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Abstract: Canonical variate analysis (aka discriminant coordinates) is viewed from the aspect of 
Aitchisonian compositional data analysis and the concept of stability in canonical vectors exam- 
ined in relation to their reification (i.e. providing canonical vector components with a practical 
interpretation). The log-ratio transformation was found to have computational and interpretational 
advantages over the centred log-ratio transformation. The ad hoc application of N. A. Campbell's 
application of the method of shrinkage estimators to multiple discrimination, and the optimal 
retention of discrimination power, is exemplified by two cases, one drawn from quantitative sedi- 
mentology, the other from biomolecular palaeontology, with the intention of probing the effect of 
instability on interpreting the relative importance of standardized canonical variate coefficients in 
relation to the suppression of near-redundant directions of within-groups variation. Pronounced 
instability in canonical vectors may endanger the validity of an analysis. 

Campbell & Reyment (1978) considered the 
problem of instability in canonical vectors in 
palaeontology using data on the Nigerian 
Cretaceous foraminiferal species Afrobolivina afra 
Reyment for exemplifying procedures. It was 
reported that where instability occurs, stability of 
the coefficients within the framework of repeated 
sampling can be achieved by suppression of near- 
redundant directions of the within-groups variation. 
The identification of redundant information in 
multivariate analysis has been slow to enter into 
the praxis of statistical methods (Campbell 1979, 
1980a; Seber 1984). So far, interest in investigating 
reliability in canonical vectorial components has 
been centred on full-space data, with a preference 
for biological material. The question of stability 
for multivariate models in simplex space, such as 
occur in geostatistics, has been given scant atten- 
tion, despite its potential significance for good 
analytical practice. In this note, the problem is illus- 
trated for geochemical data in stratigraphical sedi- 
mentology, and for amino acids in biomolecular 
palaeontology. Both cases are typically compo- 
sitional in nature. 

The presentation followed here is made at two 
levels: one for the interested geologist with little 
experience of multivariate statistics; the second, in 
Appendix A, for anybody desiring to undertake 
his/her own investigations and with a basic under- 
standing of multidimensional analysis. It should be 
understood that this article does not profess to have 
the status of mathematical novelty because it is no 
more than an exemplification of existing techniques, 
rather well known in biometrics, to geological 
materials. 

An important issue arising in canonical variate 
analysis conceming stability in canonical vector 
coefficients was studied by Campbell (1979, 
1980a,b) who demonstrated that shrunken estima- 
tors in discriminant and canonical variate analysis 
(discriminant coordinates; multiple discrimination) 
may lead to improved stability of the resulting coef- 
ficients when the between-groups sum of squares 
for a particular principal component (more strin- 
gently, latent roots and vectors), defined by the 
within-groups covariance or correlation matrix, is 
small and the corresponding latent root is small. 
Campbell's engagement in the problem arose out 
of collaboration with marine biologists concemed 
with practical aspects of the commercial utilization 
of marine crustaceans and gastropods in Australian 
and New Zealand waters. The ideas underlying 
shrinkage constants in multivariate analysis derive 
from practical problems of stability that occur in 
multiple regression analysis (Goldstein & Smith 
1974; Campbell & Furby 1994; Gui 1999). 
Granted that the same mathematical structure 
exists in discriminant functions, the application of 
ridge-type estimators to that field is a logical step 
and one that can be tentatively extended to multiple 
discriminant analysis. 

The provenance of  the data 

In this paper two examples are considered, the one a 
canonical variate analysis of the geochemistry of 
Lithuanian Silurian sediments using data kindly 
made available by Dr Donata Kaminskas, 
Geology Department, University of Vilnius. The 
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second example is concerned with a biomolecular 
study of fossil and living brachiopods (Endo et al. 
1995). A presentation of the observations used 
here for the Lithuanian material is given by 
Kaminskas & Malmgren (2003) in a statistical 
analysis of three sequences of Silurian sediments 
dominated by carbonates and mudrocks; in that 
paper, the compositional nature of the data was 
taken into account adequately. The brachiopod 
data concern intra-crystalline molecules isolated 
from the shells of four species collected from hor- 
izons extending over the last 1.47 million years. 
The material was analysed by immunoassay and 
amino-acid analysis. The species studied were 
Japanese occurrences of Coptothyris grayi 
(Davidson), Terebratalia coreanica (Adams & 
Reeve), Pictathyrispicta (Dillwyn) and Laqueus 
rubellus (Sowerby). A detailed account of the 
methods of analysis is provided in Endo et al. 
(1995). The original statistical analysis was made 
on 14 amino acids determined on 52 specimens. 
For present purposes the dataset was reduced to 
eight parts, none of which has zero entries. 

Overview of statistical procedures 

Aitchison (1986) showed that a canonical variate 
analysis of compositions can be made using either 
the log-ratio covariance matrix or the centred log- 
ratio covariance matrix, in both cases for the 
within-groups and between-groups sums of 
squares and cross-products. The advantage of the 
former formulation is that the within-groups 
matrix W and the between-groups matrix B are 
positive definite and hence possess a normal 
inverse. The awkward aspect here is that a 
common divisor is required. The latter has the 
attractive property that all parts are represented in 
the formulation, but the centred log-ratio covari- 
ance matrix is singular and therefore requires a gen- 
eralized inverse. Further reservations have been 
noted by Egozcue et al. (2003). For detailed discus- 
sions of Aitchison's statistical results in compo- 
sitional data analysis, the reader is referred to 
specialist papers appearing in the theoretical 
section of this issue. 

It is recommended that the vector-stability analy- 
sis proceeds in the following steps. 

Make a preliminary (graphical) inspection of 
the data for redundancy and other singularities. 
Transform the frequencies for m parts to the 
desired log-ratio form (Aitchison 1986, 
1997). This may be as a simple log-ratio trans- 
formation or, le cas dcheant, a centred log- 
ratio transformation. 

Perform a canonical variate analysis of k 
groups. If the results indicate there could be a 
likelihood of marked instability in the canoni- 
cal vectors, apply the method of ridge 
regression (shrunken estimators) in orienta- 
tional mode, as described in Campbell (1979, 
1980a) and Campbell & Reyment (1978), 
and examine the coefficients of the canonical 
vectors for significant change. 

Canonical variate analysis 

The method of canonical variate analysis is usually 
considered to be a suitable multivariate statistical 
procedure for treating the problem posed by the 
simultaneous analysis of several sampling levels 
in, say, observations made over a stratigraphical 
sequence. In many applications of canonical 
variate analysis, the relative magnitudes of the coef- 
ficients for the variables (or parts in the case of com- 
positions) standardized to unit variance by the 
pooled within-groups standard deviations often 
prove useful indicators of those coefficients that 
are likely to be influential for discrimination. The 
success of such an operation presupposes that the 
coefficients are stable over repeated sampling 
(Campbell 1980b; Campbell & Atchley 1981; 
Seber 1984). 

In accordance with accepted methodology, and 
adhering to Aitchison's (1986) formulation, the 
computation of canonical variates may be regarded 
as a two-stage rotational procedure. The first step 
rotates to orthogonal variables, which may be 
referred to as the principal components of the 
pooled samples. The second rotation corresponds 
to a principal component analysis of the group 
means in the space of the orthogonal variables. 
The first step transforms the within-groups dis- 
persion ellipsoid into a concentration spheroid by 
scaling each latent vector by the square root of the 
corresponding latent root. 

Consider the variation between groups along 
each orthogonalized variable (i.e. each principal 
component). Where there is slight variation 
between groups along a particular direction, and 
the corresponding latent root is small, marked 
instability can be expected in some of the coeffi- 
cients of the canonical variates, granted that the 
instability is under the sway of small changes in 
the properties of the data. An approach that often 
serves to overcome the problem of instability in 
canonical coefficients is to add shrinkage, or 
ridge-type constants (Goldstein & Smith 1974) to 
the latent roots before they are used to standardize 
the corresponding principal component. When an 
'infinitely large' constant is added, this confines 
the solution to the subspace orthogonal to the 
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vector, or vectors affected by the addition. Experi- 
ence dictates that when the between-groups sum 
of squares for a particular principal component is 
small (say, less than 5% of the total between- 
groups variation) and the corresponding latent 
root is also small (less than 2-3%) then shrinking 
of the principal component will often prove useful 
(Campbell 1980a). It is often observed that 
although some of the coefficients of the canonical 
vectors corresponding to the canonical variates of 
interest change magnitude and, moreover, often 
sign, shrinkage has little effect on the corresponding 
canonical roots, thus betokening that little discrimi- 
natory information has been lost. This indicates that 
those variables contributing most to the shrunken 
principal component have little influence for dis- 
crimination and may be considered for removal. 
Furthermore, variables (parts) with small standar- 
dized canonical variate coefficients can be vetted 
for exclusion. A simple account of applications of 
canonical variate analysis in biological (including 
palaeontological) studies of Reyment et al. (1984, 
chapter 7). 

A brief account of the method of shrinkage, as 
presented by Campbell (1979, 1980a) is given in 
Appendix A. 

The Lithuanian Silurian sediments 

The samples derive from three boreholes drilled in 
connexion with a chemo-stratigraphical study of 
the Silurian sedimentary sequences of Lithuania, 
located geographically as outlined below. A detailed 
account of the geological aspects of the problem are 
given in Kaminskas & Malmgren (2003). 

1. The deepest part of the sedimentary basin was 
penetrated by the Kurtuvrnai-161 borehole in 
northwestern Lithuania. 

2. The intermediate beds were drilled by the 
Ledai-179 borehole in central Lithuania. 

3. The uppermost beds of the sedimentary basin 
were encountered by the Jocionys-299 bore- 
hole in southeastern Lithuania. 

The oxides determined were (Paskevicius 1997): 
SiO2, A1203, Fe203, MnO2, MgO, CaO, Na20, 
K20, TiO2, P205. A preliminary appraisal of the 
data array indicated that two of the oxides were 
not contributing anything essential to the analysis 
and they were therefore deleted, after which the 
constant row-sum constraint was re-established. 
The reduced set of eight parts then lacked the 
columns for manganese and phosphate. Recall that 
the constituent categories of the geochemical 
array are referred to as 'parts' since they are not 
variables in the accepted statistical sense. This 
usage is to underline the fact that deletion of one 

or more of the proportions necessitates reinstating 
the constant sum condition which automatically 
alters the covariance relationships between the 
parts of each of the constituent rows. Should this 
step be neglected, then the relationships between 
parts are rendered spurious. In the case of what 
may be referred to as true variables, this restriction 
does not apply. In the ensuing analysis, the common 
divisor for the log-ratios was taken to be SiO2. The 
geochemical analysis of these data is given in 
Kaminskas & Malmgren (2003), who also report 
multivariate statistics for comparisons. 

The within-groups and between-groups matrices 
of sums of squares and cross products of the log- 
ratios in standardized form (correlation mode) are 
listed in Table 1. There are several very high corre- 
lations which, according to the results of Campbell 
(1979, 1980a), can set the stage for instability in 
canonical vector coefficients. The latent roots and 
vectors for W* are given in Table 1. There are 
two large latent roots. The two smallest latent 
roots do not differ greatly from zero. Comparison 
of these smallest roots with the appropriate values 
of diag G shows that the smallest latent root is con- 
nected to a larger value than is the sixth latent root. 
The corresponding latent vector (principal com- 
ponent) represents mainly a bipolar relationship 
between parts 1 and 2. The third latent vector, 
which connects to the smallest value of diag G, 
weighs parts 3 and 5 against part 4. Both of these 
directions could well be candidates for shrinkage. 
In order to test this, the two smallest latent vectors 
were suppressed, in turn (Table 2). The coefficients 
for a~ highlight the contributions from principal 
components 2 and 4 to the first canonical variate. 
The main contributing principal component of at~ 
to the second canonical variate is the seventh 
(Table 2). The effect of shrinking the smallest prin- 
cipal component has a notable effect on the sum of 
the canonical roots and the canonical vectors are 
perturbed rather strongly. The effect of shrinking 
the third principal component has virtually no influ- 
ence on the sum of the canonical roots, which 
implies that discrimination power is undiminished 
as a result of the shrinkage exercise. This is even 
more marked for shrinkage of the sixth principal 
component. The effect of shrinking on the matching 
canonical vectors is slight, with the exception of 
part 1 in the first canonical vector. The conclusion 
that presents itself here is that shrinkage of the 
sixth principal component can be expected to 
improve the statistical quality of the analysis with 
respect to reification. 

Brachiopod biomolecules study 

Several species of brachiopods (cf. Introduction) 
were made the object of this study. Using modern 
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Table 1. Log-ratio matrices for  the Lithuanian data and spectrum of  W* (n = 221) in correlation mode 

The input within-groups matrix, W* (upper triangle) and between-groups matrix B* (lower triangle) 

1 2 3 4 5 6 7 

1 0.0190 0.9917 0.1333 - 0 . 0 5 8 3  0.7437 0.9422 0.9870 
2 0.0251 0.0331 0.1365 - 0 . 0 4 4 6  0.7412 0.9332 0.9905 
3 -0 .1453  - 0 . 1 9 3 6  1.2941 0.6040 0.0533 - 0 . 0 3 6 2  0.1904 
4 - 0 . 0 9 3 9  - 0 . 1 2 3 3  0.6723 - 0 . 4 7 4 2  - 0 . 1 7 1 2  - 0 . 2 7 6 2  - 0 . 0 0 6 0  
5 0.0778 0.1033 - 0 . 6 6 2 8  -0 .3675  0.3438 0.7276 0.7543 
6 0.0183 0.0224 - 0.1593 - 0 . 0 8 5 9  0.0822 0.0197 0.9065 
7 0.0180 0.0238 - 0.1481 - 0 . 0 8 6 0  0.0775 0.0185 0.0176 

L~en t roo t s  of  W* 
4.5300 1.6563 0.4047 0.3377 0.0573 0.0081 0.0060 

Lamntvectors  of  W* 
Pa~s P1 P2 P3 P4 P5 P6 P7 

1 - 0 . 4 6 3 4  0.0437 0.1813 - 0 . 1 0 9 0  - 0 . 1 1 4 9  0.8359 0.1631 
2 - 0.4626 0.0519 0.1956 - 0.0933 - 0.2430 - 0.4779 0.6700 
3 -0 .0513  0.6919 -0 .5580  - 0 . 4 5 2 2  0.0460 - 0 . 0 0 1 4  0.0266 
4 0.0595 0.6984 0.4818 0.4863 0.1984 - 0 . 0 1 2 9  -0 .0231  
5 -0 .3893  - 0 . 0 5 6 7  - 0 . 5 9 4 7  0.6984 0.0528 0.0083 0.0315 
6 - 0 . 4 4 8 7  - 0 . 1 3 0 8  0.1139 -0 .2161  0.8186 - 0 . 1 4 8 7  -0 .1721  
7 - 0.4607 0.0924 0.1372 - 0.0632 - 0.4619 - 0.2248 - 0.7018 

Diag G = between groups sums of  squares for principal components 

0.0506 0.9417 0.1043 1.0064 

Trace G = 2.9970 
Percentage of  trace 

1.687 31.420 3.480 33.580 

0.4938 0.0287 0.3715 

16.477 0.959 12.397 

Bold italics denote values of interpretational consequence. Key for Sit2 log-ratios: Al(1), Fe(2), Mn(3), Ca(4), Na(5), K(6), Ti(7). 

techniques o f  molecular  biology,  it was possible  to 
obtain detailed information on amino acids con- 
tained in preserved shell material  (Endo et al. 
1995). The results reported briefly be low form 
part of  the imaginative work  in molecular  palaeon- 
tology being carried out  by  Professor  Kazuyoshi  

Endo and his associates at Tsukuba  Universi ty,  
Japan. 

The log-ratio covariance matrix W for the amino 
acids is listed in Table  3. Inspection of  the entries 
shows that w6, 6 and w7, 7 are by  far the largest. 
The palaeobiological  and ecostratigraphical  

Table  2. Standardized log-ratio canonical vectors for  the Lithuanian data, including shrunken 
estimates: vectors adjusted to standard deviations 

Principal component 

PC 1 PC2 PC3 PC4 PC5 PC6 PC7 Canonical roots 

al ~ 0.145 0.626 - 0.065 - 0.597 0.413 0.063 - 0.223 2.397 

a~ - 0 . 0 2 6  - 0 . 0 5 2  - 0 . 3 9 6  - 0 . 5 0 5  - 0 . 3 9 7  0.178 0.641 0.600 

Adjusted canonical variate vectors log-ratios for parts 
1 2 3 4 5 6 7 Canonical roots 

c~ - 0 . 0 0 9  - 2 . 6 0 0  0.855 0.196 - 0 . 7 0 6  1.931 1.179 2.397 

e2 v 3.177 4.946 0.858 -1 .281 - 0 . 0 3 5  - 2 . 8 2 2  -5 .561  0.600 
ci el (o . . . . . .  ~ 0.565 - 0 . 7 2 7  0.981 0.080 - 0 . 6 3 9  1.384 - 0 . 8 9 4  2.288 
Gx 

c5 (o . . . . . .  ) 2.301 - 0.624 0.622 - 1.477 - 0.246 - 2.278 0.549 0.337 
GI c~ (0 . . . . . . . .  ~ - 0 . 6 0 2  - 2 . 3 5 2  0.854 0.210 - 0 . 7 1 3  2.049 1.359 2.388 

ei (0 ..... oo, oo) 1.534 5.954 0.888 -1 .273  - 0 . 0 6 3  - 2 . 5 9 8  - 5 . 1 7 6  0.581 
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Table 3. The within-groups matrix W for log-ratio data, its latent roots and vectors and diag G for the 
brachiopod amino acids (n = 52) 

63 

1 2 3 4 5 6 7 

1 3.8060 2.2520 0.2660 0.9430 3.5450 4.9210 0.0120 
2 2.2520 1.9600 1.0190 0.7190 1.8670 3.7130 -0 .1410  
3 0.2660 1.0190 3.7660 1.0980 - 1.4410 - 1.0780 ! .1460 
4 0.9430 0.7190 1.0980 4.4320 0.5170 0.2730 5.8970 
5 3.5450 1.8670 - 1.4410 0.5170 9.8330 12.3510 - 1.7170 
6 4.9210 3.7130 - 1.0780 0.2730 12.3510 63.8340 - 11.5440 
7 0.0120 -0 .1410  1.1460 5.8970 - 1.7170 - 11.5440 41.0870 

Latent roots of W 
71.7529 37.7762 8.8180 5.4903 2.6884 1.9037 0.2885 

Latent vectors of W parts 
1 2 3 4 5 6 7 

1 -0 .0773  -0 .0679  -0 .4435 -0 .3022  -0 .2873 0.5924 -0 .5177  
2 -0 .0561 -0 .0451 -0 .2274  -0 .3549  -0 .2843 0.2226 0.8287 
3 0.0239 -0 .0231 0.1003 -0 .6952  -0 .3017  -0 .6087 -0 .2098  
4 0.0249 -0 .1701 -0 .1044  -0 .4734  0.8513 0.1000 0.0262 
5 -0 .1973 -0 .1057  -0 .8140  0.2497 0.0780 -0 .4675 0.0167 
6 -0 .9068  -0 .3358  0.2533 0.0071 -0 .0074  0.0197 -0 .0150  
7 0.3583 -0 .9165  0.0620 0.1138 -0 .1214  -0 .0113  0.0016 

Diag G = between groups sums of squares for principal components 
1 2 3 4 5 6 7 

0.0941 0.2361 0.1007 0.2450 0.3718 0. 0417 0.3345 

Trace G = 1.42405 
Percentage of  trace 

6.607 16.580 7.071 17.206 26.111 2.930 23.495 

Here and elsewhere in the text, the amino acids designated 1-8 (8 is the divisor) correspond to the designations D, E, G, T, A, P, Y, I for 
amino acids in Endo et al. (1995). 

reasons for this are that the amino acids involved 
are much  affected by degenerat ion over  time. The 
latent roots and vectors of  W are presented in 
Table 3 together  with the diagonal for the 
between-groups sums of  squares matrix for the prin- 
cipal components ,  diag G. The first latent vector  is 
dominated  entirely by amino acid P and the second 
latent vector by amino acid Y. The smallest  value of  

diag G, d6, is just 2.93% of  the trace of  G, whereas  
the seventh entry is actually the greatest of  all, 
being 23.5% of  the trace of  G. The principal com- 
ponent corresponding to d6 is mainly  an expression 
o f  bipolar covariation in the tog-ratio vector  com- 
ponent  amino acid D (0.6) and vector  componen t  
amino acid G ( - 0 . 6 ) .  These several relationships 
of  small between-groups sums of  squares 

Table 4. Standardized canonical vectors for the seven log-ratios, and shrunken estimates, for the 
brachiopod data: vectors adjusted to standard deviations 

Principal component 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Canonical roots 

a~ - 0.283 - 0.524 - 0.210 - 0.062 0.391 - 0.074 0.662 0.723 

a~ 0.263 0.268 0.352 0.465 0.693 - 0.190 0.049 0.436 

Adjusted canonical variate vectors log-ratios of parts 

1 2 3 4 5 6 7 Canonical roots 
c~ - 0.691 0.974 - 0.286 0.264 0.131 0.020 0.032 0.723 

cz v -0 .368  -0 .176  -0 .189  0.236 0.041 -0 .019  -0 .048  0.436 
G~ el (o . . . . . .  ~ --0.663 0.991 --0.312 0.261 0.110 0.021 0.034 0.720 
GI e~ (o . . . . . .  ~ -0 .339  -0 .103  0.288 0.231 -0 .011 -0 .012  -0 .043  0.424 
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corresponding to principal component 6 and the 
small latent root for W tend to be amenable to 
shrinking of the principal component. The coeffi- 
cients for a ta highlight the contribution from prin- 
cipal components 2 and 7 to the first canonical 
variate (Table 4). The main contributing principal 
component of a v2 to the second canonical variate 
is the fifth. The effect of shrinking the smallest prin- 
cipal component (which is connected to the largest 
value in diag G) is to perturb the canonical variates 
and to occasion a serious loss of information in the 
canonical roots. Shrinkage of the sixth principal 
component (Table 4) has little effect on the com- 
ponents of  all of the canonical vectors and the 
sums of the canonical roots are likewise little influ- 
enced. This indicates that the principal component 6 
represents a redundant direction and can be elimi- 
nated with very little loss of discriminatory 
power. The practical effect of such a step is gener- 
ally to achieve greater stability in the canonical 
vectors and an improvement with respect to their 
interpretation. 

a considerable amount of work. It may therefore be 
of value to point out that the author' s experience has 
been that instability in canonical vectors due to 
redundant directions of variation is not very 
common in all aspects of applied canonical variate 
analysis and this seems to be true of geology. This 
notwithstanding, advice to the analyst is that a trial 
test of the data is a safety investment that should 
not be neglected if one of the main goals of a 
study is the practical problem of the interpretation 
of the coefficients of the canonical vectors. 

Dr D. Kaminskas is thanked for making the Lithuanian 
data available for analysis. Professor B. A. Malmgren 
helpfully directed attention to these data. The Trustees 
of the Swedish Museum of Natural History generously 
provided working facilities. The author is grateful to Pro- 
fessor K. Endo for continued advice concerning problems 
in the sphere of molecular palaeontology. A special 
expression of gratitude is extended to Professor Vera Paw- 
losky-Glahn for constructive comments, advice and infor- 
mation concerning ongoing research. 

C o m m e n t s  

The two examples drawn from published investi- 
gations presented briefly in this paper serve to 
exemplify the application of the shrinkage tech- 
nique for stabilization in the canonical variate 
analysis of compositional data. One example is 
for the correlation mode (the Lithuanian sedi- 
ments), the other uses the theoretically, perhaps 
more faithful, representation in covariance mode 
(the brachiopods). In both examples it could be 
demonstrated that redundant directions of variation 
have a negative influence on the reification of the 
canonical vectors and hence the reliability of an 
analysis. It could also be shown that where there 
is a marked stratigraphical component in a 
dataset, such as occurs in long borehole sequences, 
this can influence the outcome of an analysis 
because of trend-weighting. The log-ratio trans- 
formation was found to be more reliable for the pur- 
poses of the shrinkage stabilizing technique. The 
centred log-ratio covariances are less easy to work 
with because of the practical difficulty of overcom- 
ing and deciphering the effect of the singularity of 
the input matrices, as well as other factors (cf. 
Egozcue e t  a l .  2003). 

Campbell (1979) was careful to point out that 
shrinkage is not the only way in which stability in 
discrimination can be approached under the circum- 
stances applying in this paper and he provided 
alternatives. From the aspect of  effective data analy- 
sis, selection of parts based on relative magnitudes 
and stability of coefficients may be preferable to a 
stepwise procedure. Finally, the successful appli- 
cation of the shrinkage technique often necessitates 

A p p e n d i x  A: R e v i e w  o f  the  m e t h o d  

o f  s h r i n k a g e  

It is assumed here that multivariate procedures available 
for full space carry over, at least approximately, to 
simplex space (Aitchison 1986, p. 202). The within- 
groups sums of squares and cross-products matrix W on 
nw degrees of freedom and the between-groups matrix of 
sums and squares and cross-products B are computed in 
the usual manner. Here, however, the data matrix is com- 
posed preferably of the log-ratio transformed observations 
(Aitchison 1983, 1986). Campbell (1979, 1980a) rec- 
ommended that the within-groups matrix be expressed in 
correlation form with similar scaling for B. This is not 
mandatory, however. Aitchison (1997) proved that the 
correlation coefficient is not defined in simplex space, at 
least from the aspect of statistical interpretation of the cor- 
relation coefficient. In the present connexion, the use of 
correlations is strictly geometric for achieving spherical 
distributions with the end in view of bettering analytical 
stability (Campbell 1980a,b). The following review is in 
terms of the correlation mode. Hence: 

W* = S-1WS -1 (A1) 

and 

B* = S-1BS -1 (A2) 

where S denotes diag W 1/2 and the asterisks indicate the cor- 
relation mode to apply. Here, and elsewhere in the text, an 
apostrophe denotes a transposed matrix. The latent roots e i 

and latent vectors u, of W* are then found. The correspond- 
ing orthogonalized variables are the principal components 
with E = diag(eL . . . . .  ev) and U = (ut . . . . .  u~). 
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Consequently, 

W* = UEU'. (A3) 

Usually, the latent vectors are scaled by the square 
root of their latent roots; this a transformation for 
achieving within-groups sphericity, which is a 
manipulation for promoting stability. Shrunken 
estimators are constructed by adding shrinkage 
constants ki to the latent roots diag E before 
scaling the latent vectors (Goldstein & Smith 
1974; Campbell 1980a). Let the shrunken estima- 
tors be denoted as 

(i.e. the first r columns of U*). This gives 
aiGi ----- aiu for i ~< r and a TM = 0 for i > r. 

The generalized inverse solution results from 
forming 

G(o ..... o;~, ..... ) = U r B U r (A9) 

where Ur* corresponds to the first r columns of 
U~o ..... 0). The generalized canonical vectors are 
given by e ~ I =  U*,.a el, where a el, of length r, 
corresponds to the first r elements of a u. (Note 
that c TM s = C (0  . . . . .  0 ;  oo . . . . .  c o ) ) .  

K = diag(kl . . . . .  kv). (A4) 

In a full-scale study, one would wish to test the 
effect of using different values of k. In the 
examples, a very large value has been used (in 
effect this is functionally infinitely great). Smaller 
values can be tried to test the consequence of 
reducing the between-group contribution from a 
particular component. Define now U*, the matrix 
of latent roots inflated by the chosen shrunken 
estimators. 

U* = U(E + K) -1/2 = U(*k, ..... k,~) (A5) 

Next form, in the usual manner, the between-groups 
matrix of sums and squares and cross-products 
in the space of the within-groups principal 
components, that is, form 

G(k ...... k,.~U(*~, ..... k~B*U(*kL ..... ~ (A6) 

Set di equal to the ith diagonal element of G. This 
diagonal element, which is the between-groups 
sums of squares for the ith principal component, 
is an important diagnostic tool. The usual canonical 
vectors c U of canonical variate analysis are 
yielded by 

c U = U* . a U (A7) 
(0 , . . . ,0)  " 

Generalized shrunken (i.e. generalized ridge) esti- 
mators are determined directly from the latent 
vectors a s of G(kL ..... _~,) with 

c s = U* a s (A8) 
( k l  ..... k~.) 

The coefficient a Ui involves di /e l /2 .  This implies 
that where the latent root is small, the value of 
a vi  is given by the ratio of two small quantities 
and hence can be expected to fluctuate widely 
from sample to sample. A generalized solution 
results when ki = 0 for i ~< r and ki = oo for i > r 

P r a c t i c a l  c o n s i d e r a t i o n s  

In practice it is frequently found that marked 
instability in vector coefficients is associated with 
a small value of a latent root ev and a correspond- 
ingly small diagonal element d,, of G. A useful 
rule of thumb is to examine the contribution of dv 
to the total group separation, to wit, trace 
(W-1B).  In cases where the ratio of d i t o  trace G 
is small, and, or, the corresponding ratio of canoni- 
cal roots is small (<0.05) then little loss of the 
power of discrimination will result from excluding 
one or more of the smallest latent vectors or equiva- 
lently from suppressing the corresponding principal 
component. Total suppression is not always a 
necessity and some smaller value may be chosen 
such that the effect of the principal component is 
merely reduced (Campbell & Reyment 1978; 
Campbell 1979). Campbell (1979) reported that a 
generalized inverse solution with r = v -  1 fre- 
quently yields stable estimates. Reyment & 
Savazzi (1999) provide a compiled computer 
program for carrying out the computations encom- 
passed by the foregoing algebra. Weihs (1995) has 
taken up the subject of the graphical representa- 
tion of canonical variate results. As a complement 
to his treatise, Campbell constructed a very compre- 
hensive interlocking computer program for the 
Department of Mathematics and Statistics, CSIRO,  
Wembley, Western Australia for canonical variate 
analysis which includes shrinkage, robust esti- 
mation when the covariances are not homogeneous, 
M-estimators, graphical procedures and much 
more. 

Recent results by Egozcue et al. (2003) on 
isometric log-ratio transformations are clearly 
worth extension within the context of stability 
of latent vector coefficients in compositional 
data analysis. 
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