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Abstract

We extend the 2 dimensional Causal Dynamical Triangulation (CDT) model from the usual
model of closed string to the one of open-closed string. The matrix-vector model describing the
loop gas model is modified so as to possess the nature of the CDT, i.e. the time foliation struc-
ture. Stochastic quantization method produces interactions of loop and line variables similar
to those in the non-critical open-closed string field theories. By taking an appropriate scaling,
we realize an extended model of the generalized CDT (GCDT), which keeps the causality in a
broad sense.
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1 Introduction

Over a decade ago we expected matrix models to realize string field theories. In the dynamical
triangulation (DT) formulated by the matrix models, discrete loops on the random surface
describe string interactions through the double scaling limit. In particular, the interaction of
a loop with the spin cluster domain wall, the Ishibashi-Kawai (IK-) type interaction, plays an
important role in the construction of the non-critical string field theory[1, 2]. By the stochastic
quantization, hermitiam and real symmetric matrix models formulate the orientable and non-
orientable string field theories, respectively[3, 4]. An open string propagates and interacts on
the 2D surface with boundaries. The open-closed string field theories are described by matrix-
vector models, which have the algebraic structure containing the Virasoro algebra and some
current algebra[5, 6, 7]. The loop gas model describes strings, each of which is located at a
point x in the 1D discrete space, interacting with another one only in the same point x or the
neighboring points x ± 1[8, 9]. The matrix-vector model formulation of the loop gas model
naturally includes the IK-type interaction[10, 11]. Then, it possesses the similar algebraic
structure as above[12]. However, one of the problems in the DT is that the probability of
the splitting interaction is too large to realize the string model with stable propagation. The
situation becomes more serious in higher dimensional space-time model.

The causal dynamical triangulation (CDT) is proposed to improve the above problem[13].
It is originally the model only of loop propagation. While the permission of splitting interaction
violates the causality in the strict sense, the prohibition of the merging interaction keeps the
violation still soft. Such a broad sense of causality is adopted to formulate the generalized CDT
(GCDT). This extension changes the propagator with a smooth surface to the one with many
projections[14]. Thanks to the diminution of the triangulation by the time foliation structure,
it is expected that the propagation becomes stable with moderate quantum correction. The
string field theory based on the the GCDT is constructed as the merging coupling constant
zero limit of the stochastic quantizing GCDT model[15]. Then, it is formulated by a matrix
model[16, 17]. In this model the stochastic time plays the role of the geodesic distance[18].
Furthermore, the GCDT model with the additional IK-type interaction is constructed and it
is also described by a matrix model formulation[19]. Under the circumstances, in the previous
work, we proposed a matrix model formulation of the GCDT with the IK-type interaction based
on the loop gas model[20]. This intuitive analysis leads a new scaling. Another novelty is that
the stochastic time does not correspond to the geodesic distance.

In this paper, we extend the GCDT model for the closed string to the one for the open-
closed string, by the extension of the matrix model of the loop gas model to the matrix-vector
model. In section 2, after reviewing the fundamental nature of the CDT, we construct a matrix-
vector model which extend it consistently. In section 3, we apply it the stochastic quantization
method to describe the interactions of loop and line variables. Though this model contains
unsuitable interactions and propagations in the discrete level, in section 4, we find a new
scaling in the continuum limit which realizes the open-closed string GCDT model with the
IK-type interaction. The last section is the summary and the conclusion.

2 CDT matrix-vector model

In the CDT in 2D space-time, any loop propagator is sliced to many 1-step two-loop functions,
each of which is a ring with the small width a. The minimal time, as well as the minimal length,
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corresponds to the length of the side of the unit triangle a. An 1-step two loop function, or
the loop propagator in the unit time, from a loop with k links at the time t to another one
with m links at the next time t + 1, is composed of k + m triangles, k upward triangles and
m downward ones. One site on the loop at t propagates to one or more consecutive links
on the loop at t + 1 and vice versa. Assigning a factor g to each triangle and counting the
configurations of triangulation, the 1-step propagator is expressed as,

G(0)(k,m; 1) ≡ gk+m

k +m
k+mCk, (1)

where the last factor is the binomial coefficient. By distinguishing the absolute position of
triangles, not only the configuration on the ring, we define another expression, or the 1-step
“marked” two-loop function,

G(1)(k,m; 1) ≡ kG(0)(k,m; 1). (2)

With these 1-step functions, we can construct “unmarked” and “marked” two-loop functions
of finite t-step by the time foliation rule,

G(0)(n,m; t) =
∞∑
k=1

G(0)(n, k; t− 1)kG(0)(k,m; 1),

G(1)(n,m; t) =
∞∑
k=1

G(1)(n, k; t− 1)G(1)(k,m; 1), (3)

respectively. The geodesic distance of the propagation becomes same everywhere on the loop.
It is worth noticing about the time foliation structure that in the CDT we do not have any
loop propagation in a same time, or in a “equi-temporal” slice.

The causality is violated at the saddle point on the world sheet, where two distinct light-
cones are caused. Although both of splitting and merging interactions should be excluded in
the exact sense, we relax this restriction to include only the splitting interaction. In this regime,
branching baby loops eventually shrink to disappear into the vacuum. In spite of the partial
causality violation, the propagating mother loop never interacts with the ill-causality object.
This extended model is the GCDT.

We start with the U(N) gauge invariant action of a matrix-vector model which is modified
from the loop gas model,

S[M ] = −g
√
Ntr

∑
t

Mtt +
1

2
tr
∑
t,t′
Mtt′Mt′t −

g

3
√
N

tr
∑
t,t′,t′′

Mtt′Mt′t′′Mt′′t

+
∑
t,t′

R∑
a=1

V a∗
t

(
1tt′ −

gaB√
N
Mtt′

)
V a
t′ , (4)

with the partition function, Z =
∫
DMDVDV ∗e−S[M,V,V ∗]. We abbreviate indices i, j of an

N × N matrix (Mtt′)ij (i, j = 1 ∼ N), where the discrete times t and t′ are assigned to i and
j, respectively. The matrix corresponds to a link directed from a site with i on the time t to
another site with j on the time t′. The N dimensional vectors (V a

t )i and (V a∗
t )i possess one

index i attached to the time t and the upper suffix “a”, running from 1 to R. They correspond
to the edges of an open line located on the D-brane of “a”, in the slice of the time t. We define
for t′ = t, Mtt ≡ At is an hermitian matrix corresponding to a link in a equi-temporal slice of
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the time t. For t′ = t± 1, Mt,t+1 ≡ Bt and Mt+1,t ≡ B†t are the link directed from t to t+ 1 and
the one directed from t+ 1 to t, respectively. Otherwise, Mtt′ = 0, so that every link connects
two sites on same or neighboring times each other. The action is rewritten with the matrices
At, Bt, B

†
t as

S[A,B,B†] = −g
√
Ntr

∑
t

At +
1

2
tr
∑
t

A2
t + tr

∑
t

BtB
†
t

− g

3
√
N

tr
∑
t

A3
t −

g√
N

tr
∑
t

(
AtBtB

†
t + At+1B

†
tBt

)

+
∑
t

R∑
a=1

{
V a∗
t V a

t −
gaB√
N

(
V a∗
t AtV

a
t + V a∗

t BtV
a
t+1 + V a∗

t+1B
†
tV

a
t

)}
. (5)

Let us see the matrix cubic terms in the second line, which correspond to the triangles. The
last two terms composed of At, Bt and B†t are elements of the ring of 1-step two-loop function,
whereas the first term, cubic only of At, corresponds to a triangle soaked in one time slice. It
causes the loop propagation in a equi-temporal slice, which is not included in the GCDT. The
quadratic terms in the first line glue the sides of triangles. While the trace of BtB

†
t connects two

triangles to compose a ring of the 1-step two-loop function, the trace of A2
t connects two links

of neighboring rings, by the integration in Z =
∫
DADBDB†DVDV ∗e−S[A,B,B†,V,V ∗]. After

integrating out the matrices B and B†, we obtain the effective action,

Seff [A, V, V ∗] = tr
∑
t

[
−g
√
NAt +

1

2
A2
t −

g

3
√
N
A3
t +

∑
a

V a∗
t

(
1− gaB√

N
At

)
V a
t

+ log
{
1− g√

N
(At1t+1 + 1tAt+1)

}

−
∑
a,b

gaBg
b
B

N
(V a∗

t V a
t+1)

{
1− g√

N
(At1t+1 + 1tAt+1)

}−1
(V b

t V
b∗
t+1)

 , (6)

for the partition function, Z =
∫
DADVDV ∗e−Seff [A,V,V ∗]. We define the closed loop variable of

the length n in the time t as φt(n) ≡ 1
N

tr( At√
N

)n and the open line variable of the length n with

the edge factors “a”,“b” in the time t as ψabt (n) ≡
√
gaBg

b
B

N
V a∗
t

(
At√
N

)n
V b
t . Then, we expand the

above effective action (6) and rewrite it with these variables as

Seff [φ, ψ,A, V, V ∗] = S0[φ, ψ,A, V, V ∗] + S1[A, V, V ∗], (7)

S0[φ, ψ,A, V, V ∗] =
∑
t

[
1

2
trA2

t −N2
∞∑
k=0

∞∑
m=0

G(0)(k,m; 1)φt(k)φt+1(m)

+
∑
a

V a∗
t V a

t −N
∑
a,b

∞∑
k=0

∞∑
m=0

F (0)(k,m; 1)ψabt (k)ψbat+1(m)

 , (8)

S1[A, V, V ∗] = −N2
∑
t

 g
N

tr
At√
N

+
g

3N
tr

(
At√
N

)3

+
gaB
N

∑
a

V a∗
t

At√
N
V a
t

 , (9)

where the coefficient of the open line variable quadratic term,

F (0)(k,m; 1) ≡ (k +m)G(0)(k,m; 1) = gk+m
k+mCk, (10)
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is interpreted as the amplitude of 1-step propagation of open line, as the coefficient G(0)(k,m; 1)
of the closed loop variable quadratic term has the meaning of the 1-step two-loop function. The
finite time t-step propagator of the closed loop, or the time foliation of eq.(3), is expressed as

nmG(0)(n,m; t) = 〈φ0(n)φt(m)〉

=
1

Z0

∫
DADVDV ∗φ0(n)φt(m)e−S0[φ,ψ,A,V,V ∗], (11)

where the partition function Z0 =
∫
DADVDV ∗e−S0 is described with the “free part” (8) of

the effective action (7). In the simmilar way, we deduce the t-step propagator of the open line
as

F (0)(n,m; t)δadδbc = 〈ψab0 (n)ψcdt (m)〉

=
1

Z0

∫
DADVDV ∗ψab0 (n)ψcdt (m)e−S0[φ,ψ,A,V,V ∗], (12)

Although the extra terms of S1 in the effective action seem to break the time foliation struc-
ture at the first sight, they are found to be rather necessary to realize the GCDT structure
consistently in the continuum limit.

3 Stochastic quantization

We apply the stochastic quantization method to the above model to obtain the GCDT model
for open-closed string field theory. The Langevin equations are

∆(At)ij = − ∂Seff

∂(At)ji
∆τ + (∆ξt)ij,

∆(V a
t )i = −λat

∂Seff

∂(V a∗
t )i

∆τ + (∆ηat )i,

∆(V a∗
t )i = −λat

∂Seff

∂(V a
t )i

∆τ + (∆ηa∗t )i, (13)

where λat is the scale parameter of the stochastic time evolution on the boundary “a”. White
noise terms ∆ξt,∆η

a
t ,∆η

a∗
t satisfy the following correlations:

〈(∆ξt)ij(∆ξt′)kl〉ξ = 2∆τδtt′δilδjk,

〈(∆ηa∗t )i(∆η
b
t′)j〉η = 2λat∆τδtt′δabδij. (14)

The Langevin equation for the closed loop variable is

∆φt(n) = ∆τn [gφt(n− 1)− φt(n) + gφt(n+ 1)

+
n−2∑
k=0

φt(k)φt(n− k − 2)

+
∞∑
k=1

∞∑
m=0

{
G(1)(k,m; 1)φt+1(m) +G(2)(m, k; 1)φt−1(m)

}
φt(n+ k − 2)

+
1

N

∑
c,d

∞∑
k=1

∞∑
m=0

{
F (0)(k,m; 1)ψdct+1(m) + F (0)(m, k; 1)ψdct−1(m)

}
kψcdt (n+ k − 2)

+
1

N

∑
c

ψcct (n− 1)

]
+ ∆ζt(n), (15)
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Figure 1: IK-type interaction concerning
closed loops: We also have the process of cre-
ating a closed loop on the neighboring past
time, instead of the future time as above.
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b 
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m 
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n t 

Δτ  

a b 

Figure 2: IK-type interaction creating open
lines from a closed loop

where the last term is a constructive noise variable, ∆ζt(n) ≡ 1
N
ntr{∆ξt√

N
( At√

N
)n−1}. While

G(1)(k,m; 1) = kG(0)(k,m; 1) is the 1-step marked two-loop function with a mark on the en-
trance loop, G(2)(k,m; 1) ≡ mG(0)(k,m; 1) is the one with a mark on the exit loop.

The terms in the first line suggest the deformation of the loop in the equi-temporal slice.
The second line is ordinary splitting process. The third line expresses the IK-type interactions.
These interactions extend the loop length by k − 2, simultaneously on the neighboring time
slice creating a loop with some length m, which is related to the extended length k by the
1-step two-loop function(Fig.1). The remains are novel terms including the open line variables.
The first term in the last line means cutting of a closed loop to make an open line. We
interpret the fourth line as the IK-type interactions concerning the pair creation of open lines.
The extensional part, k, of the consequential open line and another open line, m, created in
the neighboring time are related by the 1-step open-line propagator(Fig.2). For the simple
expression, we adopt the following abbreviation for the IK-type interactions:

φ̂t(k) ≡
∞∑
m=0

{G(1)(k,m; 1)φt+1(m) +G(2)(m, k; 1)φt−1(m)},

ψ̂abt (k) ≡
∞∑
m=0

{F (0)(k,m; 1)ψabt+1(m) + F (0)(m, k; 1)ψabt−1(m)}. (16)

The Langevin equation for the open line variable is

∆ψabt (n) = ∆τ
[
n
{
gψabt (n− 1)− ψabt (n) + gψabt (n+ 1)

}
+
∑
c

n−1∑
k=0

ψact (k)ψcbt (n− k − 1) + n
∞∑
k=1

φ̂t(k)ψabt (n+ k − 2)

+
∑
c,d

n−1∑
k=0

∞∑
`=0

∞∑
`′=0

ψ̂dct (k)ψadt (k + `′)ψcbt (n+ `− k − 1)

+
n−1∑
k=1

kψabt (k − 1)φt(n− k − 1)

]
+2λat∆τδ

abφt(n)
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+λat∆τ

[
−ψabt (n) + gaBψ

ab
t (n+ 1) +

∑
c

∞∑
k=0

ψ̂act (k)ψcbt (n+ k)

]

+λbt∆τ

[
−ψabt (n) + gbBψ

ab
t (n+ 1) +

∑
c

∞∑
k=0

ψ̂cbt (k)ψact (n+ k)

]
+ζabt (n), (17)

where the last term is another constructive noise variable,

∆ζabt (n) ≡

√
gaBg

b
B

N


n−1∑
k=0

V a∗
t

(
At√
N

)k
∆ξt√
N

(
At√
N

)n−k−1

V b
t +∆ηa∗t

(
At√
N

)n
V b
t +V a∗

t

(
At√
N

)n
∆ηbt

.
The above constructive noise variables satisfy the following correlations:

〈∆ζt(n)∆ζt′(m)〉ξ = 2∆τδtt′
1

N2
nm〈φt(n+m− 2)〉ξ,

〈∆ζabt (n)∆ζcdt′ (m)〉ξη = 2∆τδtt′
1

N

{
λat δ

ad〈ψcbt (n+m)〉η + λbtδ
cb〈ψadt (n+m)〉η

+
n−1∑
k=0

m−1∑
`=0

〈ψadt (k + `)〉ξ〈ψcbt (n+m− k − `− 2)〉ξ
}

〈∆ζt(n)∆ζabt′ (m)〉ξ = 2∆τδtt′nm〈ψabt (n+m− 2)〉ξ. (18)

These noise correlations provide us with the merging and cross-changing processes, which should
be avoided by the causality, in the stochastic time evolution. Here, we consider some observable
O(φ, ψ) composed of loop and line variables. When O(φ(τ + ∆τ), ψ(τ + ∆τ)) is expanded
around τ , the Fokker-Planck (FP) Hamiltonian is defined as the generator for the stochastic
time evolution of the expectation value,

〈∆O(φ, ψ)〉ξη ≡ −∆τ〈HFPO(φ, ψ)〉ξη +O(∆τ
3
2 ). (19)

We interpret φt(n) (and ψabt (n)) as the creation operators of closed loop (and open line with
edges on “a” and “b”) with the length n in the time t, while πt(n) ≡ ∂

∂φt(n)
(and πabt (n) ≡ ∂

∂ψab
t (n)

)

as the annihilation operators of corresponding loop (and line). Of course, they satisfy the
following commutation relations:

[πt(n), φt′(m)] = δtt′δnm, [πabt (n), ψcdt′ (m)] = δtt′δacδbdδnm. (20)

The FP Hamiltonian is expressed in the form,

HFP =
∑
t

[
1

N2

∞∑
n=1

nLt(n− 2)πt(n)

+
1

N

∑
ab

∞∑
n=0

{
λatJ

ab
t (n) + λbtJ

ba∗
t (n)

}
πabt (n)

+
∑
ab

∞∑
n=1

{
1

N

∑
c

n−1∑
k=1

k
(
J cbt (k − 1)ψact (n− k − 1) + J ca∗t (n− 1)ψcbt (n− k − 1)

)
+nKab

t (n− 2)
}
πabt (n)

]
, (21)
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with three generators Lt(n), Jabt (n) and Kab
t (n). The first line with the generator Lt(n) contains

the stochastic processes of the closed loop φt(n). The second line with the generator Jabt (n)
corresponds to the deformation on the edges of the open line ψabt (n). 1 The third line and the
fourth line including the generator Kab

t (n) are the processes occurring at some point except at
the edges, of the same open line. In the discrete level, the three generators express the algebraic
structure including the Virasoro algebra and SU(R) current algebra, associated with the model
of string with R D-branes located at the same position. We will see the explicit form of three
generators and their commutators in the appendix.

4 Continuum limit

In the discrete model, we obtain not only the GCDT processes but also the extra ones inap-
propriate from the criteria of the causality and the time foliation structure. We expect these
ill-processes to scale out in the continuum limit. In the double scaling limit, the minimum scale
a of length and time goes to zero as N grows to infinity. According to the CDT structure, the
finite length L and finite time T scale in the same way as

L ≡ an, T ≡ at. (22)

The infinitesimal expression of the 1-step propagators is

G̃(1)(L,L′; a) ≡ a−1G(1)(k,m; 1), F̃ (0)(L,L′; a) ≡ a−1F (0)(k,m; 1). (23)

The cosmological constant Λ and the boundary cosmological constant xa are defined from the
matrix-vector model coupling constants g and gaB, respectively, as

1

2
e−

1
2
a2Λ ≡ g, e−ax

a ≡ gaB. (24)

Based on the above scaling, we define two parameters D and DN , or scaling dimensions, and
investigate the range in the parameter space for the realization of the GCDT open-closed string
field theory. The string coupling constant Gst is defined with one scaling dimension DN as

Gst = aDN
1

N2
. (25)

With another scaling dimension D, the definition of the infinitesimal stochastic time dτ and
the boundary scale parameter λa is,

dτ = a
1
2
D−2∆τ, λa = a−

1
4
D+ 3

2λat . (26)

We redefine the creation operator Φ(L;T ) and the annihilation operator Π(L;T ) for the closed
string as

Φ(L;T ) = a−
1
2
Dφt(n), Π(L;T ) = a

1
2
D−2πt(n), (27)

1While the generator Jab
t (n) concerns the processes on the edge of “a” side, Jba∗

t (n) is the one at “b” side.
Notice that the hermitian matrix model constructs the orientable string model. The complex conjugate means
the reversal of the orientation of the link.

7



in addition, the creation operator Ψab(L;T ) and the annihilation operator Πab(L;T ) for the
open string as

Ψab(L;T ) = a−
1
4
D− 1

2ψabt (n), Πab(L;T ) = a
1
4
D− 3

2πabt (n), (28)

in accordance with the commutation relations,

[Π(L;T ),Φ(L′;T ′)] = δ(T − T ′)δ(L− L′),[
Πab(L;T ),Ψcd(L′;T ′)

]
= δacδbdδ(T − T ′)δ(L− L′). (29)

The scaling of the abbreviated form concerning the IK-type interaction, Φ̂(L;T ) and Ψ̂ab(L;T ),
is also defined consistently,

Φ̂(L′;T ) ≡
∫ ∞

0
dL′′G̃(1)(L′, L′′; a)Φ(L′′;T + a) +

∫ ∞
0

dL′′G̃(2)(L′′, L′; a)Φ(L′′;T − a),

Ψ̂ab(L′;T ) ≡
∫ ∞

0
dL′′F̃ (0)(L′, L′′; a)Ψab(L′′;T + a) +

∫ ∞
0

dL′′F̃ (0)(L′′, L′; a)Ψab(L′′;T − a).

At this point, in order for the minimal stochastic time to become infinitesimal, from eq.(26),
the parameter D is restricted to D > 4. The continuum limit of the FP Hamiltonian HFP,
which is defined by HFPdτ ≡ HFP∆τ , is as follows:

HFP = H1 +H2 +H2′ +H3, (30)

with

H1 =
∫
dT

∫ ∞
0

dLL

[
a−

1
2
D+3 1

2

(
∂2

∂L2
− Λ

)
Φ(L;T ) (31)

+a−
3
4
D+ 3

2
− 1

2
DN

√
Gst

∑
c

Ψcc(L;T ) (32)

+
∫ L

0
dL′Φ(L′;T )Φ(L− L′;T ) (33)

+a−D+1−DNGst

∑
cd

∫ ∞
0

dL′L′Φ(L+ L′;T )Π(L′;T ) (34)

+
∫ ∞

0
dL′Φ(L+ L′;T )Φ̂(L′;T ) (35)

+a−D+1−DNGst

∑
cd

∫ ∞
0

dL′L′Ψcd(L+ L′;T )Πcd(L′;T ) (36)

+a−
1
2
D− 1

2
DN

√
Gst

∑
cd

∫ ∞
0

dL′L′Ψcd(L+ L′;T )Ψ̂dc(L′;T )

]
Π(L;T ), (37)

H2 =
∑
ab

λa
∫
dT

∫ ∞
0

dL

[
a−

1
4
D+ 3

2

(
∂

∂L
− xa

)
Ψab(L;T ) (38)

+δabΦ(L;T ) (39)

+a−
1
2
D+1− 1

2
DN

√
Gst

∑
c

∫ ∞
0

dL′Ψcb(L+ L′;T )Πca(L′;T ) (40)

+
∑
c

∫ ∞
0

dL′Ψcb(L+ L′;T )Ψ̂ac(L′;T )

]
Πab(L;T ), (41)
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H2′ =
∑
ab

λb
∫
dT

∫ ∞
0

dL

[
a−

1
4
D+ 3

2

(
∂

∂L
− xb

)
Ψab(L;T )

+δabΦ(L;T )

+a−
1
2
D+1− 1

2
DN

√
Gst

∑
c

∫ ∞
0

dL′Ψac(L+ L′;T )Πbc(L′;T )

+
∑
c

∫ ∞
0

dL′Ψac(L+ L′;T )Ψ̂cb(L′;T )

]
Πab(L;T ),

H3 =
∑
ab

∫
dT

∫ ∞
0

dL

[
a−

1
2
D+3 1

2
L

(
∂2

∂L2
− Λ

)
Ψab(L;T ) (42)

+a−
1
4
D+ 3

2

∑
c

∫ ∞
0

dL′Ψac(L′;T )Ψcb(L− L′;T ) (43)

+L
∫ ∞

0
dL′Ψab(L+ L′;T )Φ̂(L′;T ) (44)

+
∑
cd

∫ L

0
dL′

∫ ∞
0

dL′′
∫ ∞

0
dL′′′

Ψad(L′ + L′′′;T )Ψcb(L+ L′′ − L′;T )Ψ̂dc(L′′ + L′′′;T ) (45)

+2
∫ L

0
dL′L′Ψab(L′;T )Φ(L− L′;T ) (46)

+a−
1
2
D+1− 1

2
DN

√
Gst

∑
cd

∫ ∞
0

dL′
∫ ∞

0
dL′′

∫ L′

0
dL′′′

Ψad(L′′ + L′′′;T )Ψcb(L+ L′ − L′′ − L′′′;T )Πcd(L′;T ) (47)

+a−D+1−DNGstL
∫ ∞

0
dL′L′Ψab(L+ L′;T )Π(L′;T )

]
Πab(L;T ). (48)

Let us focus on H1, which is the processes for the closed string. Four terms (31), (33),
(34) and (35) are exactly same ones with the GCDT model only of the closed string. The
scaling obtained in this previous model in ref.[20] was 4 < D < 6 and DN < −D + 1, which
we now call as “the GCDT scaling”. While the propagation in the equi-temporal slice (31)
and causality-violating merging interaction (34) scale out, the splitting interaction (33) and
the IK-type interaction (35) survive. Three novel terms, (32), (36) and (37), are interactions
with the open string. The merging interaction with an open string (36), which explicitly breaks
the causality, scales out in the GCDT scaling as we expect. The term (32) is interpreted as
the merging interaction of the closed string with a D-brane, so it may break the causality.
Certainly it also scales out in this scaling. The most interesting term is the IK-type interaction
concerning the open strings (37). While for DN > −D this interaction becomes solely dominant,
for DN < −D it scales out. In the latter scaling, though the GCDT structure is kept, the closed
string propagates and interacts just in the same way as the GCDT model only of closed string,
or the closed string does not suffer any influence from the open string. Just when DN = −D,
we obtain more interesting model, in which the closed string propagator receives quantum
correction by the interaction with D-branes.

The second part, H2, collects the processes on the edge “a” of the open string. The term (38)
describes the open string propagation in the equi-temporal slice. The scaling order becomes one
order higher than that of the each original term because of the cancellation in the leading order.
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•H1 : Deformation of closed string

(31) Propagation
in a time ×

(32) Closed string
→ Open string × (33) Splitting © (34) Merging ×

(35) IK-type with
closed string ©

(36) Merging with
open string ×

(37) IK-type with
open string 4

•H2 : Deformation at the edge of open string

(38) Propagation
in a time ×

(39) Open string →
Closed string ©

(40) Merging with
open string ×

(41) IK-type with
open string ©

•H3 : Deformation on the line of open string

(42) Propagation
in a time ×

(43) Splitting of
open string ×

(44) IK-type with
closed string ©

(45) IK-type with
open string ©

(46) Splitting of
closed string ©

(47) Cross-changing
×

(48) Merging with
closed string ×

Figure 3: The four straight lines express D-branes located at the same position. The curved
lines and the loops are open and closed strings, respectively. The red lines (and loops) along the
extended parts of the black lines (and loops) are strings created on the infinitesimal neighboring
time by the IK-type interactions. Interactions attached with “©” survive in “the GCDT
scaling”, while those with “×” scale out. The interaction (37) with “4” is critical.
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DN 

D 
4 6 

O 

DN = - D +1 

1 

-3 

Figure 4: “The GCDT scaling” for closed
string: The closed string GCDT model is re-
alized in the green area, which is classified
into three phases in the open-closed string
GCDT model.

(I) 

(II) 

(III) 

DN 

D 
4 6 

O 

DN = - D +1 

DN = - D 

1 

-4 
-3 

Figure 5: Open-closed string GCDT: In (I),
the closed string is unstable. In (III), the
closed string suffers no influence by the open
string. On (II), the stable open-closed string
model is obtained.

This fact makes the open string propagation in the equi-temporal slice possible to scale out in
the GCDT scaling, similarly to the term (31) in H1. In this scaling, the merging interaction
(40), that violates causality, becomes forbidden as it should. We are left with (39), connection
of the edges of the open string to produce a closed string, and (41), the IK-type interaction.

The third part, H2′ is same as H2, except that the deforming edge is “b” side.
The last part, H3, concerns the stochastic time evolution of an open string caused on some

point except at the edges. The term (42) is the open string propagation in the equi-temporal
slice, which becomes two orders higher than the original terms by the cancellation in the lowest
two orders, so that it is managed to scale out just in the same way as the term of (31). The
term (43), the splitting of the open string into two open strings, scales out consistently, as it is
the simmilar process to (32). Both of the terms (47), the cross-changing of two open strings,
and (48), the merging interaction with a closed string, violate the causality and they scale out
as we hope. The remaining three interactions survive in this scaling as we expect from the
analogy to the closed string model. The IK-type interactions (44) and (45), concern a closed
string creation and an open string creation, respectively, at the infinitesimal neighboring times.
The term (46) is the separation of a closed string from a open string with the total length
conserved.

5 Conclusion

We have constructed the matrix-vector model which realizes the CDT model of the open-
closed string, as the extension of the CDT model of closed string. Through the application of
the stochastic quantization method, we obtain the GCDT model with the additional IK-type
interactions, or the non-critical open-closed string field theory. In this model, the stochastic
time is not the geodesic distance any more but it is the step of the quantum correction. The
realization of the GCDT depends on two scaling dimensions, D and DN (See Fig.5). We obtain
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the restriction for D as 4 < D < 6, which is the same one with the closed string model. Though
in the closed string model the restriction for DN is only DN < −D+1, in the open-closed string
model we have three phases depending on the value of DN . (I) In the case −D < DN < −D+1,
the model is dominated only by the process of the string IK-type interaction (37). In this phase
the closed string is unstable because any closed string tends to interact with D-branes so much
that it becomes to open strings immediately. (II) Just on DN = −D, the open-closed string
interacting model is realized, that is worth investing further. (III) When DN < −D, the
processes of a closed string are independent of the existence of D-branes. In this case, the
processes directed from the open string to the closed string are irreversible. In other words, the
closed string model is inherited just as the subset of this open-closed string model. Therefore
only in DN = −D we inspire D-branes with the physical substance.

Appendix

In the appendix, we investigate the commutation relations of three generators, Lt(n), Jabt (n)
and Kab

t (n), contained in the discrete F-P Hamiltonian, eq. (21). The expressions of the three
generators are, 2

Lt(n) = −N2

[
gφt(n+ 1)− φt(n+ 2) + gφt(n+ 3) +

1

N

∑
c

ψcct (n+ 1)

+
n∑
k=0

φt(k)φt(n− k)

+
∞∑
k=1

φt(n+ k)
{

1

N2
kπt(k) + φ̂t(k)

}

+
1

N

∑
ab

∞∑
k=1

ψabt (n+ k)k
{

1

N
πabt (k) + ψ̂bat (k)

}]
, (49)

Jabt (n) = −N
[
−ψabt (n) + gaBψ

ab
t (n+ 1) + δabφt(n)

+
∑
c

∞∑
k=0

ψcbt (n+ k)
{

1

N
πcat (k) + ψ̂act (k)

}]
, (50)

Kab
t (n) = −

[
gψabt (n+ 1)− ψabt (n+ 2) + gψabt (n+ 3) + 2

n∑
k=0

ψabt (n− k)φt(k)

+
∑
c

gcB

n+1∑
k=0

ψact (n+ 1− k)ψcbt (k)−
∑
c

n∑
k=0

ψact (n− k)ψcbt (k)

+
1

N
(n+ 1)ψabt (n)

+
∞∑
k=1

ψabt (n+ k)
{

1

N2
kπt(k) + φ̂t(k)

}

+
∑
cd

∞∑
k=0

n+k∑
`=0

ψadt (`)ψt(n+ k − `)
{

1

N
πcdt (k) + ψ̂dct (k)

}]
. (51)

2 Eq. (21) contains terms with Lt(−1) and Kt(−1). We have to ignore the irrational splitting interaction
terms in them, i.e. the second line in eq. (49) for Lt(−1) and the last terms of the first and second lines in eq.
(51) for Kab

t (−1).
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They satisfy the following commutation relations:

[Lt(n), Lt′(m)] = (n−m)δtt′Lt(n+m), (52)[
Jabt (n), J cdt′ (m)

]
= δtt′δ

bcJadt (n+m)− δtt′δadJ cbt (n+m), (53)[
Lt(n), Jabt′ (m)

]
= −mδtt′Jab(n+m), (54)[

Lt(n), Kab
t′ (m)

]
= (n−m)δtt′K

ab
t (n+m)

− 1

N
δtt′
∑
c

n−1∑
k=0

(n− k)
{
J cbt (n+m− k)ψact (k) + Jact (n+m− k)ψcbt (k)

}
,

(55)[
Jabt (n), Kcd

t′ (m)
]

= −δtt′δadKcb
t (n+m)

+
1

N
δtt′δ

ad
∑
e

n−1∑
k=0

Jec∗t (n+m− k)ψebt (k)

+
1

N
δtt′

n−1∑
k=0

Jadt (n+m− k)ψcbt (k), (56)

[
Kab
t (n), Kcd

t′ (m)
]

=
1

N2
δtt′

∑
e

n−1∑
k=0

Jedt (n+m− k)
k∑
`=0

ψaet (`)ψcbt (k − `)

+
1

N2
δtt′

∑
e

n−1∑
k=0

Jec∗t (n+m− k)
k∑
`=0

ψebt (`)ψadt (k − `)

− 1

N2
δtt′

∑
e

m−1∑
k=0

Jebt (n+m− k)
k∑
`=0

ψcet (`)ψadt (k − `)

− 1

N2
δtt′

∑
e

m−1∑
k=0

Jea∗t (n+m− k)
k∑
`=0

ψedt (`)ψcbt (k − `). (57)

The algebraic structure is the same type as that of the matrix-vector models for the non-critical
string field theories[5, 12]. Naively if we ignore the terms explicitly multiplied by 1/N and 1/N2,
the commutators concerning Kab

t (n) look more familiar. The first is the Virasoro algebra. From
the second relation, Jabt (n)− J ba∗t (n) is the generator of SU(R) current algebra.
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