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A path in G is a hamiltonian path if it contains all vertices of G. A graph G is hamiltonian
connected if there exists a hamiltonian path between any two distinct vertices of G. The
degree of a vertex u in G is the number of vertices of G adjacent to u. We denote by
8(G) the minimum degree of vertices of G. A graph G is conditional k edge-fault tolerant
hamiltonian connected if G — F is hamiltonian connected for every F C E(G) with |F| <k
and (G — F) > 3. The conditional edge-fault tolerant hamiltonian connectivity ’HC?(G)
is defined as the maximum integer k such that G is k edge-fault tolerant conditional
hamiltonian connected if G is hamiltonian connected and is undefined otherwise. Let n > 4.
We use K, to denote the complete graph with n vertices. In this paper, we show that
HC2(Kn) =2n — 10 for n ¢ {4,5,8,10}, HC3(K4) = 0, HC3(Ks) = 2, HC3(Ks) =5, and

Keywords:

Complete graph
Hamiltonian
Hamiltonian connected
Fault tolerance

HC3(K10) = 9.
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1. Introduction

For the graph definitions and notations, we follow [1].
Let G = (V, E) be a graph if V is a finite set and E is a sub-
set of {(u,v) | (u,v) is an unordered pair of V}. We say
that V is the vertex set and E is the edge set. Two vertices
u and v are adjacent if (u,v) € E. The complete graph K,
is the graph with n vertices such that any two distinct
vertices are adjacent. The degree of a vertex u in G, de-
noted by deg (u), is the number of vertices adjacent to u.
We use §(G) to denote min{deg;(u) |u € V(G)}. A path of
length m — 1, (vg, v1,..., Vm—1), is an ordered list of dis-
tinct vertices such that v; and v;4q are adjacent for 0 <i <
m — 2. We also write the path (vg,..., Vg, P, v}, ..., Vi)
for P = (vg,..., V). A cycle is a path with at least three
vertices such that the first vertex is the same as the last
one. A hamiltonian cycle of G is a cycle that traverses every
vertex of G exactly once. A graph is hamiltonian if it has
a hamiltonian cycle. A hamiltonian path is a path of length
V(G) —1.
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A hamiltonian graph G is k edge-fault tolerant hamilto-
nian if G — F remains hamiltonian for every F C E(G) with
|F| < k. The edge-fault tolerant hamiltonicity, He(G), is de-
fined as the maximum integer k such that G is k edge-fault
tolerant hamiltonian if G is hamiltonian and is undefined
otherwise. Assume that G is a hamiltonian graph, and x
is a vertex such that degg(x) = §(G). We arbitrary choose
deg.(x) — 1 edges from those edges incident to x to form
an edge faulty set F. Obviously, deg;_r(x) = 1; hence,
G — F is not hamiltonian. Therefore, H.(G) < §(G) — 2 if
He(G) is defined. Assume that n is an integer with n > 3.
It is proved by Ore [9] that any n-vertex graph with at least
C(n,2) — (n — 3) edges is hamiltonian. Moreover, there ex-
ists a non-hamiltonian n-vertex graph with C(n, 2) —(n—2)
edges. In other words, H.(K;) =n — 3 for n > 3. In [5],
it is proved that H.(Qn) =n — 2 for n > 2 where Qj,
is the n-dimensional hypercube. In [6], it is proved that
He(Sp) =n — 3 for n > 3 where S, is the n-dimensional
star graph.

Chan and Lee [2] began the study of the existence of
hamiltonian cycle in a graph such that each vertex is inci-
dent to at least two fault-free edges. A graph G is condi-
tional k edge-fault tolerant hamiltonian if G — F is hamilto-
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nian for every F C E(G) with |[F| <k and §(G — F) > 2.
The conditional edge-fault tolerant hamiltonicity, HE(G), is
defined as the maximum integer k such that G is condi-
tional k edge-fault tolerant hamiltonian if G is hamiltonian
and is undefined otherwise. Chan and Lee [2] proved that
Hg(Qn) =2n — 5 for n > 3. Recently, Fu [3] studies the
conditional edge-fault tolerant hamiltonicity of the com-
plete graph.

Fault tolerant hamiltonian connectivity is another im-
portant parameter for graphs [4]. A graph G is hamilto-
nian connected if there exists a hamiltonian path between
any two distinct vertices of G. It is easy to see that a
hamiltonian connected graph with at least three vertices
is hamiltonian. It is proved by Moon [7] that the degree of
any vertex in a hamiltonian connected graph with at least
four vertices is at least 3. A graph G is k edge-fault tol-
erant hamiltonian connected if G — F remains hamiltonian
connected for any F C E(G) with |F| < k. The edge-fault
tolerant hamiltonian connectivity of a graph G, HC.(G), is
defined as the maximum integer k such that G is k edge-
fault tolerant hamiltonian connected if G is hamiltonian
connected and is undefined otherwise. Assume that G is
a hamiltonian connected graph with at least four vertices
and x is a vertex such that degg;(x) = §(G). We arbitrary
choose deg;(x) — 2 edges from those edges incident to
x to form an edge faulty set F. Obviously, deg;_r(x) =
2; hence, G — F is not hamiltonian connected. Therefore,
HCe(G) < 8(G) — 3 if HC.(G) is defined. Again, Ore [8]
proved that HC.(K,) =n —4 for n > 4.

In this paper, we study the concept of conditional edge-
fault tolerant hamiltonian connectivity. Since the degree of
any vertex in a hamiltonian connected graph with at least
four vertices is at least 3, it is natural to assume that each
vertex is incident to at least three fault-free edges. A graph
G is conditional k edge-fault tolerant hamiltonian connected if
G — F is hamiltonian connected for every F C E(G) with
|F| <k and 8(G — F) > 3. The conditional edge-fault toler-
ant hamiltonian connectivity, HC?_,(G). is defined to be the
maximum integer k such that G is conditional k edge-fault
tolerant hamiltonian connected if G is hamiltonian con-
nected and is undefined otherwise.

Assume that n is an integer with n > 4. In this pa-
per, we prove that HC2(K,) = 2n — 10 for n ¢ {4,5,
8,10}, HC3(Kg) =0, HC3(Ks) = 2, HC3(Kg) = 5, and
HC?(Klo) = 9. To reach this goal, we present some pre-
liminary in the following section. In Section 3, we prove
our main result.

2. Preliminary

Let F be a faulty edge set. We define K, (F) be a graph
with E(Kn(F)) = F and V (Kn(F)) = V(Ky). The following
statement is proved in [3]:

Suppose F C E(Ky) and §(K, — F) > 2, wheren > 4.1fn ¢
{7, 9} (respectively, n € {7, 9}) then K, — F is hamiltonian,
where |F| < 2n — 8 (respectively, |F| < 2n —9).

In the conclusion of [3], it is claimed that the above
statement is optimal. Using our terminology, we obtain the
following statement.

H2(Kn) =2n—8 forn ¢ (7,9} andn > 4, H2(K7) = 5, and
HZ(Kg) =9.

Yet, it is easy to check that H?(Kg) is 0 and H?(K4)
is 2 (not 0.) Thus, we have the following theorem.

Theorem 1. Hg(Kn) =2n — 8 forn ¢ {7,9} and n > 5,
HZ(K3) =0, H2(Kg) = 2, H2(K7) = 5, and H2(Kg) =9.

Lemma 1. Assume that n is an integer with n > 6 and F is any
subset of E(K,) with |[F| =2n — 10 if n ¢ {8,10} and |F| =
2n — 11 if n € {8, 10}. There exists a vertex w in K,(F) such
that 1 < degy, (5 (W) < [251] — 1.

Proof. Suppose that the lemma is false. Then degg, 5y (W) >
L%J for every vertices with degg, r)(w) # 0. Obviously,

there are at least L%J +1 vertices with degy ) (w) #0.

Hence, |F| > (I%51](1%52] + 1))/2. However, (|%51] x

(L5 +1))/2>2n—10 for n ¢ (8,10} and (| "5 |(|"5" ] +
1))/2 > 2n — 11 for n € {8, 10}. It is a contradiction. The

lemma is proved. O

The following theorem can be found in [1].

Theorem 2. (See [1].) Let D = (dy,d>,...,dy) be a nonin-
creasing sequence with di > 1 and d; > 0 for 2 <i < n. We
set D' = (d/,d/z,...,d;]_l) =(dy —1,d3 —1,...,d4, 41 —
1,dg,42,...,dp). Then there exists a graph G with vertex set
{x1,%2,...,Xn} such that deg;(x;) =d; for 1 <i < nif and
only if there exists a graph G’ with vertex set {y1, Y2, ..., Yn—1}
such that degg/ (yj) = d;forl <jg<n-—1.

By the above theorem, we know that there is a graph G
with degree sequence D if and only if there is a graph G’
with degree sequence D'. If d} < 0 for some i, then D’ is
not the degree sequence of any graph, neither is D.

Lemma 2. Let F be a subset of E(Kg) with |F| =8 and §(Kg —
F) > 3. Let u and v be any two distinct vertices in K9 such that
degk,(r)(w) = 0 and degy, ) (v) = 0. Then there exists a ver-
tex w with degg, r) (W) € {2, 3}.

Proof. Let {x1,X2,...,Xs = U, X9 = v} be the vertex set of
Kg such that degg,r)(xi) =d; and d1 > dz > --- > dg. Ob-
viously, Y9, d; = 16. Assume that the lemma is false.
Then degKg(F)(xi) €{0,1,4,5} for 1 <i<9. By brute force,
all such sequences are listed below: (5,5,5,1,0,0,0,0,0),
(5,5,4,1,1,0,0,0,0), (5,4,4,1,1,1,0,0,0), (4,4,4,4,0,
0,0,0,0), and (4,4,4,1,1,1,1,0,0). By Theorem 2, we
can check that such a graph does not exist. Hence, the
lemma is proved. O

Lemma 3. Let F be a subset of E(Ky;) with |F| = 12 and
8(K11 — F) > 3. Let u and v be any two distinct vertices in K11
such that degy,, (r)(u) = 0 and degy,, r)(v) = 0. Then there
exists a vertex w with degy . (r) (W) € {2, 3, 4}.

Proof. Let {x1,x2,...,X10 = U,x;1 = v} be the vertex set
of K11 such that degg, r(x) =d; and dy >dy > --- >
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d11. Obviously, Z}; di = 24. Assume that the lemma
is false. Then degg, (X)) € {0,1,5,6,7} for 1 <i <
11. By brute force, all such sequences are listed below:

,7,7,1,1,1,0,0,0,0,0), (7,7,6,1,1,1,1,0,0,0,0), (7,
7,5,5,0,0,0,0,0,0,0), (7,7,5,1,1,1,1,1,0,0,0), (7,6,
6,5,0,0,0,0,0,0,0), (7,6,6,1,1,1,1,1,0,0,0), (7,6,5,
5,1,0,0,0,0,0,0), (7,6,5,1,1,1,1,1,1,0,0), (7,5,5,5,
1,1,0,0,0,0,0), (6,6,6,6,0,0,0,0,0,0,0), (6,6,6,5,1,
0,0,0,0,0,0), (6,6,6,1,1,1,1,1,1,0,0), (6,6,5,5,1,1,
0,0,0,0,0), (6,5,5,5,1,1,1,0,0,0,0), and (5,5,5,5,1,1,
1,1,0,0,0). By Theorem 2, we can check that such a graph
does not exist. The lemma is proved. O

We can easily obtain the following lemma.

Lemma 4. Let k > 2. Let G be a hamiltonian connected graph.
Then deleting any set S of k vertices from G, the resulting graph
G — S contains at most k — 1 connected components.

By the above lemma, we have a simple observation.

Lemma 5. Let k > 2. Let G be a graph. If there is a set S of k ver-
tices such that G — S contains k or more connected components,
then G is not hamiltonian connected.

3. Main result

Lemma 6. Let n > 4 and F C E(K;) with §(K, — F) > 3
Then K, — F is hamiltonian connected if |F| < 2n — 10 for
n¢{4,528,10}, |[F| =0 forn =4, |F| <2 for n =5, and
|F| <2n—11 forn € {8, 10}.

Proof. We prove this lemma by induction on n. Yet, we
should be very careful because the size of |F| is depending
on n. Without loss of generality, we assume that |F| =2n—
10 for n ¢ {4,5,8,10}, |[F|=0 for n=4, |F|=2 for n =
5, and |F| =2n — 11 for n € {8, 10}. The induction bases
are n=4,n=>5, and n =6. Suppose n=4 and |F| =0. It
is easy to see that the complete graph K4 is hamiltonian
connected. Suppose n =5 and |F| = 2. To keep §(K5 — F) >
3, F forms two independent edges. By brute force, it is
easy to check whether K5 — F is hamiltonian connected.
Suppose that n =6 and |F| = 2. Obviously, F is either two
adjacent edges or two independent edges. Again, by brute
force, we can check that Kg — F is hamiltonian connected.

Now, we assume that n > 7. Let u and v be any two
vertices of K,. The lemma follows if we can find a hamil-
tonian path of K, — F between u and v.

Case 1. deg, r)(u) # 0 or degg, (r)(v) # 0. Without loss
of generality, we assume that degg, ) (u) =k # 0. Let
i1, ..., Ig be the vertices such that (u,ij) € F for 1 < j <k.
Let F/' = (F —{(u,iy),..., (U, i) DU{(v,i1), ..., (v, ir)}. Ob-
viously, |F’| < |F|. Now, we consider K, —{u} as a complete
graph of (n— 1) vertices with faulty edge set F’. Obviously,
|F'|<2(n—1)—8 for n ¢ {8,10} and |F'| <2(n—1) —

for n € {8, 10}. Moreover, §(K, — {u} — F’) > 2. Thus, we
can apply Theorem 1 to obtain a hamiltonian cycle C in
Kn — {u} — F’. Without loss of generality, we write C as

(v,Xx,...,y,v). Then, (u,x,
path of K, —

..,y,v) forms a hamiltonian
F joining u to v.

Case 2. degyg (r)(u) =0 and degg, ) (v) = 0. By Lem-
mas 1, 2, and 3, there exists a vertex w such that
2 < degg, (ry(w) < L 11— 1 for ne{9,11} and 1 <
degy, r) (W) < ["51] — o ng (9, 1),

Obviously, §(K, — F — {w}) > 2. Suppose that §(K, —
F — {w}) = 2. Let x be any vertex in K, — {w} such that
degy, —(w}—r(x) = 2. Obviously, (x, w) ¢ F, degg, _r(x) =3,
and degg, (r)(x) =n —4. We claim that x is the only vertex
in Kn — {w} with degg, _(w—r() = 2. If otherwise, let z
be another vertex in Kp — {w} with degg, _;y—r(2) = 2.
Then |F| > degy, r)(x) + degg,(r)(2) — 1 =2n — 9. This is
impossible because |F| < 2n—10. Thus, x is the only vertex
in Ky —{w} such that degy, _(w—r(x) = 2. Thus, §(Kn—
{u,x}) =3.

Let F'=F — {(x,i) |i € V(Ky)}. We consider K, — {u, x}
as a complete graph of (n—2) vertices with faulty edge set
F’. Obviously, |F'|=1<2forn=7, |[F/|=n—-7<2n—
2)—10 for n ¢ {10,12}, and |F'|=n—7 < 2(n—2) — 11 for
n € {10, 12}. By induction, we have a hamiltonian path P
of K, — {u,x} — F’ joining w to v. So (u,x, w, P, v) forms
a hamiltonian path of K, — F joining u to v.

Now, we consider §(K, — {w} — F) > 3. Since 2 <
degg, (W) < L%J — 1 for ne€ {9,11} and 1 <
degg. (W) < L%J — 1 for n ¢ {9,11}, there exists
(x,y) € F such that {(w,x), (w,y)}NF =@. We set F as
F—{(w,2) | (w,z) € F} — {(x,y)} and consider K, — {w}
with faulty set F’. We have |F’| =2n — 10 — deg, ) (W) —
1<2n—-13for n e {9,11} and |F'| = 2n—10—deg, r)(W)—
1 <2n—12 for n ¢ {9,11}. By induction, there exists a
hamiltonian path P = (u = x1,x2,...,x,—1 = v) of K, —
{w} — F’ joining u to v. Suppose that (x,y) € P. There
exists an integer i such that {x;, x;+1} = {x, y} for some i.
Suppose that (x, y) ¢ P. Since degg, (r)(W) < L%J —1and
degy, (r)(w) +degg, _r(w) =n—1, degg,_p(w) > 5] +1.
Hence, there exists an integer i such that (x;,x;11) € P and
{(w, %), (W, xi+1)}NF = @. Therefore, (u =x1, X2, ...,Xi, W,
Xit+1,Xi+2, ..., v) forms a hamiltonian path of K, — F join-
ingutov. O

Theorem 3. Let n > 4. Then HC3(K,) = 2n — 10 for n ¢
{4,5,8,10}, HC2(K4) = 0, HC2(K5) = 2, HC3(Kg) = 5, and
HC3 (K1) =9.

Proof. Let F be any subset of E(K;) with §(K, — F) >3
Since (K, —F) >3, |F|]=0forn=4and |F|<2forn=5
Thus, HC3(K4) =0 and HC3(Ks) = 2.

Suppose n = 8. Let V(Kg) = {x1,x2,...,x3}. We set R =
{x1,...,x4}, S={x5,...,xg},and F ={(u,v) |u,v € R}. We
can check that §(Kg — F) >3, |F| =6 and (Kg — F) — S has
four connected components. By Lemma 5, Kg — F is not
hamiltonian connected. See Fig. 1(a) for illustration. Thus,
HC3(Kg) < 6. By Lemma 6, HC>(Kg) = 5.

Suppose n = 10. Let V (Kqg)
R={x1,...,%5}, S ={xg,...

= {x1,x2,...,X10}. We set
,X10}, and F ={(u,v) |u,v e
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(a) (b) (c)

Fig. 1. All white vertices are in R, all black vertices are in S, and all gray
vertices are in T. All dashed lines are in F.

R}. Then, §(K19 — F) >3, |F| =10, and (Ky90 — F) — S has
five connected components. By Lemma 5, Ki9 — F is not
hamiltonian connected. See Fig. 1(b) for illustration. Thus,
HC3(K10) < 10. By Lemma 6, HC3(K1g) =9.

Suppose that n € {6,7,9} U {i | i > 11}. Let V(Ky) =
{x1,%2,...,%}. We set R = {x1,x2}, S ={x3,x4,%x5}, T =
{x6,...,%n}, and F ={(u,v)|u € R,v € RUT}. Obviously,
8(Kn—F)>=3,|F|=2(n—-5)+1=2n—-9,and (K, —F)—S
has three connected components. See Fig. 1(c) for illustra-
tion for case n =9. By Lemma 5, K;; — F is not hamil-

tonian connected. Thus, HC?(KH) < 2n — 9. By Lemma 6,
HC3(Kp) =2n — 10.

The theorem is proved. O
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