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Abstract

We report on a study of the Tehran Price Index (TEPIX) from 2001 to 2006 as an

emerging market that has been affected by several political crises during the recent years,

and analyze the non-Gaussian probability density function (PDF) of the log returns of the

stocks’ prices. We show that while the average of the index did not fall very much over the

time period of the study, its day-to-day fluctuations strongly increased due to the crises.

Using an approach based on multiplicative processes with a detrending procedure, we study

the scale-dependence of the non-Gaussian PDFs, and show that the temporal dependence of

their tails indicates a gradual and systematic increase in the probability of the appearance

of large increments in the returns on approaching distinct critical time scales over which the

TEPIX has exhibited maximum uncertainty.
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1. Introduction

In recent years, financial markets have been a focus of physicists’ attempts for applying

the existing knowledge from statistical mechanics to economic problems [1-3]. The markets,

though largely varying in the details of their trading rules and the traded goods, may be

characterized by some generic features of the time series that describe the fluctuations in

the prices of various stocks and commodities. An important and challenging problem is to

understand and evaluate risk in the markets, which must be done through the analysis of

such time series. The aim of the analysis is to characterize the statistical properties of the

time series, with the hope that a better understanding of its underlying stochastic dynamics

would provide useful information that can be used for creating new models, that are able to

reproduce experimental facts (i.e., the actual recorded prices and their fluctuations).

A considerable amount of data and numerous studies indicate the possibility that the

financial time series may exhibit self-similarity (and/or self-affinity) at short time scales

which, however, apparently breakdown at much longer times. Such features are usually

modeled in terms of various statistical distributions with truncated tails. Recent studies

indicated, however, that an approach based on the Brownian motion [5,6], or other more

elaborated descriptions, such as those based on the Lévy and truncated Lévy distributions

[1], may not be suitable for properly describing the statistical features of the fluctuations

in the stocks’ price. Such models have been constructed based on the premise that the

financial time series may be viewed as additive processes that are built up over time. There

is now increasing evidence that an approach based on multiplicative processes might be a

more fruitful way of pursuing an accurate analysis of the financial time series. This approach

lends itself in a natural way to multifractality [7] (see below). Such an idea was, in fact,

suggested some years ago when the intermittency phenomenon in the returns fluctuations

was observed at different scales, which motivated some efforts for establishing a link between

analysis of the financial time series and other areas of physics, such as turbulence [8-11].

We remind the reader that, if pi represents the value of a stochastic variable at (time) i,
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the returns ri are defined by, ri = ln(pi+1/pi). Nowadays, however, we know that there

are important differences between the two phenomena, such as, for example, the differences

between their spectra of frequencies.

Based on the recent efforts for characterization of the various stages of the development

of markets [12-14], it is clear that Tehran stock exchange represents an emerging market. It

has witnessed considerable activities over the past several years, but it is still far from an

efficient and developed market. Over a two-year period, it lost more than 30% of its value

(from 13750 units in September 2004 to 9150 units in August 2006) and, on average, the price

of the stocks’ units has decreased from $0.92 to $0.49 (which, percentage-wise, represents an

even steeper decline than that of the units by which the market has lost value), even without

considering the rate of inflation. In addition, over the past six months alone (up to the time

of writing this paper), the volume and values of the traded stocks have decreased by more

than 60%. Compared with the S&P 500, Tehran stock exchange is still not a completely

developed market [13], with its index exhibiting stronger non-stationary features.

In this paper, we provide comprehensive evidence of the existence of distinct critical time

scales over which the Tehran Price Index (TEPIX) has exhibited maximum uncertainty.

Moreover, at several critical times over the past few years, Tehran stock exchange has been

affected rather strongly by several political crises. These features provide a good opportunity

to test the method of analysis suggested by Kiyono et al. [15] for an emerging market. More

specifically, by analyzing the temporal evolution of the index dynamics, we demonstrate

the strongly the non-Gaussian behavior of the logarithmic returns of the TEPIX and scale-

dependent behavior (data collapse) of their probability density function (PDF). The critical

time scales are found to be in the vicinity of large index movements, consistent with the

high probability of multiscale events at the critical points. From the observed non-Gaussian

behavior of the index, we numerically estimate the unexpectedly high probability of a large

price change near the critical times. Such estimates are of importance to risk analysis, as

they represent a central issue for the understanding of the statistics of price changes.
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The rest of this paper is organized as follows. In the next section we present the data

that we consider and describe how we analyze them. The conclusions are summarized in

Section 3.

2. Analysis of the data

Figure 1 shows the TEPIX over a period of over 4 1
2

years, from December 20, 2001

to August 10, 2006. The data had been recorded on each trading day. We show in the

lower panel of Fig. 1 the one-day log returns, i.e., rs(t) = ln[p(t + s)/p(t)], where s = 1

day. We then analyze the PDF of the detrended log returns over different time scales. To

remove the trends present in {x(t)}, where x(t) = ln p(t), we fit x(t) in each subinterval

[1 + s(k − 1), s(k + 1)] of length 2s (where k is the index of the subinterval to a linear

function of t that represents the exponential trend of the original index in the corresponding

time window. After the detrending procedure, we define detrended log returns on a scale s

as Δsp(t) = x∗(t + s) − x∗(t), where 1 + s(k − 1) ≤ t ≤ sk, and x∗(t) is the deviation from

the fitting function [7].

The scale-invariance properties of a fractal function Δsp(t) are generally characterized by

exponents ξq that govern the power-law scaling of the absolute moments of its fluctuations,

i.e., m(q, l) = Kql
ξq , where, for example, one may choose m(q, l) =

∑
t |Δsp(t+ l)−Δsp(t)|q.

As is well-known, if the exponents ξq are linear in q, a single scaling exponent H suffices

for characterizing the fractal properties with, ξq = qH , in which case Δsp(t) is said to be

monofractal. If, on the other hand, the function ξq is not linear in q, the process Δsp(t) is

said to be multifractal. Some well-known monofractal stochastic processes are self-similar

processes with the following property,

Δλsp(t) = λHΔsp(t), ∀s, λ > 0 . (1)

Widely-used examples of such processes are the fractional Brownian motion and the Lévy

walk. One reason for their success is, as it is generally the case in experimental time series,

that they do not involve any particular scale ratio [i.e., there is no constraint on s or λs in
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Eq. (1)].

In the same spirit, one can try to build multifractal processes that do not involve any

particular scale ratio. A common approach, originally proposed in the field of fully-developed

turbulence [8,15-18], has been to describe such processes in terms of stochastic equations,

in the scale domain, describing the cascading process that determines how the fluctuations

evolve when one passes from the coarse to fine scales. One can state that the fluctuations

at scales s and λs are related (for fixed t) through the cascading rule,

Δλsp(t) = WλΔsp(t), ∀s, λ > 0 , (2)

where ln(Wλ) is a random variable. Let us note that Eq. (2) can be viewed as a generalization

of Eq. (1) with H being stochastic. Since Eq. (2) can be iterated, it implicitly forces the

random variable Wλ to have a log infinitely-divisible law [19]. It has been demonstrated by

Castaing et al. [19] that a non-Gaussian PDF with “fat” tails can be modeled by random

multiplicative processes.

Thus, let us assume that the increments in the time series are represented by the following

multiplicative form [7]:

Δsp(t) = ζs(t) exp[ωs(t)] , (3)

where ζs and ωs, assumed to be independent variables, are both Gaussian random variables

with zero mean and variances σ2
s and λ2

s, respectively. The PDF of Δsp(t) has fat tails,

depending on the variance of ωs, and is expressed by [19]:

Ps(Δsp) =
∫

Fs

(
Δsp

σs

)
1

σs
Gs(ln σs)d lnσs , (4)

where we have assumed that Fs and Gs are both Gaussian with zero mean and variance σs

and λs, i.e.,

Gs(ln σs) =
1√

2πλs
exp

(
− ln2 σs

2λ2
s

)
. (5)

Thus, we may investigate the time scale-dependence of λ2
s. In this case, the equation for

Ps(Δsp) is referred to as Castaing’s equation, whose solution converges to a Gaussian when

λ → 0.
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The fit of the PDF of TEPIX increments to Castaing’s equation is indeed almost perfect,

especially within ±3 standard deviations, even for a single record. This is demonstrated in

Fig. 2. Although Eq. (4) is equivalent to that for a log-normal cascade model - origi-

nally introduced to study fully-developed turbulence [19] - it approximately describes the

non-Gaussian PDFs observed not only for turbulence, but also in a wide variety of other

phenomena, ranging from rate of exchange of foreign currencies [8], to heartbeat interval

fluctuations [15,20]. Also shown in Fig. 2 is the fit of the data for s = 20 days to a Gaussian

distribution, which clearly fails to represent the data.

For a quantitative comparison, we fit the data (over the 4 1
2

years interval) to the above

function [Eq. (4)], as illustrated in Figs. 2 and 3, and estimate the variance λ2
s of Gs.

As shown in Fig. 3, the standardized (variance = 1) PDF of the detrended log returns

indicates the existence of a scaling law in the behavior of λ2
s as a function of s, rather than

logarithmic decay which is characteristic of classical cascade processes [17-19,21]. Figure 3

indicates that, after s = 4 days, there is a crossover in the behavior of λs as a function of

s. For comparison, we have also calculated the variance 〈r(t + τ)r(t)〉 (which represents the

width of the joint probability distribution). The results are shown in the inset of Fig. 3.

Similar to λs, there is a crossover in the behavior of width.

In the following, we identify a temporal region of complete departure from the cascade

scenario to an instance of the critical-like behavior. We evaluate (in sliding time intervals

[t−Δt/2, t+Δt/2]) the temporal dependence of λ2
s. The local temporal variation of λ2

s=4 days

over a one-year period shows a gradual, systematic increase on approaching the critical time

scales A-G identified in Fig. 4. It it beneficial to risk analysis to quantify the non-Gaussian

nature of (detrended) price fluctuations on a relatively short time scale (∼ 4 days), and

not just the volatility at larger time scales [1], which is what is normally analyzed. The

important point is that large values of λ2
s indicate a high probability of a large price change;

this probability follows a sharp increase with growing λ2
s.

The critical points are denoted by A to G in Fig. 4. To plot the Fig. 4 we chose a
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moving window with length Δt = 150 days. It may be interesting to note that these time

scales are related to the political developments in Iran. There was an increasing trend in the

price index over the time scale A, caused by privatization of Iran’s industries. B represents

the time period from February 21, 2003, when the inspectors of the International Atomic

Energy Agency (IAEA) and its Director-General, Dr. Mohammed ElBaradei, travelled to

Iran, to June 16, 2003, when Dr. ElBaradei reported to the IAEA’s Board of Governors

on what the IAEA had found in Iran. C represents the restart by Iran of production of

centrifuges’ parts, used in uranium enrichment (UE), on July 31, 2004. D is the time period

that included the European Union’s warning to Iran that it would cut off the negotiations

on May 11, 2005; Iran’s subsequent declaration on May 19, 2005 that its UE program is

irreversible, and the election of Iran’s new president on June 26, 2005. E is the time period

over which a new director for Tehran stock market was appointed, and the economic policies

of Iran’s new president were declared. Finally, F is the time at which the IAEA reported to

the United Nations Security Council Iran’s nuclear dossier on February 27, 2006. The time

t∗ represents the time at which Iran’s rejection of the IAEA demand for stopping work on

the construction of a heavy-water nuclear reactor in Arak was announced on February 13,

2005. It can be seen clearly in Fig. 4 that, after that time the TEPIX entered a critical

period that has continued up to now. Moreover, as Fig. 4 indicates, similar to most major

stock markets around the world, the Tehran stock market has responded almost immediately

to the political events on the dates indicated. As shown in Fig. 4, the trends in the TEPIX

are essentially stable up to time scale C, but beyond C the average uncertainly increases.

To check the changing of the nature of fractal distribution of the returns, we plot (in a

semi-logarithmic graph) the PDFs of the one-day returns before and after the critical time

t∗. The results are presented in Fig. 5. Relative to a Gaussian distribution, they exhibit

sharp peaks, but not long tails. In Table 1, we compare the means, standard deviations,

skewnesses, and kurtosises of the returns time series before and after the time t∗, as given in

Fig. 1. As Table 1 indicates, the mean value of the returns is negative after t∗, but positive
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before t∗. Moreover, the variance after t∗ is smaller that its value before t∗, implying that, on

average, the investors have lost their investments after t∗ but, with smaller risk, had gained

before t∗.

TABLE I. Comparing the general parameters of the one-day return series.

Mean Standard Deviations Skewness Kurtosis

t < t∗ 0.00172 0.006 0.84 16.65

t > t∗ −0.00104 0.004 −0.66 12.46
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FIG. 1. Top: history (2001-2006) of daily deflated closure of the TEPIX. Bottom: one day log

returns of the TEPIX.
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