receive special attention because
the likelihood is that they would contain multiple DRs.
This is illustrated in Table 6 where 65.37% of the drcount
is identified by RCVD (prologue size) in combination
with the BDF on Build 1, corresponding to a drcount den-
sity of 6.08. This is in contrast with a density of 30 on
modules where (12) does not evaluate to true and 2.85
when the BDF alone is used. Similar results are observed
for Build 2 in Table 6. These results indicate the quality
that would be delivered to maintenance unless action is
taken in inspection and test to correct the defects.

We experimented with using all six metrics of Table 1
in the RCVD. We used all six in order to have sufficient
data to make the computation feasible. RCVD was worse
than RCVD (prologue size), as can be seen in Table 6, in
terms of both percentage of drcount classified and drcount
density. Since RCVD (prologue size) is much easier to
compute, it was the preferred RCVD to apply to Build 2,
as shown in Table 6. This result is due to the dominance
and concordance properties of metrics mentioned earlier.
In addition, the result is due to the fact that prologue size
contains a thorough change history comprised of the fol-
lowing notations in the program listing: module; purpose
of the module; specification reference; change request;
discrepancy report; release; release date; revision level;
programmer; description of change; listing of statements
affected by the change; indication of whether a statement
is added, deleted, or changed; and program comments. We
use prologue size as a predictor of drcount in the aggre-
gate (i.e., the cumulative quantity of entries in the pro-
gram), not on a one-for-one basis of a change possibly
resulting in a DR.

A seemingly trivial but yet important aspect of this
stage of the analysis was demonstrating the usefulness of
sorting data to examine their distributions and the flexibil-
ity for doing this provided by a spreadsheet program.

3.5. Stage 5: Identify Quality Limit Predictors

The final stage of the analysis involves identifying
regression equations for predicting the average and limits
of quality (e.g., drcount) of module sets, F,=f(M,), during
the Test Phase of Build 1, as shown in Figure 1. This pro-
cess is desirable because BDFs and RCVDs are not capa-
ble of predicting quality limits. During the Test phase of
Build 1, regression coefficients are estimated and the re-
sultant equation is applied, during the Design Phase of
Build 2, to predict the quality limits that would be deliv-
ered to maintenance unless action is taken to correct the
defects. As in the case of forming the RCVDs, granularity
of data was an issue. Again, because of the large number
of modules with zero drcount and the large variability of
the data, prediction at the individual module level was not
feasible. However, applying our earlier regression work
for the Space Shuttle [13], where we found that if we di-
vided the data into the appropriate number of frequency
classes (i.e., modules sets), according to Sturges’ rule [141,
usable regression equations could be developed based on
the averages computed for the classes. In that work, we
only predicted average values. We now extend the ap-
proach to include predicting quality limits. We experi-
mented with various sets of predictor variables. The model
results are shown in Table 7. The equation we selected is
the exponential function using average statements (ave S):

avedrcount = exp(0.1137 + 0.0056697 * aveS) (13)

This equation was selected for application to Build 2 for
the following reasons: 1) lowest Mean Square Error
(MSE) in Table 7; 2) fair accuracy in predicting Build 1
drcount; 3) theoretical consideration that the rate of
change of drcount with module size would vary with
module size (property of exponential distribution); and the
relative ease of collecting size data. Although the F-ratio
and R2 are impressive for the linear function using nodes,
this equation has a relatively high MSE and the collection
of nodes requires the use of a metrics analyzer.

Prediction results are shown in Figures 4 -- 7. The
figures show the following for average drcount for sets of
100 modules (1 -- 100, 101 -- 200, etc.): Figure 4, actual
and predicted values for Build 1; Figure 5, actual and pre-
dicted limits for Build 1; Figure 6, actual and predicted
values for Build 2; and Figure 7, actual and predicted
limits for Build 2. Figure 7 shows that the prediction lim-
its bracket the actual values for Build 2. This is another
example of retrospective analysis: once the quality factor
data Fi are available during the Test Phase of Build 2, Fig-
ure 1, the actual drcount can be compared with the predic-
tions. In the application of the prediction equation, the
software manager would compute the average size of sets
of modules and predict the drcount and the limits of
drcount for each module set, as shown in Figures 6 and 7,
respectively.

4. Summary and Conclusions

We developed a new metric, Relative Critical Value
Deviation (RCVD), for classifying and predicting software
quality. When the granularity of data was considered, the
RCVD proved to be a useful indicator of the degree to
which software quality deviates from a specified norm.
We discovered that the major application of the RCVD
was to prioritize the effort required to achieve quality
goals. At the outset we posed several questions that the
software manager wants answered concerning software
quality. We provided an integrated set of models based on
Boolean discriminant functions, RCVDs, and regression
equations to address these questions. We made a thorough
evaluation of two builds - one was used for validation and
the other for application -- using a five-stage analysis ap-
proach. In the three areas of our modeling effort, the pre-
dictions for the application build were close to the actual
values. Based on these preliminary results and the fact that
we have done analysis on additional Space Shuttle data,
we feel that the models, not the specific numerical results,
are transferable to other organizations, if the models are
applied within and not across application domains. How-
ever, to increase our confidence in the results, in future
research we will examine several additional builds of the
Space Shuttle flight software. Finally, we found that mun-
dane aspects of the analysis like data sorting to discover
information about distributions of data and the use of
spreadsheet calculations significantly aided the analysis.

5. Acknowledgments

The research described in this paper was carried out at
the Naval Postgraduate School and the Jet Propulsion
Laboratory, California Institute of Technology. We wish
to acknowledge the support provided for this project by
Dr. William Farr of the Naval Surface Warfare Center and
the National Aeronautics and Space Administration’s
IV&V Facility; the data provided by Prof. John Munson of
the University of Idaho; the data and assistance provided
by Ms. Julie Barnard of United Space Alliance; and the
helpful comments of Dr. Linda Rosenberg of NASA’s
Goddard Space Flight Center.

6. References

[l] Norman F. Schneidewind, “ A Software Metrics Model for
Quality Control”, Proceedings of the International Metrics
Symposium, Albuquerque, New Mexico, November 7,

[2] Norman F. Schneidewind, “A Software Metrics Model for
Integrating Quality Control and Prediction”, Proceedings
of the International Symposium on Software Reliability
Engineering, Albuquerque, New Mexico, November 4,

1997, pp. 127-136.

1997, pp. 402-415.

A. A. Porter and R. W. Selby, "Empirically Guided Soft-
ware Development Using Metric-Based Classification
Trees", IEEE Software, Vol. 7, No. 2, March 1990, pp. 46-
54.
Lionel C. Briand, John Daly, Victor Porter, and Jurgen
Wust, "Predicting Fault-Prone Classes with Design Meas-
ures in Object-Oriented Systems", Proceedings of the
Ninth International Symposium on Software Reliability
Engineering, Paderborn, Germany, November 4-7, 1998,

Taghi M. Khoshgoftaar and Edward B. Allen. "Logistic
Regression Modeling of Software Quality", Department of
Computer Science & Engineering, Florida Atlantic Univer-
sity, TR-CSE-97-24, March, 1997.
Taghi M. Khoshgoftaar, Edward B. Allen, Robert Hal-
stead, and Gary P. Trio, "Detection of Fault-Prone Soft-
ware Modules During a Spiral Life Cycle", Proceedings of
the International Conference on Software Maintenance,
Monterey, California, November 4-8, 1996, pp. 69-76.
Taghi. M. Khoshgoftaar, Edward B. Allen, Kalai Ka-
laichelvan, and Nishith Goel, "Early Quality Prediction: A
case Study in Telecommunications", IEEE Software, Vol.

Taghi M. Khoshgoftaar and Edward B. Allen, "Predicting
the Order of Fault-Prone Modules in Legacy Software",
Proceedings of the Ninth International Symposium on
Software Reliability Engineering, Paderbom, Germany,
November 4-7, 1998, pp. 344-353.

pp. 334-343.

13, NO. 1, January 1996, pp. 65-71.

Niclas Ohlsson and Hans Alberg, "Predicting Fault-Prone
Software Modules in Telephone Switches", IEEE Transac-
tions on Software Engineering, Vol. 22, No. 12, December

Standard for a Software Quality Metrics Methodology,
Revision, IEEE Std 1061-1998,31 December, 1998.
Norman F. Schneidewind, "Methodology for Validating
Software Metrics", IEEE Transactions on Software Engi-
neering, Vol. 18, No. 5, May 1992, pp. 410-422.
Allen P. Nikora and John C. Munson, "Determining Fault
Insertion Rates for Evolving Software Systems", Proceed-
ings of the Ninth International Symposium on Software
Reliability Engineering, Paderborn, Germany, November

Norman F. Schneidewind, "Software Metrics Validation:
Space Shuttle Flight Software Example", Annals of Soft-
ware Engineering, J. C. Baltzer AG, Science Publishers,

J. D. Jobson, Applied Multivariate Data Analysis, Volume
II:, Springer-Verlag, 1992.

1996, pp. 886-894.

4-7, 1998, pp. 306-315.

1(1999287-309.

Table 1 : Kolmogorov-Smirnov Distance for drcount=O vs. drcounb0
Validation: Build 1 (n=1397 modules)

I Table 2: Boolean Discriminant Function: Validation (Build 1)

A(Mij<MC,)

Pis63ASi~27AE2i~45 Pi>63VSi>27VE2b45

Low Quality

RF=56

m ACCEPT REJECT -
K-S Distance

P: prologue size, S: statements, E2: eta2, L: lines of code

1 Table 4: Boolean Discriminant Function: Application (Build 2)

A(Mij<MCj) V(Mij>MCj)

Pi<63ASi<27AE2i<45 Pi>63VSi>27VE2i>45
I

High Quality ? Type 2 i 1

I Table 5: Comparison of Validation (Build 1, n=1397 modules) with Application (Build 2, n=846 modules) I
Critical Values Application Criteria Statistical Criteria

Metric Set

13.05 9.1 1 2.69 93.78 26.11 3.07 45 27 63 Application P, S, E2
63.35 4.91 2.11 93.92 24.62 2.51 45 21 63 Validation P, S, E2
I % QIR RFP % LQC % Pz% P I % E2 S P

P prologue size, S: statements, E2: eta2

iscriminative Power

1. RCVD (six metrics): mean of RCVDs of six metrics in Table 1
2. drcount identified: count of DRs on modules rejected by BDF A RCVD; percent of total DRs
3. modules with drcount identified: count of modules rejected by BDF A RCVD; percent of total modules
4. drcount density: drcountlmodule count
5. drcount density for other modules: modules other than those rejected by BDF A RCVD

4- Development ,-b
Build 1: Validation Build 2: Application , Maintenance of Build 2,

Design Test Design Test

MCj +MCj \.
Mij Mij - Control & Predict -b

R C W J RCVDij / Quality

Fi=f(Mij) Fi=f(Mij) Fi: Known Quality b
Metric j on Module i
Metric j Critical Value
Quality Factor on Module i

RCVDu : Relative Critical Value Deviation
for Metric j on Module i

Fi=f(Mi,): Quality Limits Predictor

Figure 1. Measurement Process

6 IEEE SYMPOSIUM ON CIRA 99-REGULAR PAPER

arc planning strategies and test the continuous operation of
the rover while images are being acquired and processed.

Fig. 5. Sample tracking sequence.

have also successfully placed the instrument arm onto a
boulder over five meters away. However, since the visual
tracking algorithm servos on the local elevation maximum,
only targets on the top of rocks were specified at this time.

Among several runs that succeeded, there were a few
runs that did not complete. The two primary reasons are:

The visual tracker loses its target. This occurs when
either the target leaves the camera FOV, no range data
is available due to lighting conditions, multiple targets
are visible inside the search window, target is outside
the search window, or target is same color as back-
ground. Using 14 different datasets, the visual tracker
succeeded in maintaining target lock through 10 com-
plete sequences. Correcting the threshold increased
this to 13 successful datasets.
The visual tracking succeeds but the rover cannot sta-
bilize about the goal point. Since we rely on the mobil-
ity system, positioning resolution of the vehicle is less
than our goal tolerances. This is mainly apparent on
sandy ground where vehicle maneuvering introduces
much positional uncertainty.

VII. FUTURE WORK

We are planning to improve the robustness of the vi-
sual tracking algorithm (reducing its dependency on the
brightness-based filter) by matching the entire shape of the
terrain around the target. We also plan to improve the
position and pose estimates using visual feature tracking
on the whole scene[5]. These improvements should allow
tracking of targets anywhere on a rock, which would en-
able a more general mast placement capability. Another
area that we will be addressing is the elimination of the
instabilities that result from the imprecise vehicle motions
on loose terrain. Improving the coordination between the
vehicle and the arm trajectories will improve the overall
system. We also like to introduce obstacle avoidance in the

VIII. ACKNOWLEDGMENTS
We wish to thank the Long Range Science Rover (LRSR)

team for providing the Rocky 7 rover and for their assis-
tance and support during the development of this work,
especially Samad Hayati, Richard Volpe, Bob Balaram,
Robert Ivlev, Sharon Laubach, Alex Martin-Alvarez, Larry
Matthies, Clark Olson, Richard Petras, Robert Steele, and
Yalin Xiong. The work described in this paper was carried
out by the Jet Propulsion Laboratory, California Institute
of Technology, under a contract to the National Aeronau-
tics and Space Administration.

REFERENCES
[1] P.K. Allen. Automated tracking and grasping of a moving object

with a robotic hand-eye system. IEEE Tkansactions on Robotics
and Automation, 9(2):152-165, 1993.

[2] Gregory D. Hager, Gerhard Grunwald, and Kentaro Toyama.
Intelligent Robotic Systems, chapter Feature-Based Visual Ser-
voins and its Application to Telerobotics. Elsevier, Amsterdam,
199< V. Graef&-editor.

131 R. Horaud. F. Dornaika. and B. Espiau. Visually guided ob- . >
ject grasping. IEEE Thnsactions on Robotics and Automation,
14(4), August 1998.

[4] Mark Maimone, Issa Nesnas, and Hari Dm. Autonomous
rock tracking and acquisition from a mars rover. In In-
ternational Symposium on Artificial Intelligence for Robotic
Systems in Space, Noordwijk, Netherlands, June 1999.
http://robotics.jpl.nasa.gov/tasks/pdm/papers/isairas99/.

[5] Larry Matthies. Dynamic Stereo Vision. PhD thesis, Carnegie
Mellon Universitv ComDuter Science Department, October 1989.
CMU-CS-89-195:

[6] I.A. Nesnas and M.M. StaniSiC. A robotic software developed us-
ing object-oriented design. In ASME Design Automation Con-
ference, Minnesota, 1994.

171 H.K. Nishihara. H. Thomas. E. Huber, and C.A. Reid. Real-time
L ,

tracking using stereo and motion: Visual perception for spa ce
robotics. In International Symposium on Artificial Intelligence
for Robotic Systems in Space, pages 331-334, 1994.

[8] N. Papanikolopoulos and P.K. Khosla. Adaptive robotic visual
tracking: theory and experiments. IEEE Thnsactions on Auto-
matic Control, 38:1249-1254, March 1993.

[9] L. Pedersen, D. Apostolopoulos, W. Whittaker, T. Roush, and
G. Benedix. Sensing and data classification for robotic meteorite
search. In SPIE Photonics East, Boston, 1998.

[lo] S.B. Skaar, W.H. Brockman, and W.S. Jang. Three dimensional
camera space manipulation. International Journal of Robotics
Research, 9(4):22-39, 1990.

[ll] D.A. Theobald, W.J. Hong, A. Madhani, B. Hoffman,
G. Niemeyer, L. Cadapan, J.J.-E. Slotine, and J.K. Salisbury.
Autonomous rock acquisition. In AIAA Forum on Advanced
Development in Space Robotics, Madison, WI, August 1996.

[12] Richard Volpe. Navigation results from desert field tests of the
Rocky 7 mars rover prototype. International Journal of Robotics
Research, Accepted for Publication, Special Issue on Field
and Service Robots 1999. http://robotics.jpl.nasa.gov/people/
volpe/papers/JnavMay.pdf.

[13] David Wettergreen, Hans Thomas, and Maria Bualat. Initial re-
sults from vision-based control of the Ames Marsokhod rover.
In IEEE International Conference on Intelligent Robots and
Systems, pages 1377-1382, Grenoble, France, September 1997.
http://img.arc.nasa.gov/ papers/iros97.pdf.

[14] Yalin Xiong and Larry Matthies. Error analysis of a real-
time stereo system. In Computer Vision and Pattern Recogni-
tion, pages 1087-1093, 1997. http://www.cs.cmu.edu/-yx/ pa-
pers/StereoError97.pdf.

http://robotics.jpl.nasa.gov/tasks/pdm/papers/isairas99
http://robotics.jpl.nasa.gov/people
http://img.arc.nasa.gov
http://www.cs.cmu.edu/-yx

NESNAS E T AL. : ROVER CONTROL

1.
2.
3.
4.

5.
6.
7.
8.
9.

10.

Acquire stereo image pair with body navigation cameras
Send left image over wireless network to host
Scientist/Operator selects target rock on left image
Target location and intensity threshold sent to rover

Identify 3-D location of rock based on calibrated camera models and on-board stereo image processing
Compute single-arc rover trajectory to target
Drive rover toward target
Periodically (every 10 cm) poll tracking software to update target location using new stereo pair & current odometry
Redirect rover toward new target location using new single-arc trajectory, and repeat until target is within 1 cm of goal position
Deploy sampling arm, sense and pick up rock.

All subsequent processing occurs on-board

TABLE I
ALGORITHM FOR SMALL-ROCK ACQUISITION USING THE ARM

1.
2.
3.
4.

5 .
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

Acquire stereo image pair with mast cameras
Send the left image over wireless network to host
Scientist/Operator selects target on left image
Target location and intensity threshold sent to rover

Identify 3-D location of target region based on calibrated camera models and on-board stereo image processing
Compute single-arc rover trajectory to target
Drive rover toward target
Periodically (every 50 cm) poll the target tracking software to update target location using new stereo pair and current odometry
Redirect rover toward the new target location using new single-arc trajectory, and repeat until target is within 1 m from goal
Compute a 2-arc trajectory to a point 0.5 m from target with a final rover orientation to match the target’s surface normal
Drive rover along the two-arc trajectory
Poll target tracking software for update on target location and surface normal
If target is out of instrument’s reach, move closer to target and update location
Deploy mast arm instrument toward target
Servo mast along surface normal until mast touches the rock

All subsequent processing occurs on-board

TABLE I1
ALGORITHM FOR INSTRUMENT PLACEMENT USING THE MAST

E. Target Grasping

Once the arm’s workspace is centered to within 1 cm of
the target, the arm is deployed. The scoops are opened
and the arm moves downwards toward the ground sensing
obstacles along its trajectory. Sensing is done by moni-
toring changes between the desired and actual trajectories
of the arm’s shoulder joints. The arm stops when either
the target or the ground are sensed. The arm then goes
into a grasping mode. As the scoops sense resistance, the
arm is raised in small amounts while the scoops continue to
close. The arm exits this mode when either a stable grasp
is achieved, the scoops are completely closed, or the algo-
rithm times out. This algorithm ensures that the gripper
has a good hold on the target.

F. Instrument Placement

Table I1 describes the algorithm used for instrument
placement. The general strategy is similar to the rock sam-
ple acquisition, except that the rover must approach the
target and place the instrument at a specific orientation
determined by the target’s surface normal. In addition,
the instrument placement can be started from a distance
of more than five meters away. Because of this long dis-
tance, we use the narrow field-of-view cameras of the mast

to track the target. We drive the vehicle with its mast half-
way up to continuously monitor the target. Every 50 cm
the rover stops and acquires a new stereo pair for the tar-
get tracking algorithm. When the rover is within 1 m of its
target, it stops and plans a two-arc trajectory to adjust its
final approach toward the target. The final approach is de-
termined by the surface normal which is computed from the
range data of the target area. The rover drives along the
two-arc trajectory and stops in front of the boulder. The
mast fully deploys and approaches the boulder. It stops at
about 20 cm from the target’s surface. Instrument sensing
is enabled and the mast moves along a straight line toward
the target until the instrument touches the rock. The mast
then stops and the instrument takes its measurements. The
mast retracts and stows and the rover moves away from the
target area.

VI. EXPERIMENTAL RESULTS
We have performed several experiments in JPL’s Mars

Yard1, and successfully demonstrated the acquisition of
small rocks (3-5 cm) located over 1 meter in front of the
rover. Figure 5 shows a sample tracking sequence, with
the target indicated in each frame by a dark square. We

lhttp://marscarn.jpl.nasa.gov/

lhttp://marscarn.jpl.nasa.gov

