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Abstract. The mathematical modeling and analysis of electrostatically actuated
micro- and nanoelectromechanical systems (MEMS and NEMS) has typically relied
upon simplified electrostatic field approximations to facilitate the analysis. Usually,
the small aspect ratio of typical MEMS and NEMS devices is used to simplify
Laplace’s equation. Terms small in this aspect ratio are ignored. Unfortunately,
such an approximation is not uniformly valid in the spatial variables. Here, this
approximation is revisited and a uniformly valid asymptotic theory for a general
“drum shaped” electrostatically actuated device is presented. The structure of the
solution set for the standard non-uniformly valid theory is reviewed and new nu-
merical results for several domain shapes presented. The effect of retaining typically
ignored terms on the solution set of the standard theory is explored.

Keywords: MEMS, NEMS, microelectromechanical systems, nanoelectromechani-
cal systems, nonlinear elliptic problem, continuation method

1. Introduction

Micro- and nanoelectromechanical systems (MEMS and NEMS) tech-
nology is arguably the hottest topic in engineering today. Four decades
of advances in this direction, including the development of planar batch-
fabrication methods, the invention of the scanning-tunnelling and atomic-
force microscopes, and the discovery of the carbon nanotube, have left
us poised for a MEMS and NEMS invasion of every aspect of modern
life. Yet much remains to be done. Further advances in MEMS and
NEMS design require a deeper understanding of basic phenomena at
the micro- and nanoscale.

One topic in need of further research is the use of electrostatic
forces to move elastic structures at the micro- and nanoscale. With
a few important exceptions, such as electro-spraying technology [1],
electrostatics in macro-scale engineering has largely been regarded as
a nuisance by the engineering community. The main focus of research
in this area has been on ways to minimize electrostatic buildup and
prevent accidental and destructive electrostatic discharge. With the
advent of MEMS and NEMS, electrostatics has gained a seat at the
head of the engineering table. This change in status is due to the science
of scale. In the micro- and nanoworld, objects are almost all surface.
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2 Pelesko and Driscoll

The mass and inertia of microscale objects are essentially negligible.
This implies that inertial forces, such as gravity, are largely irrelevant,
while forces dominated by surface interactions, such as electrostatic
forces, are preeminent.

Researchers have recognized and exploited the importance of elec-
trostatic forces at the micro- and nano-level for more than forty years.
A seminal development in this area occurred in 1964 when Nathanson
and his co-workers at Westinghouse produced the so-called resonant
gate transistor [2]. This was not only the first batch-fabricated MEMS
device, but was also the first electrostatically actuated MEMS device as
well. Since then, electrostatics has played an important role in the de-
velopment of devices such as accelerometers [3], optical switches [4], mi-
crogrippers [5], micro force gauges [6], transducers [7], and micropumps
[8].

In designing almost any MEMS or NEMS device based on the inter-
action of electrostatic forces with elastic structures, the MEMS designer
will confront the ubiquitous “pull-in” instability. In this instability,
when applied voltages are increased beyond a certain critical point there
is no longer a steady-state configuration of the device where mechanical
members remain separate. This instability severely restricts the stable
range of operation of many devices [9], and hence a good deal of the
mathematical modeling of electrostatic MEMS and NEMS has focused
on understanding and controlling this instability. Almost all modeling
in this area builds on the work of Nathanson and his co-workers [2], who
in addition to building the first MEMS device, developed a mathemati-
cal model of electrostatic-elastic interaction in MEMS. Their model was
a mass-spring model similar to that shown in Figure 1. The mechanical
members of the system were treated as two rigid plates. One plate
was assumed fixed, the other attached to a linear spring. The spring
force was balanced by an electrostatic force caused by the application
of a voltage difference between the plates. This simple model allowed
Nathanson and his co-workers to predict and begin to characterize the
pull-in instability. As might be expected, Nathanson et. al., introduced
an approximation in order to simplify the electrostatic problem and to
allow them to easily calculate the electrostatic force on their plates.
Since the mechanical system consisted of parallel plates, and since the
aspect ratio of their device was small, they assumed the electric field
was that due to two infinite parallel plates. They ignored fringing fields.

Most investigators studying electrostatic-elastic interactions in MEMS
and NEMS have followed Nathanson’s lead and used some sort of small
aspect ratio approximation to simplify the electrostatic theory. This
approach has been fruitful, leading to such advances as the charac-
terization of the pull-in instability in terms of a fold-bifurcation [9],
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Figure 1. The Nathanson mass-spring model.

insight into the interesting non-linear dynamics of electrostatically ac-
tuated beams [10], and the development of new schemes for computing
the pull-in voltage for a complicated device design [11]. Unfortunately,
when examined critically, the canonical small-aspect ratio approxima-
tion used by the MEMS and NEMS communities reveals an obvious
weakness. This approximation is really only a leading order outer ap-
proximation of an asymptotic theory based on expansion in the small
aspect ratio. Fringing fields, unaccounted for in the canonical theory,
cause an order one correction in some region close to the boundary.
Additionally, since the elastic problem needs as its input the gradient
of the elastic potential, correction terms arise near internal corners as
well.

In this paper we develop a uniformly valid asymptotic approxima-
tion to the electrostatic field in a typical MEMS structure. We use
this approximation to develop a uniformly valid approximation for the
electrostatic force on our elastic structure. We then investigate the
implications of retaining typically ignored terms on the solution set
of the canonical model. We begin in the next section by formulating
the governing equations for a drum shaped MEMS device. To keep
matters simple, we take our elastic body to be an elastic membrane.
This is valid for some MEMS devices and invalid for others. For ex-
amples of each, see [9]. We restrict our attention to those devices well
modelled by membrane theory. The field approximations we develop
are independent of the elastic theory and may easily be extended to
studying beams, plates, or more complicated structures. In Section 3 we
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develop our asymptotic theory. This is a fairly straightforward applica-
tion of boundary layer theory. We use our uniformly valid asymptotic
approximation for the electrostatic field to compute a uniform approx-
imation to the electrostatic force on the membrane. We present both
the canonical model and the corrected model for our system. In Section
4 we review and extend known results concerning the canonical model.
Most importantly, we present the results of a numerical investigation
of the canonical model using continuation methods. This allows us to
reliably sketch the bifurcation diagram for the standard model and
show that the presence of multiple folds occurs for a variety of domain
shapes. Previously, this had been suspected, but only verified for disk
shaped domains [12]. In Section 5 we turn to the new corrected model
and focus on a disk shaped domain. We numerically investigate the
solution to this corrected model and show that the number of folds in
the bifurcation diagram for the model varies with the aspect ratio of
the device. Finally, we conclude in Section 6 with a discussion of the
implications of these results for MEMS device design and suggestions
for future work.

2. Formulation of the Model

In this section we present the governing equations for the behavior
of our idealized drum shaped electrostatically actuated MEMS device.
Our device consists of a thin elastic membrane suspended above a rigid
plate. Both the boundary of the membrane and of the plate are located
at r′ = aR(θ) where R(θ) is a dimensionless 2π-periodic function and
a has units of length. The membrane and plate are separated by a gap
of height L. The sidewalls supporting the membrane are electrically
connected to the plate but are separated from the membrane by a thin
insulating layer. In this way, a potential difference is applied between
the membrane and the rest of the device. This “drum” shaped geometry
is sketched in Figure 2. With these assumptions in mind, we formu-
late the equations governing the electrostatic field. The electrostatic
potential, φ, satisfies

∇2φ = 0 (1)

φ(aR(θ), θ, z′) = 0 z′ ∈ [0, L], θ ∈ [0, 2π] (2)

φ(r′, θ, 0) = 0 r′ ∈ [0, aR(θ)], θ ∈ [0, 2π] (3)

φ(r′, θ, u′(r′, θ)) = V r′ ∈ [0, a], θ ∈ [0, 2π] (4)

where here u′(r′, θ) is the displacement of the membrane from z ′ = L.
The membrane is treated as a simple elastic membrane and hence the
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Figure 2. Sketch of our idealized drum shaped system.

displacement is assumed to satisfy

T∇2
⊥u

′ =
ε0
2
|∇φ|2 (5)

Here, T is the tension and ε0 the permittivity of free space. The notation
∇⊥ indicates that derivatives are taken in the r ′ and θ directions only.
We assume the membrane is held fixed along its circumference and
impose

u′(aR(θ), θ) = L. (6)

Next, we introduce dimensionless variables and rewrite our govern-
ing equations in dimensionless form. We define

ψ = φ/V, u = u′/L, r = r′/a, z = z′/L (7)

and substitute these into equations (1)-(6). This yields

ε2∇2
⊥ψ +

∂2ψ

∂z2
= 0, (8)

ψ(r, θ, 0) = 0 r ∈ [0, R(θ)], θ ∈ [0, 2π] (9)

ψ(R(θ), θ, z) = 0 z ∈ [0, 1], θ ∈ [0, 2π] (10)

ψ(r, θ, u) = 1 r ∈ [0, 1], θ ∈ [0, 2π] (11)

∇2
⊥u = λ(ε2|∇⊥ψ|

2 + ψ2
z) (12)

u(R(θ), θ) = 1 (13)
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Here ε = L/a is an aspect ratio comparing device radius to gap size and
λ = ε0V

2L2/2T l3 is a dimensionless number which characterizes the
relative strengths of electrostatic and mechanical forces in the system.

3. A Uniformly Valid Asymptotic Theory

In this section we focus on the electrostatic problem, equations (8)–(11),
and derive a uniformly valid asymptotic approximation to the potential.
We follow the approach we outlined in [13] for a circular membrane.
We begin by making the small aspect ratio assumption, that is, we
assume ε� 1. If we simply send ε→ 0 the partial differential equation
in equation (8) reduces to

∂2ψ

∂z2
= 0 (14)

which is easily integrated to yield

ψ =
z

u
. (15)

Note that this is the approximate electrostatic field used by most
authors investigating electrostatically actuated MEMS. However, this
solution is not valid near r = R(θ) as we cannot satisfy the condition
that ψ(1, θ, z) = 0. Hence, we take this solution as an outer solution in
a boundary layer theory and attempt to insert a boundary layer at the
walls by introducing the stretched variable

η =
R(θ) − r

ε

into equations (8)–(11). With this change of variables the problem in
our inner region becomes

∂2ψ

∂η2
−

ε

R(θ) − εη

∂ψ

∂η
+ (16)

ε

(R(θ) − εη)2
(R′′

∂ψ

∂η
+ 2R′

∂2ψ

∂θη2
+
R′2

ε

∂2ψ

∂η2
+ ε

∂2ψ

∂θ2
) +

∂2ψ

∂z2
= 0

ψ(0, θ, z) = 0 (17)

ψ(η, θ, 0) = 0 (18)

ψ(η, θ, u(R(θ) − εη, θ)) = 1. (19)

If we send ε→ 0 here, we obtain

∂2ψ

∂η2
+
R′2

R2

∂2ψ

∂η2
+
∂2ψ

∂z2
= 0 (20)
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ψ(0, θ, z) = 0 (21)

ψ(η, θ, 0) = 0 (22)

ψ(η, θ, 1) = 1. (23)

We need one more condition to complete the specification of the inner
problem. This comes from matching to our outer solution. We impose

lim
η→∞

ψ(η, θ, z) = lim
r→R(θ)

z

u(r, θ)
= z. (24)

The inner or boundary layer problem, equation (20)–(24) is now easily
solved. We find

ψ(η, z) = z +
2

π

∞
∑

n=1

(−1)n

n
exp(

−nπη
√

1 +R′2/R2
) sin(nπz). (25)

Finally, adding our outer approximation, equation (15), to our in-
ner approximation, equation (25), and subtracting off the common
part, we obtain the following leading order uniformly valid asymptotic
approximation to the electrostatic field

ψuniform(η, z) =
z

u(r, θ)
+ (26)

2

π

∞
∑

n=1

(−1)n

n
exp(−nπ(

R(θ) − r

ε
√

1 +R′2/R2
)) sin(nπz).

Note that the first term in the uniform approximation is identical to
the standard approximation made by most authors. The second term
accounts for fringing fields near the boundary.

3.1. The Electrostatic Force

In order to compute the force on the membrane, we need to compute
the quantity

ε2|∇⊥ψ|
2 + ψ2

z (27)

evaluated at z = u(r, θ) as appears in equation (12). This can be
rewritten as

ε2(ψ2
r +

1

r2
ψ2

θ) + ψ2
z . (28)
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Using our uniformly valid approximation, (27), to evaluate the force,
we compute each of these terms:

ψ2
r |z=u =

u2
r

u2
− (29)

4ur

εu
√

1 +R′2/R2

∞
∑

n=1

(−1)n exp(−nπ(
R(θ) − r

ε
√

1 +R′2/R2
)) sin(nπu) +

4

ε2
√

1 +R′2/R2
(
∞
∑

n=1

(−1)n exp(−nπ(
R(θ) − r

ε
√

1 +R′2/R2
)) sin(nπu))2,

ψ2
z |z=u =

1

u2
− (30)

4

u

∞
∑

n=1

(−1)n exp(−nπ(
R(θ) − r

ε
√

1 +R′2/R2
)) cos(nπu) +

4(
∞
∑

n=1

(−1)n exp(−nπ(
R(θ) − r

ε
√

1 +R′2/R2
)) cos(nπu))2,

1

r2
ψ2

θ |z=u =
1

r2
u2

θ

u2
+ (31)

4uθ

εr2u

d

dθ
(

R(θ) − r
√

1 +R′2/R2
)

∞
∑

n=1

(−1)n exp(−nπ(
R(θ) − r

ε
√

1 +R′2/R2
)) sin(nπu) +

4

εr2
(
d

dθ
(

R(θ) − r
√

1 +R′2/R2
)

∞
∑

n=1

(−1)n exp(−nπ(
R(θ) − r

ε
√

1 +R′2/R2
)) sin(nπu))2.

3.2. The Standard and Corrected Models

It is useful to state and compare the elastic problems resulting from the
standard electrostatic approximation and the uniform approximation.
When only the first outer solution for ψ is used, the resulting elastic
problem is

∇2
⊥u =

λ

u2
(32)

with u = 1 on the boundary of the membrane. Equation (32) is the
model studied by most investigators of electrostatic MEMS. As noted
above, the elastic theory might be extended to deal with beams or
plates, resulting in a change to the left hand side of equation (32), but
the electrostatic force remains unchanged. Equation (32) generalized
to plates may be found in [9]. If the uniformly valid approximation for
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the electrostatic field is used, the resulting elastic problem is

∇2
⊥u =

λ

u2
+ λF (u, ur, uθ, η, ε) (33)

again with u = 1 on the boundary. Here the function F represents the
appropriate sum of the terms computed in the previous subsection.

The obvious reason for studying (32) in place of (33) is simplicity
and as we shall see in the next section this simplicity has allowed
for much progress in the analysis of (32). In turn, this has allowed
a deeper understanding of the pull-in instability and related MEMS
design issues. However, the question remains: How do the correction
terms in equation (33) change the solution set of equation (32)? Or
more physically: What is the effect of aspect ratio on device behavior?

Researchers focus on equation (32) for another reason: one simply
does not expect the effect of the neglected terms to be significant.
After all, these terms come into play near the boundary, and most of
the action in the deflection takes place far from the boundary! But
while this argument is true for the electric field, it is false for the
electrostatic force. A close examination of F reveals that there are
terms that arise when using the uniformly valid approximation to the
electric field to compute the electrostatic force that act everywhere,
not just at the boundary. Following this line of thought, we propose
a “corner-corrected theory” that neglects terms that only act in the
boundary layer, yet includes terms that act throughout the domain.
We obtain this corner-corrected model by examining each of the terms
in equation (33) and ignoring those that are exponentially small away
from the boundary. We retain all other terms. Our corner-corrected
model is

∇2
⊥u =

λ(1 + ε2|∇u|2)

u2
(34)

with u = 1 on the boundary. Note that the new terms included in
equation (34) are most significant when the gradient of u becomes large,
i.e., near corners. Hence the nomenclature “corner-corrected theory.”
We will investigate the effect of including these terms in Section 5.

4. Elements of the Standard Theory

As with many semi-linear elliptic problems, equation (32) has been
found to have a rich and surprising solution set. Lack of uniqueness
[9, 13], symmetry-breaking in non-simply connected domains [14], and
the existence of infinitely many solutions for a single value of λ [13]
have all been shown to be present. Much of this behavior stems from the
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simple fact that no matter what the choice of domain, no solution exists
to equation (32) when λ is sufficiently large. This result is embodied in
the following theorem:

THEOREM 1. Let Ω be a bounded domain in IR2 with smooth bound-
ary ∂Ω. Consider equation (32) with Dirichlet boundary condition u =
1. Then, there exists a λ∗ such that no solution u exists for any λ > λ∗.
Further, λ∗ satisfies 4

27µ1 ≤ λ∗ ≤ 4
27κ1 where κ1 is the first eigenvalue

of the Laplacian over the domain and µ1 is the first eigenvalue of the
Laplacian over a suitably enlarged domain.

A proof of this theorem may be found in [9]. As indicated in the intro-
duction this theorem is intimately related to the well-known “pull-in”
instability in MEMS. The non-existence of solutions for equation (32)
is typically interpreted as the occurrence of pull-in. The value of λ∗

provides the pull-in voltage, an important quantity in MEMS device
design. In the dynamic, damped version of the problem, which models
the actual time-dependent behavior of many MEMS devices, it is ob-
served that for small values of λ the membrane approaches a smooth
steady state deflection. When λ exceeds a critical value, the membrane
collapses onto a nearby membrane—the displacement u tends to 0 at at
least one point. The transition point dividing these two behaviors is λ∗.
This provides another motivation for understanding λ∗ as a function of
domain shape.

In addition to the general results above, the solution set for (32)
has been completely characterized for some special domains. In one-
dimension, or in the case of an infinite strip in IR2, the problem may
be reduced to

d2u

dx2
=

λ

(1 + u)2
for − 1 < x < 1, (35)

u(−1) = u(1) = 0. (36)

Note, for convenience in visualizing the bifurcation diagram, the change
of variables u→ 1 + u has been introduced. In this case, a closed form
solution for u may be constructed [9]. It is easily shown that there are
precisely two solutions when 0 ≤ λ < λ∗, one solution when λ = λ∗,
and no solutions for λ > λ∗. This leads to a bifurcation diagram with a
single fold. That is, when λ is plotted against a measure of the solution,
the resulting curve appears as in Figure 3. Also note that if we step out
along the solution curve, starting at λ = 0, ||u||∞ = 0, we end up at
λ = 0, ||u||∞ = 1. This implies that at the “end” of the solution curve
we have reached a singular solution since u must necessarily equal −1
at some point and from equation (35) the solution cannot be smooth.
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Figure 3. Numerically obtained bifurcation diagram for a strip shaped system.
Analytically it can be shown that the curve continues all the way to the point
(0, 1).

Since this solution is a limit of regular or smooth solutions, it is called a
limiting singular solution. This nomenclature was introduced by Joseph
and Lundgren [15].

In the case where the domain is a disk in IR2, equation (32) may be
reduced, again with a change of variables for convenience,

d2u

dr2
+

1

r

du

dr
=

λ

(1 + u)2
for 0 < r < 1, (37)

du

dr
(0) = 0 u(1) = 0. (38)

The fact that derivatives in the angular direction may be ignored follows
from a result of Gidas, Ni, and Niremberg. In particular, for the disk,
the results of Gidas, Ni, and Niremberg imply that all solutions are
purely radial solutions. Hence, it is sufficient to study (37). Equations
(37)–(38) were studied in [13, 16, 17]. While a closed form solution
does not exist, similarity methods may be used to reduce the analysis
of (37)–(38) to the analysis of an autonomous second-order initial value
problem. Phase plane techniques may be used to completely character-
ize the solution set. In this case, for any integer n, there is a value of λ,
say λn, for which precisely n solutions to equation (37)–(38) exist. This
leads to a bifurcation diagram with multiple folds as shown in Figure 4.
Note that the sequence {λn}

∞
n=1 converges to 4/9. That is, the limiting

singular solution for the disk occurs at λ = 4/9.
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Figure 4. Bifurcation diagram for a disk shaped system. The true curve continues
folding infinitely many times as the point (4/9, 1) is approached.

The results for the strip and disk leave open the question of the
multiplicity of solutions for the standard theory on a general domain.
Which is more typical, the strip or the disk? To address this question
we turn to numerical simulations of (32) in 2D, again with u→ 1 + u:

∇2
⊥u =

λ

(1 + u)2
for x ∈ Ω, (39)

u = 0 on ∂Ω. (40)

For this study we consider cases where Ω is a rectangle or an ellipse. In
both of these domains we exploit symmetry to solve (39) on a quarter
domain in the first quadrant and replace (40) with a homogeneous
Neumann condition on the symmetry boundaries. For all cases we
employ pseudospectral (spectral collocation) discretizations [18, 19] for
the spatial Laplacian and pseudo-arc length continuation [20] to track
the nonlinear eigenvalue problem.

When Ω is the quarter-rectangle [0, a]× [0, 1], we start with a tensor
product grid of Chebyshev polynomial extreme points

(xi, yj) =

(

a

2

[

1 − cos

(

iπ

Nx

)]

,
1

2

[

1 − cos

(

jπ

Ny

)])

,

i = 0, . . . , Nx, j = 0, . . . , Ny.
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The unknown u is represented by an (Nx + 1) × (Ny + 1) matrix U
of values on this grid. We can then define differentiation matrices that
operate on each row (from the right) or each column (from the left) of U
to compute y or x derivatives, respectively. These matrices incorporate
the boundary conditions implicitly. For instance, let D be the standard
Chebyshev differentiation matrix on Nx + 1 nodes (with a scale factor
of 2/a). We define

D(2)
x = D1:Nx,2:Nx+1D2:Nx+1,1:Nx

as the discrete analog of ∂2/∂x2, where the subscripts show row and col-
umn ranges extracted from D. The “outer” ranges enforce the Dirichlet
condition on the last row of U—we assume those values are zero and
do not compute derivatives there—and the “inner” ranges similarly
enforce the Neumann condition on the first row of ∂U/∂x. With a sim-

ilar one-dimensional construction for D
(2)
y , the discrete Laplacian can

be applied to U as D
(2)
x UD

(2)
y

T . Finally, through Kronecker products
we can equate this expression to L vec(U), where vec(U) is the vector
resulting from stacking the columns of (nontrivial entries of) U , and L
is a NxNy ×NxNy matrix with a particular block sparsity pattern. For
more details on these matters, see e.g. [19].

When Ω is a quarter of the ellipse with semiaxes a and 1, we use
generalized polar coordinates x = ar cos θ, y = r sin θ. One finds that

∇2
⊥ =

(

c2

a2
+ s2

)

∂rr +
sin 2θ

r

(

1 −
1

a2

)

∂rθ +

(

s2

a2
+ c2

)

∂θθ

+
1

r

(

s2

a2
+ c2

)

∂r +
sin 2θ

r2

(

1

a2
− 1

)

∂θ, (41)

where c = cos θ, s = sin θ. We now have a tensor product (r, θ) ∈
[0, a] × [0, π/2] and can proceed much as in the rectangle. However, in
θ we choose to extend the data symmetrically to a periodic function
and differentiate using trigonometric interpolation (i.e., Fourier pseu-
dospectral), allowing us to use an equispaced grid in that direction. In
r we have a Dirichlet condition at r = a and an artificial singularity
at r = 0 caused by the polar grid. Although one often simply avoids
placing a grid point at this pole [18], in this case the origin is where |u|
is maximized and we have found it important to include this point. We
assume that by symmetry ux = uy = 0 at the origin, which implies

ur = 0,
uθ

r
= 0.
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Using L’Hôpital’s rule, this leads to

urθ

r
= urrθ,

uθθ

r2
=

1

2
urrθθ,

uθ

r2
=

1

2
urrθ,

which, when substituted into (41), leads to

∇2
⊥|r=0 =

(

1

a2
+ 1

)

∂rr+
1

2

(

cos2 θ +
sin2 θ

a2

)

∂rrθθ+
sin 2θ

2

(

1 −
1

a2

)

∂rrθ.

(42)
At a practical level, one forms a differentiation matrix based on (41),
removes all but one of the columns and rows corresponding to r = 0,
and substitutes (42) for the remaining row.

We observe that as ‖u‖∞ → 1, the solution of (39) changes rapidly
in the vicinity of the origin as a singularity apparently develops. Hence
the clustering of Chebyshev nodes near the ends of an interval fortu-
itously provides us with high resolution where it is needed. However,
it also wastes resolution near other boundaries. To improve on this we
introduce the change of variable

x(ξ) =
1 − e−cξ

1 − e−c
, (43)

which maps [0, 1] to itself for real c and is the identity map if c = 0.
For c > 0 an equispaced grid in ξ becomes skewed toward zero in x.
Hence on the rectangle we use (43) on both x and y to concentrate more
points near the origin, and in the ellipse we apply it to r for the same
effect. By the chain rule this has the effect of premultiplying primitive
one-dimensional differentiation matrices by a diagonal matrix.

Once the discretization is defined, (39) becomes the discrete system
F (u, λ) = 0, where now u represents a vector in IRm and F maps IRm+1

to IRm. This equation describes a curve in (u, λ)-space that we want to
trace. The combination u = 0, λ = 0 is always a solution and thus will
be considered our starting point.

In order to accommodate turning points on the curve, we intro-
duce a pseudo-arclength scalar parameter s. Given previous values
(uk−1, λk−1) and (uk, λk) on the curve F (u, λ) = 0 at s = s0 and
s = s1, and given an increment δk, we find the next point on the curve
as the solution of

F (u, λ) = 0, (44a)

(uk − uk−1)
T (u− uk) + (λk − λk−1)(λ− λk) = δ2k. (44b)

(To get the continuation started at (u1, λ1), we use the definitions
u−1 = 0 and λ−1 = −1.) For small increments, (44b) is a good ap-
proximation to the arclength condition ‖du/ds‖2 +(dλ/ds)2 = 1 and is
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linear in the unknowns. Equation (44) is a square system that can be
solved by a Newton or quasi-Newton method. We have found it useful to
adapt the stepsize δk based on the local curvature and the contraction
rate of the Newton steps, as described in [21]. Typically the method
takes large steps initially but very small steps as ‖u‖∞ → 1. More
robust continuation methods are also described in [21]; we have also
tried an Euler–Newton strategy, without significantly better results.

The algorithms were implemented and run entirely in MATLAB.
To demonstrate the convergence of our computations, we recreated the
results of Figure 4. In Figure 5 we show the curve computed as before
and compare to four simulations done in a quarter-disk, using (r, θ)
grids of 32 × 32 and 40 × 40 with grid skewing parameter c = 1, 2
in (43). The entire calculation shown took about five minutes on a PC
workstation. The agreement is excellent at least for ‖u‖∞ ≤ 0.98, and

0.41 0.415 0.42 0.425 0.43 0.435 0.44 0.445 0.45
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

λ

|| 
u 

|| ∞

Figure 5. Comparison of full 2D simulations of (39)–(40) with the initial-value prob-
lem results shown in Figure 4 (solid curve). Dashed curves show 32 × 32 grids and
40× 40 grids using different grid skewing parameters. Differences are visible only as
‖u‖∞ approaches 1.

all of the simulations clearly show a second fold.
Figures 6 and 7 show our best results for rectangles and ellipses of

aspect ratios 1, 2, 4, and 8. In each case the simulation used about 1500
unknowns and skew parameter c = 2. We feel the evidence strongly
suggests that multiply-folded bifurcation curves are the norm in two
dimensions. Note that this seems to hold even for an 8-by-1 rectangle
that is beginning to approximate the idealized strip.
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|| 
u 
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Figure 6. Bifurcation diagrams for rectangular systems of four different aspect
ratios.

0 0.2 0.4 0.6 0.8
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0.2

0.4

0.6

0.8

1

λ

|| 
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|| ∞
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Figure 7. Bifurcation diagrams for elliptical systems of four different aspect ratios.

5. The Effect of Correction Terms

In this section we take up the question of the effect of the correction
terms introduced in our asymptotic theory on the solution set of the
standard model. In particular, we consider how the solution set for
equation (32) differs from that of equation (33), and explore the de-
pendence on the parameter ε. We begin by noting that perhaps the most
essential feature of the standard model, equation (32), remains basically
unchanged—the pull-in phenomenon persists. This is embodied in the
following theorem, which is an extension of Theorem 1 to equation (33).
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THEOREM 2. Let Ω be a bounded domain in IR2 with smooth bound-
ary ∂Ω. Consider equation (33) with Dirichlet boundary condition u =
1. Then, there exists a λ∗ such that no solution u exists for any λ > λ∗.
Further, λ∗ satisfies 4

27µ1 ≤ λ∗ ≤ 4
27κ1 where κ1 is the first eigenvalue

of the Laplacian over the domain and µ1 is the first eigenvalue of the
Laplacian over a suitably enlarged domain.

SKETCH OF PROOF FOR THEOREM 2. The methods used to prove
Theorem 1 are easily extended to prove Theorem 2. We skip the de-
tails and simply recall the basic ideas. The non-existence result, i.e.,
establishing the fact that λ∗ exists follows from an application of the
Fredholm Alternative Theorem to equation (33) after the first eigen-
function of the Laplace operator has been subtracted from both sides.
An interesting observation buried in the details of the proof is that
the upper bound on λ∗ decreased with increasing ε. The existence result
follows by applying the method of upper and lower solutions. A constant
serves as an upper solution and a multiple of an eigenfunction of the
Laplace operator on an enlarged domain serves as a lower solution. The
lower bound on λ∗ follows from construction of the lower solution.

To investigate the effect of the correction terms more carefully, we
restrict our attention to the case where the domain is a circular disk.
In this case, our corrected theory becomes

d2u

dr2
+

1

r

du

dr
=

λ

(1 + u)2
+

ε2λ

(1 + u)2

(

du

dr

)2

for 0 < r < 1, (45)

du

dr
(0) = 0 u(1) = 0. (46)

The symmetry present and exploited when ε = 0 disappears for ε > 0.
We wish to inquire as to how the destruction of the symmetry effects
the bifurcation diagram of the standard theory. We turn to numerical
solutions and visualize the effect of choosing ε > 0 by plotting the
meander for the boundary value problem. To do so, we integrate the
ode from r = 0 to r = 1, choosing all possible values of u(0). We
then plot the curve defined by (u(1), u′(1)) and parameterized by u(0).
Each time this curve intersects the line u(1) = 1, we have a solution
to the boundary value problem. Several meanders for various values
of ε are shown in Figure 8. When ε = 0, the meander is a spiral.
As λ is varied this spiral passes from the left to the right of the line
u(1) = 1. This accounts for the increasing number of solutions to the
boundary value problem as λ is increased to one, the infinity of solutions
at λ = 4/9, the decreasing number of solutions for λ > 4/9, and finally
the disappearance of all solutions when λ > λ∗, or equivalently when
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Figure 8. The meander for the corner corrected disk theory for various values of ε.
Note the “unwinding” of the meander and the fact that when ε = 0, the meander is
a spiral.

the meander has moved to the right of u(1) = 1. When ε is greater than
zero, the meander “unwinds.” The entire meander still moves to the
right as λ is increased, but now the maximum number of intersections
with the line u(1) = 1 is always finite. Hence, the bifurcation diagram
for ε > 0 has a finite number of folds. The unwinding of the meander
increases with ε and hence the number of folds decreases with increasing
ε.

Further understanding of the behavior of the solutions of equations
(45)–(46) may be obtained by looking at the bifurcation diagram di-
rectly. To construct the bifurcation diagram we implement a simple
continuation method for the boundary value problem, equations (45)–
(46). The results for illustrative values of ε appear in Figure 9. Notice
that as ε is increased the number of folds is decreased, as was expected
from our look at various meanders for the system. Moreover, the posi-
tion of the first fold point moves down and to the left. Physically this
means that the pull-in voltage and pull-in distance are decreased as ε
is increased.
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Figure 9. The bifurcation diagram for the corrected theory for various values of ε.

6. Conclusions

We began with the goal of understanding the limitations of the stan-
dard model of electrostatically actuated MEMS devices. We recognized
that one of the biggest approximations typically made by researchers
in this area involves the electric field. In particular, a parallel plate-
like approximation which ignores fringing fields and field intensification
near corners is standard in the MEMS community. To understand how
effects ignored by this approximation might change the solution of a
model of an electrostatic-elastic system, we constructed a mathematical
model of a drum-shaped idealized MEMS device. Our system consists
of an elastic membrane held at potential V capping a rigid drum held
at zero potential. Our model included the equations for the electric
field in the drum and for the elastic deflection of the membrane. As-
suming a small but nonzero aspect ratio, we developed an asymptotic
approximation for the electric field in the drum. In turn, this yielded
an approximation for the electric force on our membrane. We com-
pared our corrected model with the standard model and suggested a
new “corner-corrected” theory. In order to explore the corner-corrected
theory we needed to flesh out our understanding of the standard model.
After reviewing the basic theory for the standard model on a strip and
a disk, we used spectral numerical discretizations on rectangles and
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ellipses to provide strong evidence that the disk is typical—all domains
exhibited a bifurcation diagram with multiple folds. Next, we returned
to the corner-corrected model. We noted that the most important fea-
tures of the standard model are still present in the corner-corrected
model. These features are embedded in Theorem 2. In physical terms
Theorem 2 establishes the existence of the pull-in instability in the
corner-corrected model. We then focused on the corner-corrected model
on a disk shaped domain. This allowed a direct comparison with the
most fully understood realization of the standard model. By examin-
ing the meander for the relevant boundary value problem, we found
that the correction terms we propose lead to an “unwinding” of the
meander and consequently a change in the multiplicity of solution as
a function of ε. Finally, we examined the bifurcation diagram for the
corner-corrected theory directly. We note both the reduction in the
multiplicity of solutions and the shift in the pull-in voltage as a function
of ε.

Perhaps the most important implication of this work for MEMS
device design concerns the shift in the pull-in voltage as a function of
ε, the device aspect ratio. The fact that the pull-in voltage decreases
with increasing ε mean that the standard theory overestimates the
pull-in voltage. When attempting to design a MEMS device with the
greatest range of motion possible, one wishes to operate right up to
the pull-in voltage. Good estimates of the pull-in voltage lead to higher
performance designs. Here we have seen that it important to correct
for the aspect ratio when computing the pull-in voltage.
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