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Abstract. We provide a method of constructing families of hypersurfaces of a
space form with zero Gauss-Kronecker curvature, from a given such hypersurface,
based on Ribaucour transformations. Applications provide a 1-parameter family of
complete, non-cylindrical hypersurfaces of R*, with zero Gauss-Kronecker curva-
ture, a 5-parameter family of compact Dupin hypersurfaces of S, with vanishing
Gauss-Kronecker curvature, infinite families of hypersurfaces of R"*! and of the
hyperbolic space H*, with flat Gauss-Kronecker curvature.

Introduction

Surfaces with flat Gaussian curvature in the Euclidean space R?® are ruled, developable sur-
faces. The only complete ones are planes and cylinders over plane curves [9]. In higher
dimensions, the complete hypersurfaces M™ C R™"! with flat sectional curvature are hy-
perplanes and cylinders over plane curves [9]. This result does not hold if one considers
complete hypersurfaces with zero Gauss-Kronecker curvature. However, imposing additional
conditions such as nonnegative sectional curvature [7] and constant relative nullity v > 0,
one can show that such a hypersurface is a cylinder over an (n — v)-dimensional submanifold.
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In general, complete hypersurfaces with zero Gauss-Kronecker curvature are not neces-
sarily cylinders. Such an example was given by Sacksteder [11]. Results on complete minimal
hypersurfaces in S* with vanishing Gauss-Kronecker curvature were obtained in [1], [9] and
[10]. Since the classification of complete hypersurfaces with zero Gauss-Kronecker curvature
is far from complete, it is important to study methods which produce such hypersurfaces. In
this paper we introduce a method based on Ribaucour transformations.

Ribaucour transformations for surfaces of constant Gaussian curvature and constant mean
curvature (including minimal) surfaces, were considered at the beginning of last century (see
Bianchi [2]) and they were recently applied for the first time to obtain minimal surfaces [4].
These results were extended to linear Weingarten surfaces in [5]. Ribaucour transforma-
tions were also considered in [3] to produce Dupin hypersurfaces of the Euclidean space and
submanifolds of constant sectional curvature in [6].

In this paper, we consider n-dimensional orientable hypersurfaces M™ of a space form,
with flat Gauss-Kronecker curvature. By considering an integrable system of differential
equations on M, we provide a method of construction of families of hypersurfaces M™, locally
associated by Ribaucour transformations to M, such that M has also zero Gauss-Kronecker
curvature (see Remark 1.4, Theorems 1.5 and 1.6).

We provide some applications of this method. We first obtain a 6-parameter family of hy-
persurfaces with zero Gauss-Kronecker curvature, contained in R*, which are associated to a
hypersurface given by Sacksteder. Generically, a hypersurface of this family has singularities.
However, the family contains a 1-parameter family of complete, non-cylindrical hypersurfaces.
Our second application provides a 5-parameter family of compact, Dupin hypersurfaces of
5%, with zero Gauss-Kronecker curvature, associated to a tube around the Veronese surface
contained in S* We then obtain two infinite families of hypersurfaces of R"*!, with zero
Gauss-Kronecker curvature, associated, by Ribaucour transformations, to a hyperplane and
to a cylinder, respectively. We conclude with an infinite family of 3-dimensional hypersurfaces
of the hyperbolic space H*, with zero Gauss-Kronecker curvature, associated to H® C H*.

1. Ribaucour transformation for hypersurfaces

In this section, we recall the basic theory of Ribaucour transformation for hypersurfaces and
provide its characterization as a system of differential equations. For the proofs and more
details see [2], [3] and [5].

Let M™ be an orientable hypersurface of a Riemannian manifold M™*'. Suppose M has
an orthonormal frame of principal directions e;, 1 < i < n. A submanifold M™ c M"*!
is associated to M by a Ribaucour transformation with respect to ey, ..., e, if there exist a
diffeomorphism ) : M — M, a differentiable function ¢ : M — R and unit vector fields N
and N normal to M and M respectively, such that:

a) exp,(((q)N(q)) = expy (U(q)N (¥(q))), Yq € M;
b) the subset exp,(¢(¢)N(q)), ¢ € M is a hypersurface;

c) dip(e;) are orthogonal principal directions on M.

This transformation is invertible in the sense that there exist orthonormal principal direction
vector fields éq,..., €, on M such that M is associated to M by a Ribaucour transformation
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with respect to these vector fields. One may consider the analogue definition for locally
associated submanifolds or for immersions. The definition considered above differs slightly
from the classical notion of a Ribaucour transformation. This is due to the fact that if
M is a hypersurface with a principal curvature whose multiplicity is bigger than one, then
Ribaucour transformations with respect to distinct sets of principal directions may provide
distinct families of hypersurfaces associated to M. For example, any oriented hypersurface of
the Euclidean space R"*! is locally associated to a hyperplane, by a Ribaucour transformation
with respect to a set of conveniently chosen orthonormal vector fields of R™™! (see [5], [12]).

In what follows M (K)"*! will be a space form of constant sectional curvature K €

{-1,0,1}, i.e.
Sl c 2 if K =1,
M(K)"™ = Rlif K =0,
H c L"? if K = —1,
where L""2 is the Lorentzian space.

Let M™ be a hypersurface of M(K)"'. Let ¢;, 1 < i < n, be an orthonormal frame of
principal directions on M and let N be unit vector field normal to M. We denote by w; the one
forms dual to the vector fields e; and by w;;, 1 <4, j < n, the connection forms determined
by dw; = Z#i wj Awji, wij +wj; = 0. The normal connection is given by wi,+1 =< Ve;, N >,

where V is the connection of the space form M. The Gauss equation is
dwij = Zwik A Wi -+ Win+1 N Wn415 — f(wi VAN Wi
k

and the Codazzi equations are

dwiny1 = E Wij N\ Win41-
J

Since e; are orthonormal principal directions, we have
VeiN == )\’ei, Win+1 = —)\’wi. (1)

For each integer r, 1 < r < n, the r-mean curvature, H,, of M is given by

Hy=—— > N

n 1<i1 << <n
r

and the n-mean curvature of M, H, = A'\2-.-\"_is called the Gauss-Kronecker curvature
of M.

Whenever A", Vi, 1 < i < n, are constant along the integral curves of e;, i.e. d\'(e;) =0, M
is said to be a Dupin hypersurface.

In what follows, we will provide a characterization, for the hypersurfaces which are locally
associated to a given hypersurface, by Ribaucour transformations, by means of a system of
differential equations for a function h : M — R, where

tanl if K =1,
h=< ¢ if K =0, (2)
tanh¢ if K = —1,
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and ¢ is the function of the definition of a Ribaucour transformation. We observe that
condition a) of the definition is equivalent to saying that

X =X+h(N-N), (3)

where X and X are local parametrizations of M and M.
The proofs of the results of this section, using differential forms, can be found in [3]. See
6] for a different proof in the holonomic case.

Theorem 1.1. Let M"™ be an orientable hypersurface of M"Y (K). Let e;; 1 < i < n, be
orthonormal principal directions of M, and A\t the corresponding principal curvatures, i.e.
dN(e;) = Ne;. A hypersurface M is associated to M by a Ribaucour transformation with
respect to {e;}, if and only if, the function h : M — R, described in (2), satisfies 1 +hA\" # 0
and .
dZ'(e:) + Y Zrunjle) = 22N =0, 1<i#j<n, (4)
k=1
where w;; are the connection forms of the frame e; and Z' = dh(e;)/(1+ h\").

Equation (4) is a second order differential equation for h, which is equivalent to a first order
linear system given in the following result.

Proposition 1.2. If h is a solution of (4) which does not vanish on a simply connected
domain, then h = Q/W, where W is a nonvanishing function and the functions Q, Q;, W
satisfy

d(e;) = > Qwale;), fori#j, (5)
k=1

aQ = > Qu, (6)
=1

dW = = QNw;. (7)
=1

Conwversely, suppose (5)—(7) are satisfied and W (W + X'Q2) # 0, then h = Q/W s a solution
of (4).

It is a straightforward computation to verify that equation (5) is the integrability condition
of equations (6) and (7). The proof of the following result can be found in [3] or [5], in the
case K = 0. For K # 0, the proof is entirely analogous (see also [6]).

Theorem 1.3. Let M™ be an orientable hypersurface of M"*1(K) parametrized by X : U C
R™ — M. Assume e;, 1 < i < n, are orthogonal principal directions, \' the corresponding
principal curvatures and N is a unit vector field normal to M. A hypersurface M is locally

associated to M, by a Ribaucour transformation w.r. to {e;}, if and only if, there exist
differentiable functions W,Q,Q; -V C U — R, which satisfy (5)—~(7) with

WS(W +XNQ)(S—QT") #0, 1<i<n, (8)
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where
S = Z 2L W2 4+ KQ2, (9)

T =2 (Z Qpwri(er) — WX + dQi(e;) + KQ) : (10)

and X : V C R* — M, is a parametrization of M given by
2Q)
X = X - ZQeZ WN + KQX (11)
Moreover, the normal map of X is given by

2
N = N—i——W(ZQeZ WN+KQX> (12)

and the principal curvatures of X are given by

< WT + NS
i T2 TAY 1
A S — QT (13)

In (8), we observe that the condition W # 0 is required by the expression h = /W, while
W + X2 # 0 corresponds to condition b) of the definition of Ribaucour transformation and
S # 0 determines the domain of the hypersurface X. The regularity condition is given by
S — QT # 0. In fact, a straightforward computation shows that, using (11) and (5)—(7), we
have ‘
(S —QT")?

S? '
Therefore, the parametrization X given by (11) may extend regularly to points where W (W +
Q) = 0, whenever S(S — QT") # 0.

X (e)* =

Remark 1.4. As an immediate consequence of the above theorem we observe that if M is a
hypersurface of M"*(K) with vanishing Gauss-Kronecker curvature and {e;}, 1 <i <n, is
an orthonormal frame of principal directions on M, such that A\ = 0, then for any solution
of the system (5)—(7), satisfying 7% = 0, the hypersurface M, locally associated to M as in
Theorem 1.3, has also zero Gauss-Kronecker curvature. See Propositions 2.3-2.5 for families
of such hypersurfaces, obtained by this procedure.

Our next result shows that if we consider solutions of (5)—(7), such that 7" is a multiple of \’,
say T" = —2b)\", b € R, we get an integrable system. We observe that this condition together
with (5) is equivalent to requiring

dQZ = Z kawik - (W - b)me - KQQ)Z
k
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Theorem 1.5. Let M be a hypersurface of M"**(K) and let {e;}, 1 < i < n, be an
orthonormal frame of principal directions on M. Then the system

aw = Zinin-}—l (14)

dQZ == Z kaik - (W - b)me - f(QwZ
k

is integrable. Such solutions determine a family of hypersurfaces M of M (K), locally associ-
ated to M by a Ribaucour transformation with respect to {e;}, which are reqular on the subset
satisfying

S(S 4 20A'Q) # 0, (15)

where S is defined by (9) and X' are the principal curvatures corresponding to e;. The function
S —2bW = 2¢ is a constant, determined by the initial conditions. If ¢ = 0, then M is totally
geodesic in M. If ¢ # 0, then the principal curvatures of M and M have the same multiplicity
and H, = 0 if and only if H, = 0.

Proof. We consider the ideal Z generated by the 1-forms

p o= dw — Z Qiwint1 (16)

0; = dQ%— Y Qi+ (W = bwinst + KQuw;.
k

A straightforward computation shows that dff = —>, 0p Awy and df = — >, Ok A Wi
Similarly, using (16) we obtain that df; = — >, Ox Awi, + B Awin+1 + KO Aw;. Tt follows that
7 is closed under exterior differentiation, hence the system (14) is integrable and the solution
is uniquely determined, on a simply connected domain, by the initial conditions given at a
point. Moreover, since dS — 2bdW = 22@3]‘ Q:Qw;; = 0, we conclude that S — 20l is a
constant function.

Hence any such solution satisfies S — 2bW = 2¢ € R and it determines a hypersurface M
locally associated to M by a Ribaucour transformation with respect to {e;}. The regularity
condition requires that S(S —QT") # 0. From (13) the principal curvatures of the associated

hypersurfaces are given by .
~. cA\!
A= , . 17
b(W + X)) + ¢ (17)
By choosing the initial condition such that ¢ # 0, we conclude the proof of the theorem by
using (17). O

In our next result, we obtain all hypersurfaces M associated to a given hypersurface M" C
M"*(K) as in Theorem 1.5. We observe that for K = +1, we consider the unit sphere as a
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subset of R"™2 and the hyperbolic space as a subset of the Lorentzian space. Hence, <, >
will denote the usual metric on R**!' or R"*? if K = 0 or 1 and it will denote the Lorentzian
metric on R"*2 if K = —1. Moreover, we will denote ||Y||? =< Y,Y >.

Theorem 1.6. Let X : M" — M"(K) be a parametrized hypersurface. Then any hy-
persurface M, locally associated to M by a Ribaucour transformation, with respect to any
orthonormal frame of principal directions {e;} on M, as in Theorem 1.5, is given by

2(<V, X > +r)

Xpy = X —
v [V —bN|[?

(V —bN), (18)

where N is a unit vector field normal to M, b,r € R, Kr =0 and V is a vector of R"!
(resp. V.€ R"™) if K =0, (resp. K =+1), are such that (||V||* — b*)(||V — bN||) # 0.

Proof. 1t follows from a straightforward computation that the following functions are solutions
to the system (14)

Q, = <V,e >
Q = <V.X>+r (19)
W = —<V,N>+b,

where b,7 € R, Kr = 0 and V is a vector of R"*! (resp. R"*?), if K = 0 (resp. K = £1).
Moreover, S = ||V — bN||* and S — 2bW = ||V||> — b?. Since for a fixed constant b, any
solution of (14) depends on n + 2 parameters, it follows that (19) provides all the solutions of
(14). The expression of the parametrization of the associate hypersurface follows from (11).
Observe that when K # 0, the condition Kr = 0 guaranties that the image of X,y is in
M. From Theorem 1.5, we conclude that (18) is a regular hypersurface defined on the subset
where ||V — bN||(S 4 2bA'Q) # 0, 1 < i < n, where Q and W are given by (19). O

We conclude this section by providing a geometric interpretation of the family of hypersur-
faces described by (18). For fixed b, r, € R such that Kr =0 and V; a unit vector, consider

the set of hypersurfaces in M (K) given by

2t < V1, X > +(1 —t)r)

Vi, =X —
. [tV — (1 = )bN|[?

[tVi — (1 = £)bN]

where t € R. The family Yj.,. contains the parallel surface (¢ = 0) and the reflection of X
with respect to a hyperplane orthogonal to V; passing through the origin (¢ = 1). This family
is associated to the solution of (5)—(7) given by

Qf = t<Vi,e >,
Q= t<V, X >+(1—t)r,
Wh = —t<Vi,N>+(1—1t)b.

It is easy to see that the family X, given by (18) coincides with Vi
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2. Applications

In this section, we provide some applications of Remark 1.4 and Theorem 1.6. We first ob-
tain a 6-parameter family of hypersurfaces with zero Gauss-Kronecker curvature contained
in R*, which are associated to a hypersurface given by Sacksteder [12] which has zero Gauss-
Kronecker curvature. Generically, a hypersurface of this family will have singularities. How-
ever, we will show that the family contains a 1-parameter family of complete, non-cylindrical
hypersurfaces. Our second application will provide a 5-parameter family of compact, Dupin
hypersurfaces of S, with zero Gauss-Kronecker curvature. This family is associated to a
tube around the Veronese surface contained in S*. We then obtain two infinite families
of hypersurfaces of R""!, with zero Gauss-Kronecker curvature, associated, by Ribaucour
transformations, to a hyperplane and to a cylinder, respectively. We conclude this section
with an infinite family of 3-dimensional hypersurfaces of the hyperbolic space H*, with zero
Gauss-Kronecker curvature, associated to H?> ¢ H*.

Proposition 2.1. Consider the hypersurface of R* defined by X (x,y, 2)=(z, v, 2, f(x,y,2)),
where f = x cosz +y sin z, and its Gauss map N = (cos z, sinz, f,, —1)/+/2 + f2.
i) For any vector V' of R* and real numbers b, v such that |V|*> — b* # 0,

2(< V., X > +r)

Xy = X —
v [V —bN|?

(V —bN), (20)

1s a hypersurface with zero Gauss-Kronecker curvature, which is locally associated to X
by a Ribaucour transformation.

ii) Ifr =0 and V = (0,0,0,¢), where ¢ = £1, then for any constant b such that €b < 0
and V> +2v/2eb+1 > 0, X, defined by (20), is a complete, non-cylindrical hypersurface,
not congruent to X, with zero Gauss-Kronecker curvature.

Proof. i) The principal curvatures of the hypersurface X are
A= 0,
o =~ (f VP ),
o= =247 (- VP22 )

and the corresponding principal directions are e; = dX (v;)/|dX (v;)|, where

V1 = COSZ— 4+ sinz—

Ox oy’
: 0 0 0
vy = (—y+Qsmz)%+(w—Qcosz)a—y+2£,
: 0 0 0
vy = —(y+Qsmz)%—I—(x+Qcosz)a—y+2&

and

Q=+1*+202+ f2). (21)
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Since the Gauss-Kronecker curvature H, of the hypersurface X vanishes, it follows from
Theorems 1.5 and 1.6 that Xp,1 is locally associated to X by a Ribaucour transformation
and its curvature H,, = 0.

ii) If r = 0 and V = (0,0,0,¢), with the hypothesis on the constants b we have X, globally
defined on R3®. We will prove that X, is complete and non-cylindrical. We consider the
orthogonal principal vector fields of X, dX,(e;), i = 1,2,3. Then we will prove that there
exists & > 0 such that |dX,(e;)|? > 6, for all i. We first observe that

dXy(v;) = (14 20LA)v; — 2dL(v;)(V — bN)  where L = ﬁ
and df (v;) 2bf \ 1%
V; b <y >
dL ) = 2 (3]
== (Flm )

Therefore, 3 3 A

dXp(e1)]* =1 and |dX,(e;)]* = (1 +20LN)?, j=2,3. (22)
Since

2 f 2ef

LN =—""—— and LN =-—""— where U=2cb+ (1+0b°)\/2+ f2,
07 -Q) 07+ Q) )

we have |dX,(e;)[> = 1 for j = 2,3, wherever f vanishes. Otherwise, where f # 0, it follows
from the hypothesis on b that

—2¢eb
T 2eb+ (1+02)V2

Moreover, we get from (21) that 0 < 2f/(f—Q) < land f/(f+Q) <0 (resp. f/(f—Q) <0
and 0 < 2f/(f + Q) < 1) where f < 0 (resp. f > 0). Hence, it follows from (22) that there
exists a real number 0 < § < 1, such that |dX,(e;)|? > 6 for j = 2, 3. Therefore, we conclude
that the submanifold is complete since any divergent curve has infinite length.

In order to prove that X, is not a cylinder, we observe that the only vanishing principal
curvature of X; is A;. Since de(el) is not parallel to a fixed direction in R*, we conclude
that X, is not a cylinder. Moreover, none of these complete hypersurfaces is congruent to
the original hypersurface X. In fact, one can easily see that the principal vector field of X
corresponding to A' = 0 is orthogonal to the vector (0,0, 1,0). However, there is no constant
vector of R*, which is orthogonal to the principal vector field corresponding to the vanishing
principal curvature of Xj. 0

0< |7 <

Our next application will provide a 5-parameter family of compact Dupin hypersurfaces in
the unit sphere S*, whose Gauss-Kronecker curvature vanishes. We start considering the
Veronese surface described by X : 5\2/5 — St C RS,

22 — g2 V3
2 72

1
X(Jf,y72) = E(mya xrz, Yz, (1 - 22))7
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where Sf/g C R? is the sphere of radius v/3. We denote by T; X" the unit normal bundle of
X, ie.
TX*t ={(p,&);pe Sy £ (TpX)" CT,5" and [¢] = 1}.

The tube of geodesic ray R = /2, around X is the hypersurface Y : Ty X+ — S* given by

Y(p,§) = eXpX(p)(gf) =¢.

A vector field normal to Y (tangent to S* along Y) N : T3 X+ — S* C R® is given by

N(p,€) = X(p)-
One can show (see [1]) that Y is an isoparametric minimal hypersurface in S* whose
principal curvatures are A\ = 0, \? = \/g, A3 = —/3.

Proposition 2.2. Let Y be the tube of geodesic ray 7/2 around the Veronese surface X.
Then the map Yy : T X+ — S* C RS given by

2< VY >

Yw=Y-"—F72"_C_
v IV —bX|?

(V — bX)

is a reqular, compact, Dupin hypersurface of S*, with zero Gauss-Kronecker curvature, locally
associated to Y by a Ribaucour transformation, Vb € R and any unit vector V€ R® such that

b2+ 1 —2[b|(1+3) > 0. (23)

Proof. Tt follows from Theorems 1.3 and 1.5 that Y is a Dupin hypersurface with zero
Gauss-Kronecker curvature, which is regular whenever (15) is satisfied. Observe that €;,
) and W are given by (19), where r = 0 ie. W = — < V, X > +b, Q; =< V,e; > and
Q =< V.Y >. Moreover, S — 2bW = 2c¢ is a constant. Therefore, it follows from (9) that
S=1+b(-2<V,X >+b) and c = (1 — b?)/2. The hypothesis (23) implies that ¢ # 0 and
hence S = 2(bW +¢) > (|b| — 1)? > 0. In order to conclude the regularity of Y, we need to
show that b(W + \'Q) + ¢ # 0 for i = 1,2,3. In fact, for i = 1 this follows from S > 0, and
for + = 2,3 we have that

MW +NQ) +2 = 1+ —20<V,N>+2/3b< VY >
> 146> —2(1+v3)[b| >0,

where the last inequality follows from (23). O

We observe that each hypersurface Yy is a tube of geodesic ray /2 over the image of its

Gaussian normal map Ny : Ti X+ — S* given by

2(— < V. X > +b)
|V — bX|?

Ny = X + (V —bX).

Our next results follow from the basic theorem on Ribaucour transformations.

Proposition 2.3. Let X be the parametrized hyperplane x,.1 = 0 in R"™ and let ey, ..., e,
be the canonical orthonormal basis of X. Consider arbitrary differentiable functions f;(x;)
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of x; such that for some iy, 1 < iy < n, fi, = ax;, +b, a,b € R and v, # 0 real numbers.
Then "

oy AT i)

- N 2 2

Yo (i) +a

s a family of hypersurfaces with zero Gauss-Kronecker curvature, locally associated to X by
a Ribaucour transformation with respect to {e;}.

(f{v"'afrlw_a)

Proof. The proof follows from the fact that the solutions of (5)—(7) are given by

Qi = fi(z), QZifi(%‘)*‘V and W = # 0.

=1

Since S =Y, (f])> +a? and T; = 2/, it follows from (13) that the principal curvatures of
X are

N — 20 f} O
S ()2 a2 =2 fi+7)
Similarly one can show that
Proposition 2.4. Let X = (cosxy,sinmy, Ts,. .., T,) be a parametrized cylinder in R™™ and

let e; = X,,, 1 < i <n. Consider arbitrary differentiable functions f;(x;) of x; such that for
some ig > 2, f;, =ax;, +b, a,b € R and v, € R. Then

Y= x_ nQ(Z:’L:l fi+7)

Zi:l(fi/)z + (f1 — a)?

provides a family of hypersurfaces with zero Gauss-Kronecker curvature in R**, locally as-
sociated to the cylinder by a Ribaucour transformation with respect to {e;}.

(—f1sinzy—(a—f1) cos xy, f1 cosxy—(a— f1) sinxy, fo, ..., f1)

Proposition 2.5. Consider a parametrization of the hyperbolic space H?, as a hypersurface
of H*, contained in the Lorentzian space L°, given by

X = sinh z3(cos 9 cos 21, €08 T3 sin x1, sin x5, 0, 0) + (0, 0,0, 0, cosh x3),

where —m/2 < xo < w/2 and x3 > 0. Let e; = X, /| X,,|, i =1,2,3 and let N = (0,0,0,1,0)
be the normal map. Then the hypersurfaces of H*, locally associated to X by a Ribaucour
transformation with respect to e;, are given by

. 20
X=X- ?(EQZ@ — WN —QX),

where

S=>"X+W*—Q* Qi =f, Q=—fismm+f;, W=b#£0,beR, (24)

Q3 = (f1coszy + f2) coshas + fi, Q = (ficosxzy + fo)sinhxs + f, (25)
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and f; is an arbitrary differentiable real function of x;. Moreover, if
f3 = cysinhxs + cocoshxs, ¢, ¢ € R, (26)
then X has zero Gauss-Kronecker curvature.

Proof. From the expression of X, we have that a; = |X,,| are given by a; = sinh z3 cos xs,
ay = sinhxz and a3 = 1. It follows from (5) and a straightforward computation that the
functions €2; are given by (24), (25). From (6), we obtain the expression of 2 and this
concludes the proof of the first part of the theorem.

Using these expressions into (10), we obtain

= (;a—k 3o . a@) . (27)

Since \* = 0, for all i, it follows from (13) that 7% = 0, if and only if, the principal curvature
of X, X = 0. We will now obtain the conditions on the functions fi for the vanishing of
some T".

It follows from (27), that 7% = 0 if and only if f} — f3 = 0. Hence, fi, fo are arbitrary
differentiable functions of z1 and x5 respectively, f3 is given by (26) and 23 = 0.

Similarly, 7% = 0 if and only if f) + fo = —c; and fjcoshws — fysinhxs = ¢;, where

c1 € R. Hence, fo = —ci + by coswy + bysinmy, f3 is given by (26) and f; is an arbitrary
function. In this case, A2 = \3 = 0.
Finally, one can show that 7! = 0, if and only if,Nfl = —b; + c3c08Ty + c48in 9,

fo = —c1+ by cosxa+bysin xy and f3 is given by (26), i.e. X is a totally geodesic submanifold
of H3.

Therefore, we conclude that if f3 is given by (26), then X has vanishing Gauss-Kronecker
curvature. O

In Proposition 2.5, we observe that if the functions f; for i = 2,3 are of the form f; =
a; + B; cos x; +; sin x;, then X is a Dupin hypersurface with zero Gauss-Kronecker curvature.
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