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In applications of hierarchical models (HMs), a potential weakness of 
empirical Bayes estimation approaches is that they do not to take into 
account uncertainty in the estimation of the variance components (see, e.g., 
Dempster, 1987). One possible solution entails employing a fully Bayesian 
approach, which involves specifying a prior probability distribution for the 
variance components and then integrating over the variance components 
as well as other unknowns in the HM to obtain a marginal posterior distribu
tion of interest (see, e.g., Draper, 1995; Rubin, 1981). Though the required 
integrations are often exceedingly complex, Markov-chain Monte Carlo 
techniques (e.g., the Gibbs sampler) provide a viable means of obtaining 
marginal posteriors of interest in many complex settings. In this article, we 
fully generalize the Gibbs sampling algorithms presented in Seltzer (1993) 
to a broad range of settings in which vectors of random regression parame
ters in the HM (e.g., school means and slopes) are assumed multivariate 
normally or multivariate t distributed across groups. Through analyses of 
the data from an innovative mathematics curriculum, we examine when and 
why it becomes important to employ a fully Bayesian approach and discuss 
the need to study the sensitivity of results to alternative prior distributional 
assumptions for the variance components and for the random regression 
parameters. 

This work was made possible in part by a Spencer Dissertation Year Fellowship 
awarded to Michael Seltzer. We wish to thank the University of Chicago School 
Mathematics Project for allowing us to use the data from the Transition Mathematics 
Field Study to illustrate the issues and methods discussed in this article. The develop
ment and evaluation of the Transition Mathematics curriculum was supported by 
grants from the Amoco Foundation and the Carnegie Foundation. We would also 
like to thank the associate editor, an anonymous reviewer, Don Rubin, and Stephen 
Raudenbush for very helpful comments on earlier drafts of this article. 
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A form of the hierarchical model (HM) that has been used extensively in 
analyzing continuous outcomes is a two-level formulation in which vectors 
of Level 1 regression parameters (e.g., school means and slopes) are assumed 
multivariate normally (MVN) distributed across Level 2 units (e.g., schools). 
The two-level, MVN formulation has been used in growth curve analyses 
(e.g., Laird & Ware, 1982; Strenio, Weisberg, & Bryk, 1983), reliability and 
predictive validity studies (e.g., Novick, Jackson, & Thayer, 1971; Braun, 
Jones, Rubin, & Thayer, 1983), studies of school effects (e.g., Aitkin & 
Longford, 1986; de Leeuw & Kreft, 1986; V. Lee & Bryk, 1989; Rauden-
bush & Bryk, 1986), and analyses of the effects of educational interventions 
(e.g., Raffe, 1991). 

In its general form, Level 1 of the two-level HM consists of a regression 
model in which the observations (y£y, i = 1, . . . , nj) nested within each of J 
Level 2 units (j = 1 , . . . , J) are modeled as a function oiR predictor variables 
(XUj, X2ij, . . . , XRij): 

yij = fro + fyiXuj + £j2X2ij + • • - + fyRXRU + eij9 (1) 

where the $jr (r = 0, . . . , / ? ) are unknown regression parameters, and the 
ey are residuals assumed normally distributed with mean 0 and variance or2. 

All R + 1 regression parameters in the above model could be treated as 
varying across Level 2 groups (i.e., random), or the variation in 1 or more 
parameters might be constrained to be 0 (see, for example, Aitkin and Long
ford's [1986] discussion of "constant slopes" models). Thus it is useful to 
reexpress the Level 1 model in the following manner: 

yy = Xfij + Xj+y+ + ey, (2) 

where y, is an ^ X 1 vector of observations for group j , Py is a P X 1 vector 
consisting of those regression parameters treated as varying across groups 
(termed random regression parameters in this article), and 7+ is an F X 1 
vector comprised of those parameters that are treated as nonvarying or fixed. 
Values on the predictor variables connected with each of these sets of coeffi
cients are contained in the matrices Xj and X7+, which are dimensioned 
Hj X P and nj X F, respectively. Finally, e7 is an nj X 1 vector of residuals 
assumed normally distributed with mean vector 0 and variance cr2In. 

At Level 2, the random regression parameters are modeled as a function 
of Level 2 characteristics (W7): 

p7 l7,T~^(W77,T), (3) 

where 7 is a A' X 1 vector of fixed effects relating differences in the magnitude 
of the random regression parameters to differences in Level 2 characteristics, 
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and T is a P X P matrix capturing the variance and covariance of the elements 
of P7 about W/y, a vector of expected values conditional on Wy. 

Thus, in multisite evaluation studies, for example, interest might center 
on program effects for particular sites (e.g., elements of the Py) and on 
elements of y relating differences in site characteristics to differences in the 
magnitude of within-site program effects. However, as detailed in the follow
ing section, problems can arise in utilizing standard, empirical Bayes (EB) 
approaches to estimation and inference for 7 and Py, particularly when the 
number of Level 2 units in a sample is small. In this article, the use of 
a fully Bayesian approach in addressing these problems is discussed and 
implemented via a Markov-chain Monte Carlo (MCMC) technique termed 
the Gibbs sampler (Gelfand & Smith, 1990). 

Seltzer (1993) discusses the use of the Gibbs sampler in simple HM settings 
in which the Level 1 model contains a single regression parameter, for 
example, ytj = Py + e,y, or ytj = PyX̂  + e,y. Algorithms are presented for 
settings in which the Py are assumed normally distributed or, so that sensitivity 
analyses can be conducted (see below), univariate t distributed. In this article, 
we generalize this work and present Gibbs sampling algorithms that can be 
used to calculate marginal posteriors of interest in HMs in which vectors of 
Level 1 regression parameters are assumed MVN or multivariate t (MVT) 
distributed. The algorithms that we outline can be applied in a broad range 
of settings commonly encountered in practice—that is, settings in which each 
of the regression parameters specified in the HM is treated as varying across 
groups, or in which the variation in one or more regression parameters is 
constrained to be 0. 

EB Estimation of 7 and py 

To convey problems connected with EB estimation for the HM, and to 
introduce key distributional forms that appear in the Gibbs sampling algo
rithms detailed below, we give the conditional posterior distributions for 7 
and Py given T, a2, and the data (y), based on an HM in which each of the 
regression parameters in the Level 1 model is treated as random (Laird & 
Ware, 1982; Lindley & Smith, 1972). Treating Equation 3 as the prior distribu
tion for Py,y = 1, . . . , Jy where W/y and T are, respectively, the prior mean 
and variance-covariance matrix of py, and assuming a uniform prior for 7, 
we have 

7ly,T, a 2 ~A«7* ,D*) , (4) 

where 

7* = I 2 w; (v,. + T>-<w,l 2 w;<v, + iy%, 
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and 

D* = 2 VfjCVj + TT'W,-
7 = 1 

where Py = (X'yX,-)-1 X ŷ,- is the ordinary least squares (OLS) estimate of 
P7 with sampling variance V7 = ar2(X'7X/)~ *, and 7* is the familiar generalized 
least squares (GLS) estimator for 7 discussed in numerous references (see, 
for example, Raudenbush, 1988). 

For the P7 we have 

p7-iy,T,a2~yvP(p;,v;), (5) 

where 

(J/ = A,0, + (I, - A,)W/y*, 

with 

Aj = TOO + T ) _ 1 = ( V + T-VYT 1 , 

and 

IP - Aj = (V/1 + T" 1 ) -^" 1 , 

and with 7*, p,, and Vy defined as above. It can be seen that p* is the well-
known composite (or shrinkage) estimator based on normally distributed 
data and a normal prior (see, for example, Lindley & Smith, 1972; Laird & 
Ware, 1982; and Strenio et al., 1983). As the precision of Py decreases, 
the amount of weight placed on the estimated prior mean W/y* increases. 
The conditional posterior variance of Py (see Raudenbush, 1988) has the 
following form: 

V* = A,-Vy + (JLP - Ay)S/IP - Aj)', (6) 

with 

S,. = W,-D*W;. 

In employing an EB approach to estimation and inference for 7 and P7, 
maximum likelihood (ML) estimates of the variance components are obtained 
using one of a number of iterative techniques (e.g., EM or Fisher scoring), 
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and point estimates and intervals for 7 and (5, would be based on the condi
tional posterior distributions defined in Equations 4 and 5 setting T and a2 

equal to their ML estimates. Thus, we have 

7 l y , T = Tml, a
2 = a2

ml ~ NM, D*,) (7) 

and 

ftly, T = Tml, a
2 = a2

ml ~ Ntffa, Y*ml), (8) 

where 7*! and (Jfmi are EB estimates of 7 and (5,-, respectively. (For discussions 
of ML estimation of the variance components in the HM, see Dempster, 
Rubin, & Tsutakawa, 1981; de Leeuw & Kreft, 1986; Goldstein, 1986; and 
Longford, 1987.) 

Problems Connected With the EB Approach and 
Potential Solutions via a Fully Bayesian Approach 

A clear concern that arises in using the EB approach is that the posterior 
variances (D*j; Vfml) and intervals that one obtains (Equations 7 and 8) do 
not take into account the uncertainty connected with using estimates of the 
variance components in place of their true values (Dempster, 1987). This is 
especially problematic in settings where the number of Level 2 units (/) in 
a sample is small, since the amount of information available for estimating 
T depends in large part on J. Hence, the intervals that we obtain in such 
situations may be misleadingly small. 

To help clarify this issue, it is useful to consider the one-sample problem 
where we have yt ~ 7V(|x, a2), i = 1, . . . , n. Treating the sample variance 
(s2) as the true value for a2 and, in turn, basing intervals for |x on_the 
conditional posterior /?(|x I y, a2 = s2) yields a 95% interval for JJL of Y ± 
l.96(s ijn). We know that as the number of observations for estimating a2 

becomes small, such an approach becomes problematic. But while t proce
dures are available to us in such settings to take into account uncertainty 
concerning the estimation of a2 from the data, standard adjustments of this 
kind are unavailable in all but the simplest HMs (see, for example, Kirk's 
[1982] treatment of balanced hierarchical designs). 

Morris (1983), Kackar and Harville (1984), and Laird and Louis (1987) 
provide methods for adjusting intervals for random regression parameters in 
cases where the Level 1 model consists of a single, unknown regression 
parameter. However, Laird and Louis (1989) remark that in models where 
vectors of regression parameters are assumed to vary across Level 2 units—as 
in, for example, Equation 3—adjusting the posterior distributions defined 
in Equations 7 and 8 to reflect uncertainty concerning T and cr2 becomes 
extremely difficult. 
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An additional problem stemming from small numbers of Level 2 units has 
been discussed by Rubin (1981): namely, point estimates of P, based on ML 
estimates of the variance components may constitute poor summaries of the 
data. This arises from the fact that when J is small, the likelihood functions 
for Level 2 variance parameters will tend to exhibit a high degree of asymme
try; hence, the resulting ML estimate of T used to weight the data and the 
prior mean (Equation 5) may be unrepresentative of plausible values for T 
(see also Draper, 1995). 

A potential solution to addressing problems connected with small numbers 
of Level 2 units is to employ a fully Bayesian approach. In this approach, 
priors are placed on the variance components, and then we attempt to integrate 
over the variance components as well as other unknowns in the model to 
obtain the marginal posterior distribution of a fixed effect or random regres
sion parameter of interest. In the case of the one-sample problem, for example, 
the fully Bayesian approach involves placing priors on |x and a2 and then 
integrating out a2 from the joint posterior p((x, a21 y) to obtain the marginal 
posterior p{\LIy) (see, for example, Box & Tiao, 1973, chap. 2). 

Rubin (1981) carried out a fully Bayesian analysis in his effort to draw 
inferences concerning the magnitude of the effect of coaching on student 
performance on the SAT in eight parallel experiments (j = 1, . . . , 8). In that 
application, the Level 1 model consisted of a single, unknown regression 
parameter (i.e., a coaching effect) assumed normally distributed at Level 2, 
and marginal posteriors could be calculated via numerical integration tech
niques or, as illustrated by Rubin, multiple-imputation-based methods. How
ever, in cases where vectors of regression parameters ((J,) are assumed MVN 
distributed, the use of a fully Bayesian approach has been impeded due to 
the extreme difficulty of the required integrations. One of the aims of this 
article, as noted above, is to present a general Gibbs sampling formulation 
for settings of this kind. 

In utilizing a fully Bayesian approach, one must be aware that the answers 
one obtains concerning parameters of interest (e.g., posterior intervals) may 
be sensitive to choice of priors for the variance components, especially when 
sample sizes (J) are small. In the next section, we discuss several priors that 
appear in the literature (e.g., Jeffreys' prior), paying particular attention to 
their strengths and weaknesses. Whereas Seltzer (1993), for example, places 
uniform priors on the variance components (see also Rubin, 1981), we illus
trate the important analytic practice of recalculating marginal posteriors for 
parameters of interest under alternative specifications of priors for the vari
ance components. 

In addition to studying the sensitivity of results to choice of priors for the 
variance components, it is also prudent to study the sensitivity of results to 
assumptions of normality at Level 2. In particular, this involves reanalyses 
of the data under heavy-tailed distributional assumptions. With respect to 
drawing inferences concerning 7, Seltzer (1993) has noted that as a least 
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squares estimator, 7* (Equation 4) is sensitive to extreme P (see also West, 
1984). For settings in which the Level 1 model consists of a single, unknown 
regression parameter (Py), Seltzer (1991, 1993) and Carlin (1992) show how 
the Gibbs sampler can be used to calculate marginal posterior distributions 
of fixed effects of interest in HMs in which the P7 are assumed univariate t 
distributed, thereby yielding results that are robust to outlying Level 2 units 
(e.g., an unusually effective school). In this article we extend these algorithms 
to a range of settings in which vectors of regression parameters are assumed 
MVT distributed at Level 2. 

While Seltzer (1993) and Carlin (1992) focus on the sensitivity of results 
for fixed effects to assumptions of normality, an additional problem connected 
with the Level 2 normality assumption centers on the EB estimator ($*ml. 
Specifically, shrinkage can be severe for elements of Py that are far from the 
estimated prior mean W/y^. Thus, Efron and Morris (1971, 1972) warn that 
while EB estimators may perform well in terms of estimation of an entire 
ensemble of random regression parameters (e.g., a set of J scalars p7, j = 1, 
. . . , J) as measured by squared error loss (Lj= x (P*ml - p7)

2), they may 
perform quite poorly in connection with estimating those P7 that differ substan
tially from the estimated prior mean; that is, the degree of bias in such cases 
is potentially high. Thus, while substantive interest often focuses on, for 
example, unusually effective schools, we run the risk of seriously misestimat
ing such effects when employing the compromise estimator that is obtained 
under the assumption of normal priors. The limited translation rules developed 
by Efron and Morris (1971, 1972), which constrain the amount by which the 
EB and OLS estimates may differ, are an attempt to remedy this problem (for 
an alternative view on limited translation rules, see Rubin, 1980). However, as 
Dempster (1983) notes, limited translation estimators "are effectively ad hoc 
devices corresponding roughly to the use of Bayesian priors for [Level 1 
parameters] with longer than normal tails" (p. 57). Thus, from a Bayesian 
perspective, it would be prudent to conduct analyses under the assumption 
of heavy-tailed (e.g., t) priors, as well as under the assumption of normal 
priors. 

In the next section, we examine possible choices of priors for the variance 
components and then outline Gibbs sampling algorithms for calculating mar
ginal posteriors of interest in the HM under MVN and MVT distributional 
assumptions for the P7. We then utilize the Gibbs sampler as well as a standard 
EB approach in analyses of the data from an evaluation of an innovative 
mathematics curriculum called Transition Mathematics. A key aim of these 
analyses is to illustrate and explain differences in location and posterior 
variance that can arise for random regression parameters and fixed effects 
of interest as we move from an EB approach to a fully Bayesian approach. 
Attention is drawn to situations in which it becomes particularly important 
to employ a fully Bayesian approach. 
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Implementing the Fully Bayesian Approach in Applications of the 
HM Under MVN and MVT Level 2 Assumptions 

Choosing Priors for the Variance Components 

To conduct fully Bayesian analyses, prior probability distributions must 
be chosen for the variance components in the HM (i.e., a2 and T). There are 
several alternatives, and their advantages and disadvantages require some 
discussion. 

Two of the possible choices of a prior for cr2 discussed in the literature 
are a uniform prior—that is, p(cr2) « k, where A: is a constant—and Jeffreys' 
prior—that is, /?(cr2) « 1/cr2. In contrast to the uniform prior, Jeffreys' prior 
assigns small weight to increasingly large values of a2 and places large 
amounts of weight on values of a2 approaching 0; in fact, it is readily seen 
that 1/a2 becomes infinitely large for values of a2 «* 0. 

Whereas both of these priors are improper, an inverse chi-square prior of 
the following form provides us with a proper prior: 

p((i2) oc (cr2)-[(v,/2)+i] e x p A. 
2a2 

(9) 

with degrees of freedom v{ > 0 and scale parameter S{ > 0. Unlike the 
uniform prior and Jeffreys' prior, Equation 9 defines a class of distributions 
that are unimodal (see Novick & Jackson, 1974). For 1 < vx < 4, the inverse 
chi-square distribution has infinite variance and hence would provide us with 
a prior that is weak relative to the information provided by the data (see, for 
example, Gelfand, Hills, Racine-Poon, & Smith, 1990). In addition, for small 
v b the inverse chi-square prior exhibits strong, positive skew, and so, in 
contrast to the uniform prior, prior probabilities gradually decrease as values 
of a2 become arbitrarily large. Furthermore, unlike Jeffreys' prior, the density 
function depicted in Equation 9 does not become infinitely large as a2 

approaches 0. Thus, an inverse chi-square prior with small degrees of freedom 
constitutes an attractive alternative to the uniform prior and Jeffreys' prior 
(see P. Lee, 1989). 

In addressing the issue of possible priors for T, it is helpful to begin with 
a discussion of settings in which we have a single variance component in 
the Level 2 model, that is, T. As in the case of priors for a2, three potential 
choices are /?(T) OC k, /?(T) a 1/T, and an inverse chi-square prior with degrees 
of freedom v2 > 0 and scale parameter S2 > 0. (Whereas a subscript of 1 
was used to denote the degrees of freedom and scale parameter for the prior 
distribution of the Level 1 variance parameter, the subscript 2 will be used 
in the case of the prior for the Level 2 variance component(s).) 

Morris (1983), Lindley (1983), and DuMouchel and Waternaux (1992) 
point out that the use of Jeffreys' prior for T is problematic. Even if only a 
tiny fraction of the mass of the likelihood /(TIy) lies near T = 0, the fact that 
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1/T becomes infinitely large for values of T « 0 will result in a posterior 
distribution for T that is a spike at T = 0. The problem is that T = 0 always 
"has a non-zero likelihood value due to the presence of sampling variation 
when a > 0" (DuMouchel & Waternaux, 1992, p. 339). Hence, DuMouchel 
and Waternaux discourage the use of Jeffreys' prior. They also note that 
because of possible numerical inaccuracies of MCMC methods such as the 
Gibbs sampler, analysts might sometimes miss this problem (see, for example, 
Geyer, 1992). 

An appealing feature of a uniform prior for T is that the modes of the 
posterior and likelihood will be identical, since the likelihood is reproduced 
as the posterior, that is, /?(TIV)

 a /(Tly). A potential drawback, however, is 
that prior probabilities attached to T do not decrease as values of T become 
arbitrarily large (DuMouchel & Waternaux, 1992); as a result, the posterior 
intervals that we obtain for fixed effects and random regression parameters 
of interest may tend to be somewhat conservative. 

A viable alternative to the uniform prior would be a weak inverse chi-
square prior (i.e., 1 < v2 < 4) whose mode is approximately equal to the 
mode of /(Tly). A weak prior of this kind would slightly favor values of T 
near the mode of /(Tly), thereby giving some support to the information 
provided by the data (see Gelfand et al., 1990). An advantage over the uniform 
prior is that this prior would downweight arbitrarily large values of T (see 
Note 1). Though not explored in this article, an additional option would be 
to specify a more informative inverse chi-square prior with mode and spread 
reflecting, for example, information based on previous empirical work in a 
particular area (DuMouchel & Waternaux, 1992). 

In settings where a matrix of variances and covariances is specified in the 
Level 2 model (T), the inverse chi-square distribution generalizes to an 
inverse Wishart distribution: 

p(T) oc |TI -KV2+P+1V2] exp ~ tr T"1S2 , (10) 

with degrees of freedom v2 ^ P and where S2 is a positive definite symmetric 
scale matrix (see Zellner, 1971). Similar to the inverse chi-square prior, setting 
v2 to a small value provides us with a prior that is weak relative to the 
information provided by the data, and, as will be seen, S2 can be chosen so 
that the prior lends some support to the information provided by the data 
regarding T. 

As we will see later in an illustrative example, rather than simply choosing 
one prior for the variance components, it is prudent to study the sensitivity 
of one's results to reasonable, alternative specifications of the prior, particu
larly when sample sizes are small. 
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Using the Gibbs Sampler to Obtain Marginal Posteriors of Interest Under 
MVN Level 2 Distributional Assumptions 

Implementation of the Gibbs sampler in simple HM settings in which the 
Level 1 model consists of a single unknown regression parameter which 
is assumed univariate normally distributed is presented in various sources 
including Morris (1987), Gelfand & Smith (1990), and Seltzer (1991, 1993). 
Kasim (1994) outlines a Gibbs sampling algorithm for an HM consisting of 
two unknown regression parameters in the Level 1 model: an intercept 
assumed univariate normal (P = 1) and a slope whose variance is constrained 
to be 0 (F = 1) (see Equation 2 above). Also focusing on Level 1 models 
consisting of two unknown regression parameters, Gelfand et al. (1990) and 
Seltzer (1991) illustrate the use of the Gibbs sampler in settings in which 
the regression parameters are assumed MVN distributed (P = 2) (see also 
Raudenbush, Cheong, & Fotiu, 1995). In this section, we integrate and gener
alize these lines of work. We outline an algorithm, based on the general form 
of the Level 1 model depicted in Equations 1 and 2, that can be applied in 
settings in which all regression parameters are assumed MVN distributed, 
or in which the variation in one or more regression parameters is constrained 
to be 0. 

To implement the fully Bayesian approach, we must place priors on all 
unknowns. For the P X 1 vector of random regression parameters in the 
Level 1 model (see Equation 2) we have: fijly, T ~ AWW/y, T). For the 
F X 1 vector of regression parameters treated as nonvarying across groups 
(Y+ in Equation 2), we assume a uniform prior. A uniform prior is also 
assumed for the K X 1 vector of fixed effects 7 relating differences in Level 
2 characteristics (W,) to differences in Py. For the variance components, we 
assume an inverse chi-square prior for a2 and an inverse Wishart prior for 
T. Thus, combining the data and these priors, the joint posterior distribution 
of P = ((J'b . . . , P ' 7 ) \ 7, 7+, T, and a2 is as follows: 

p(P, 7, 7 + , T, a2 ly) oc f ] p ( y ip 7 + , a2) Yl p ( p . | 7 , T) 
7=1 7 = 1 

xp(y+)p(y)p(<?2)p(Tl ( l i ) 

where 

p(yyiPy,7 + , c r 2 )«f l ( l /a 2 ) 1 ' 2 exp 
1=1 
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and 

p($j\y, T)oc lT-M1 /2exp 4 ^ " W ^ T _ I ^ - W ^ , (13) 

and where p((J2) and/?(T) are defined as in Equations 9 and 10, respectively. 
Integrating over all unknowns in Equation 11 to obtain marginal posteriors 

of interest is forbiddingly complex—that is, the required integrations are 
intractable. As a viable alternative, however, we can use the Gibbs sampler 
to obtain draws from the joint posterior and then simulate the marginal 
posterior distribution of any parameter of interest via the empirical distribution 
of the values generated for that parameter. (For a thorough discussion of the 
Gibbs sampler, see Gelfand & Smith, 1990; see also Tanner & Wong, 1987; 
Morris, 1987; Zeger & Karim, 1991; Tanner, 1993; Casella & George, 1992; 
Gelman & Rubin, 1992; and Seltzer, 1993.) 

The essential feature of the Gibbs sampler is that we subdivide the 
unknowns in the joint posterior in a way that makes it easy (or possible) to 
sample from the conditional posterior distribution of each group of unknowns 
given the other groups of unknowns and the data. As such, the algorithm we 
present entails sampling from the conditional posterior distributions for the 
following five groups of unknowns: a2, p , T, 7, and 7+. To obtain a sense 
of how the steps comprising the Gibbs sampler are derived, see the univariate 
normal formulation presented by Seltzer (1993) (it should be noted that the 
latter formulation gives results only for the case where uniform priors are 
placed on the variance components in the HM). 

Step 1. />(a2ly, p , T, 7, 7+): 

1/a2 ~ GammaL = [(N + Vl)/2], b = 2 / U + £ 2 eJA 11, (14) 

where etj = (ytj - [X-fij + X -^Y+D. AT = 2y=i nr md v\ a n d s\ are t h e 

degrees of freedom and scale parameters of the prior for a2 specified in 
Equation 9. Note that £(l /a2) = ab and Var(l/a2) = ab2. Under the prior 
p(cr2) <x 1/a2, we have vx = 0 and 5! = 0; for/?(a2) ex kf we have vx = -2 
and Sx = 0. 

When each of the regression parameters specified in the Level 1 model is 
treated as varying across groups, the residuals in Equation 14 (i.e., the ey) 
simply reduce to etj = (yy - X/,{&,•). 

Step 2. p(piy, T, Y, Y+> °r2): With 7+ given, Equation 2 becomes 

dj = Xjfy + Cy, (15) 
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where dy = y, - X/+Y+. It can be seen that dy is the vector of observations 
for group j adjusted for differences in the values of the predictors contained 
in Xj+. Based on the data for group j and given 7+. the OLS estimate of (Jy 

has the following form: 

^d)j = (XjXj)-'Xjdj. (16) 

Combining the data and the prior for py gives rise to the following condi
tional posterior distribution for this step of the algorithm: 

where 

and 

Vj~NP(Vj,\j) U= 1,..., A (17) 

P, = A , p w + (IP - A,.)W,7, 

\j = AjVj = (<T-2XjXj + T"1)"1, 

with Ay = (\j-1 + T - W y " 1 and Vy = a^XjXy)"1. Drawing from the work 
of Braun et al. (1983), when XJXJ is singular for a particular group, we can 
reexpress (Jy as follows: 

py = (CJ-2X;XJ + T" V(a"2X;dy + T - ^ / y ) . (18) 

When all of the regression parameters in Equation 1 are treated as varying 
across groups, $(d)j in Equation 17 is simply replaced by P, = (XyXy)_1Xyyy, 
and y7 replaces d, in Equation 18. 

Step 3. /7(Tly, 7, 7+, a2, P): 

*•-! Wishart, B = S2 + SUyUM ,vw = (7 + v2)J, (19) 

where Uy = (Py - W/y), B is a P X P scale matrix (see, for example, Box & 
Tiao, 1973, p. 427), vw represents the degrees of freedom of the Wishart 
distribution, and v2 and S2 are, respectively, the degrees of freedom and scale 
matrix of the prior for T specified in Equation 10. Algorithms presented by 
Odell and Feiveson (1966) and Smith and Hocking (1972) provide an easy 
means of sampling from Wishart distributions. Assuming a uniform prior for 
T, we have S2 = 0 and v2 = -(/> + 1). 

In settings where only one of the regression parameters specified at Level 
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1 is assumed normally distributed, the conditional posterior distribution for 
the variance component connected with that parameter (i.e., T) under the 
assumption of an inverse chi-square prior (see above) is as follows (cf. 
Seltzer, 1993): 

1/T ~ Gamma a = [(J + v2)/2], b = S2 + 2^?)] , (20) 

where Uj = (3, - W/y. 

Step 4. p(y\y, y+, a2, fl, T): 

7 ~ Ntf, 0), (21) 

where 

7 = X VfjT-lVfj 

and 

D 2 W/T-'W,-
U=i 

Step 5. p(7+ly, a2, P, T, 7): With P7 known, Equation 2 becomes 

dy+ = Xy-+7+ + ey, (22) 

where dy+ = y, — XyPy. Thus, d,-+ is the vector of observations for group j 
adjusted for differences in the values of the predictors contained in X,. Pooling 
the data for all groups yields the following conditional posterior for 7+: 

7 + ~ A«7+, D+X (23) 

where 

- 1 - 1 

I x;+x 
. 7 = 1 

•7'+ t x;+d;+, 
J y=i 
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and 

D+ = a 2J XJ+XJ+ 

When all regression parameters specified at Level 1 are treated as random, 
Step 5 of the algorithm is, of course, omitted. (For a discussion of how 
nonrandomly varying slopes [Bryk & Raudenbush, 1992, pp. 21-22] are 
handled in this formulation, see the last paragraph of Appendix A.) 

In implementing the algorithm, we choose starting values for the parameters 
in the model and then proceed through the steps of the algorithm, sampling 
once from each conditional posterior given the most recently sampled values 
for the other groups of unknowns. We continue cycling through the steps of 
the algorithm until convergence and then use values generated in subsequent 
cycles to simulate the marginal posterior distribution of any parameter of 
interest in the model. For details concerning implementation of the Gibbs 
sampler and monitoring convergence, see Gelman and Rubin (1992) and 
Seltzer (1993, pp. 213, 216, and 232). Before proceeding to the next section, 
note that an alternative formulation to that presented above could be developed 
within the generalized linear modeling framework outlined by Zeger and 
Karim (1991). 

MVT Level 2 Distributional Assumptions 

Seltzer (1991, 1993) and Carlin (1992) present Gibbs sampling algorithms 
for settings in which the Level 1 model consists of a single, unknown regres
sion parameter (i.e., (3,-) assumed t distributed. These formulations utilize an 
approach, outlined in Tanner and Wong (1987), based on the normal/gamma 
mixture representation of the t distribution. An MVT extension is illustrated 
in Seltzer (1991) (see also Racine-Poon, 1992). In this section, we build on 
this work and extend the algorithm presented above to settings in which 
vectors of regression parameters specified in the Level 1 model are assumed 
MVT distributed.2 To help grasp the similarities in logic between the MVT 
and univariate t formulations, see Seltzer (1993). 

We first write Py - W/y = Uy where U, is assumed MVT (tP) distributed 
with mean 0, scale T, and v degrees of freedom. (The nonsubscript symbol 
v will be used in this article to refer to the degrees of freedom assumed for 
the distribution of the random regression parameters ((Jy) or random effects 
(Uy).) Since an MVT distributed vector is equivalent to an MVN distributed 
vector scaled by a gamma distributed variate, we can write Uy in the follow
ing form: 

(Uy = R'Z,<7/1/2) - rP(0, T, v), (24) 
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where R'R = T, Z, ~ NP(0, lP) and q} ~y$,lv. 
The crux of the MVT algorithm presented below is that conditional on qp 

the Level 2 model becomes MVN with variance-covariance Tqj~{ 

p, IT, 7, qj ~ NP(Wjy, TqJ '), (25) 

thus resulting in a set of conditional posteriors that are easy to sample from. 
Before proceeding, we wish to point out that in contrast to Equation 3, where 
essentially we have qj = 1 for each of J Level 2 units, the prior variances 
of the elements of P7 are large (i.e., prior information is weak) for those 
Level 2 units with small values of qy 

Utilizing the MVN/gamma formulation of the multivariate t, the joint 
posterior is now as follows: 

MP, 7, 7* X a2, qly) oc f] ptyip,, 7+, <r2) U MP; 17, X qj) 
7 = 1 7 = 1 

X fl M) /*V+) P(y) P(°2) /KT), (26) 
7=1 

where 

p(fLj\y9T9qj)«\T-l\mexp 

and 

4 < P ; - w / r t ' T " V 0 ; - W / y ) (27) 

p ( ^ ) a ^ / 2 - . ) e x p [ - ^ j , (28) 

where q = (qu . . . , qj)' constitutes a sixth group of unknowns, and/7(yyiPy, 
7+, a2) and the priors for y+, 7, a2, and T are defined as in the MVN 
formulation presented in the previous section. The steps of a Gibbs sampling 
algorithm for this model are as follows. 

Step 1. p((J2\y, P, T, 7, 7+, q): This step of the algorithm is identical to 
Equation 14. 

Step 2. /?(Ply, T, 7, 7+, q, a2): This step is similar in form to Equation 
17, but with Tqj~l replacing T. Hence, as qj decreases (i.e., as the prior 
variance of P increases), the amount of weight placed on the data in Equation 
17 increases. 
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Step 3. /?(Tly, 7, Y+, cr2, p): 

Wishartr B = s2 + 2 *uyu; 
7 = 1 

, vw = (J + v2) (29) 

Note that those Level 2 units with small values of gy receive small amounts 
of weight in the calculation of the scale matrix B. 

In cases where only one of the regression parameters specified in the 
Level 1 model is treated as varying across groups, the conditional posterior 
distribution for the Level 2 scale parameter T based on the use of an inverse 
chi-square prior is as follows (cf. Seltzer, 1993): 

1/T ~ Gamma | a = [(J + v2)/2], b = 

Step 4. p(y\y, 7+, q, a2, p , T): 

S2 + I qtf j . (30) 

7 ~ Ntf, 6), (31) 

where 

7 = 2 ^W/T- 'WJ 2 ^wjT-^y, 
7=1 J y=l 

and 

D = 2 qjW}T-lWj • ] " " • 
In contrast to Step 4 in the MVN algorithm (Equation 21), it is seen that 
those Level 2 units with small values of q} receive proportionately less weight 
in the calculation of 7 and D. 

Step 5. p(y+\y, q, a2, p , T, 7): This distribution is identical to Equation 
23 in the MVN formulation. 

Step 6. p(q|y, a2, p , T, 7, y+): 

qj - Gamma[a = [(v + P)/2], b = [2/(U;T" lU7 + v)]], (32) 

for j = 1, . . . , J. The quantity IT/T^U,- is the squared distance of the vector 
P, from the prior mean W/y. Consequently, when one or more elements of 
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Py are far from the corresponding elements of W/y, the scale parameter b 
will take on a small value (cf. Seltzer, 1993, p. 219). This, in turn, results 
in a small expected value for the distribution of q^ where E(qj) = ab. 

As in implementing the algorithm for the MVN Level 2 setting, we cycle 
through the steps of the algorithm, sampling once from each conditional 
posterior given the current values for the other parameters in the model. 

EB and Fully Bayesian Comparisons via an Illustrative Example 

We now use the above algorithms as well as standard EB procedures in 
an analysis of the data from an evaluation of Transition Mathematics (TM), 
an innovative prealgebra curriculum developed by the University of Chicago 
School Mathematics Project (1986). A key goal of this section is to explicate 
when and why it becomes important to employ a fully Bayesian approach. 

In order to study the effectiveness of the TM curriculum, a field experiment 
was conducted during the 1985-1986 school year. The study's sample con
sisted of approximately 600 students nested within 20 matched pairs of 
classrooms located in school districts throughout the United States (while 
several districts contained 2 matched pairs, in most cases there was 1 matched 
pair per district). Each matched pair—referred to as a site in this article— 
consisted of two classrooms of students of comparable mathematics ability; 
matching was based on pretests administered at the start of the school year, 
as well as information provided by teachers and district mathematics coordina
tors. The teacher of one class used the TM text with his or her class, while 
the teacher of the second class used the materials already in place at that 
school. Thus, the matched pairs might be viewed as blocks. Note that the 
teachers participating in the study had considerable teaching experience (see 
University of Chicago School Mathematics Project, 1986, for details). 

Posttests were administered at the end of the 1985-1986 school year. In 
our analysis, we focus on geometry readiness, which was measured by a 
student's total score on a 19-item test adapted from an instrument employed 
in a large-scale study of geometry achievement among U.S. secondary school 
students conducted by researchers at Ohio State University (University of 
Chicago School Mathematics Project, 1986). 

We take into account the nested structure of the data by posing the following 
Level 1 model. For each of J sites (j = 1, . . . , 20) we have 

yij = fto + MTRTij ~ TRTJ) + *ij> (33) 

where y^ is the geometry readiness score for student i at site j , and TRTy = 
1 if student / was a member of the TM class at site j (0 otherwise). As in 
Raffe's (1991) analysis of the data from a multisite educational evaluation 
conducted in Great Britain, TRTy is centered around the site mean value for 
the treatment indicator variable (TRTJ). By virtue of this, (3y0 represents the 
mean geometry readiness score for sitey (i.e., ix,), and P7l is the TM/Compari-
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son class contrast for site j (i.e., |A/(TM) "~ Myxc))- The OLS estimates for these 
parameters reduce to Pyo

 = Yj a n d P/i =
 (7/(TM> ~ fyc))» respectively. The 

/̂,- are errors assumed normally distributed with mean 0 and variance a2. 
A modest increase in precision (i.e., a reduction in a2) could be achieved 

by using student pretest scores as a covariate in the Level 1 model (i.e., 
fipPRETESTij). Appendix A discusses the use of the algorithms outlined 
above in fitting models in which the effects of pretest are treated as constant 
(fixed) across groups. To help clarify the ways and extent to which answers 
can change as we move from EB to fully Bayesian approaches, we use the 
simpler Level 1 model specified in Equation 33 in our analyses. While the 
differences between results presented below and those based on a model that 
treats PRETEST^ as a fixed effect are minor, results based on the latter 
model would also need to be considered in formulating any final judgments 
concerning the merits of TM. 

As can be seen (Table 1), the OLS estimates of the site means and contrasts 
(3,0, 3/i) vary substantially across sites. One possible explanation for the 
variability in contrasts centers on the key role that reading plays in the TM 
curriculum; it is suspected that TM may be most effective when teachers 
discuss the reading passages in the text with their students on a daily basis. 
Information regarding this aspect of implementation is used as a predictor 
in the Level 2 model. In addition, we use site pretest means to model variability 
in Pyo. Thus, 

Pyo = 7oo + 7oi PREMNj + UJ0, (34) 

Pyi = 7io + InlMPLMNTj + Ujh 

where PREMNj is the mean for site j on a general mathematics pretest and 
IMPLMNTj is an indicator variable that takes on a value of 1 if the TM 
teacher at site y discussed reading in class on a daily basis (0 otherwise). By 
virtue of the dummy coding for IMPLMNTj, yl0 represents the effect of TM 
at low-implementation sites (IMPLMNTj = 0), and Y U captures the expected 
increase in effectiveness given a high level of implementation (IMPLMNTj 
= 1). Finally, Uj0 and Uj\ represent deviations in site means and contrasts 
from prior means conditional on PREMNj and IMPLMNTj. 

Assuming that (J, = (fyo 3/i)' is MVN distributed, we have 0,IY, T ~ 
A^WyY, T), where 

7 = (7oo 7oi 7io 7n) ' , (35) 

= / l PREMNj 0 0 \ 
j \0 0 1 IMPLMNTj)' ( 3 6 ) 
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TABLE 1 
Summary of the Transition Mathematics data 

Ge jometry readiness outcomes 

Site mean TM/Comparisor l class contrast 

( 3LS OLS EB 
Site Size 

number (nj) ~^T SE$jo) Pyi SE$j{) Pylml S£(P*ml) 

i High-implementation sites 
8 23 6.87 0.62 -2 .52 1.25 -0 .24 0.91 

18 28 6.89 0.55 0.78 1.12 1.42 0.88 
12 32 14.52 0.53 0.79 1.06 1.18 0.84 
7 37 13.97 0.39 1.27 0.79 1.59 0.80 
6 36 11.44 0.55 1.68 1.12 1.76 0.81 
2 28 6.54 0.61 2.16 0.89 2.18 0.87 

10 20 8.45 0.75 3.63 1.52 2.63 0.96 
14 26 10.15 0.56 4.09 1.27 3.11 0.94 
9 43 7.12 0.43 4.42 0.85 3.57 0.75 

20 17 7.12 0.82 4.56 1.72 3.18 1.00 

Low-implementation sites 
11 28 6.68 0.56 -2.21 1.13 -1 .17 0.87 
16 34 11.56 0.63 -1 .39 1.27 -0 .89 0.82 
4 44 7.86 0.49 -0 .24 0.99 -0 .01 0.75 
1 31 13.52 0.48 -0 .23 0.96 -0 .16 0.84 
5 17 8.47 0.61 0.29 1.22 0.17 0.98 
3 35 5.17 0.50 0.38 0.75 0.28 0.81 

15 24 10.88 0.68 0.94 1.37 0.59 0.91 
13 31 10.87 0.76 1.15 1.52 0.83 0.84 
17 35 8.54 0.55 1.65 1.09 1.19 0.81 
19 18 5.22 0.52 2.47 1.06 1.40 0.98 

Note. The sites have been grouped by the level of implementation of the Transition Mathematics 
(TM) curriculum in TM classrooms; within each grouping, the sites have been sorted based 
on the OLS estimates of the TM/Comparison class contrasts (Pyl). Note that p*m, and 
S£(3*mi) are, respectively, equal to the mean and standard deviation of the conditional 
posterior /?(p„ly, T = Tml, a

2 = a2
ml). 

and where the elements of T are as follows: 

Tu = VM(PJ0\PREMNJ\ 

T22 = Var(pyl I IMPLMNTj), (37) 

T2l = Cov(pyo, pylIWy). 

The plan for this section of the article is as follows. We first discuss 
several points concerning the implementation of the above Gibbs sampling 
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algorithms. Next, we focus on results for elements of 7, comparing answers 
based on conditional posteriors evaluated at the ML estimates of the variance 
components, marginal posteriors based on MVN Level 2 distributional 
assumptions, and marginal posteriors based on MVT Level 2 distributional 
assumptions. We then proceed in a similar fashion in examining results for 
random regression parameters. 

In utilizing the MVN and MVT Gibbs sampling algorithms outlined above, 
marginal posteriors of interest were calculated under assumptions of uniform 
(U) and inverse Wishart (IW) priors for the Level 2 variance components. 
Due to the fairly large number cf observations in this sample (N = 587), 
our results are insensitive to choice of prior for a2. We therefore present 
results only for /?(cr2) <* k. A uniform prior is also assumed for 7. (For 
details on sampling from the conditional posterior distribution of T"1, see 
Appendix B.) 

In order to monitor convergence of the Gibbs sampler, it is important to 
run multiple sequences or chains using a range of different starting values 
(Gelman & Rubin, 1992), as opposed to running one long sequence. Using 
a multiple-sequence approach similar to that outlined in Seltzer (1993), con
vergence appeared to occur within 2,000 iterations.3 

Due to dependencies among deviates generated by MCMC methods, large 
sets of deviates are often needed in order to realize high degrees of accuracy 
in simulating marginal posteriors of interest (see Tanner & Wong, 1987). 
Because of our interest in highly precise comparisons of EB and fully Bayesian 
results, all histograms, intervals, and measures of location and spread for 
marginal posteriors reported below are based on samples of 40,000 deviates. 
(Note that one strategy in using the Gibbs sampler is to apply density estima
tion techniques to smaller samples of deviates; see, for example, Zeger & 
Karim, 1991.) 

Fixed Effects 

Employing an EB approach, we used the EM algorithm to find the values 
of the variance components that maximize /(T, cr2ly), yielding r l l m l = 1.22, 
722ml = 1-76, r2imi = - .26 , and cr2

ml = 9.20. (The HLM computer program 
[Bryk, Raudenbush, Seltzer, & Congdon, 1988] was used to accomplish this 
task.) Examining results based on Equation 7, we find that the mean of the 
conditional posterior distribution for 710—the expected effect of TM in low-
implementation sites—is approximately a quarter of a point and that the 
resulting 95% interval comfortably includes 0 (Table 2). However, the mean 
of the conditional posterior distribution of 7n—the expected increase in the 
effectiveness of TM when implementation is high—is approximately one and 
three quarters points, and the 95% interval that we obtain excludes a value 
of 0. Using the fact that the conditional posterior for 7 n is normal, we find 
thatp(7„ < Oly, T = Tml, a2 = a2

ml) = .011. 
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TABLE 2 
Conditional and marginal posterior distributions of the fixed effects under MVN 
and MVT4 Level 2 assumptions. Marginal posteriors were calculated using 
inverse Wishart (IW) and uniform (U) priors for the Level 2 variance components. 

Fixed effect Mean SD 95% interval 

Constant (700) 
MVN 

p(7oo 1 y, T = = Tml,cx2 
= <r2mi) -2 .74 1.35 (-5.38, -0.10) 

/>(7oo 1 y)iw -2.77 1.49 (-5.69, 0.15) 

P(7oo I y)u -2.76 1.62 (-5.97, 0.47) 
MVT4 

p(7oo 1 y)iw -2.61 1.48 (-5.60, 0.24) 

/>(7oo 1 y)u -2.59 1.61 (-5.85, 0.52) 

Effect of pretest on site means (701) 
MVN 

/*7 io ly ,T = = Tmi, a2 
= <T2ml) 0.62 0.07 (0.48, 0.75) 

M7101 y)iw 0.62 0.08 (0.47, 0.77) 

p(7io i y)u 0.62 0.08 (0.45, 0.78) 
MVT4 

p(7oo 1 y)iw 0.61 0.07 (0.46, 0.76) 

p(7io i y)u 0.61 0.08 (0.45, 0.77) 

Expected TM effect given low impl ementation (7io) 
MVN 

p(7ioly ,T = = Tmb a2 
= <T2ml) 0.24 0.56 (-0.84, 1.33) 

/K7io i y)iw 0.24 0.62 (-0.97, 1.46) 
M7io I y)u 0.25 0.67 (-1.06, 1.60) 

MVT4 

p(7io i y W 0.25 0.58 (-0.89, 1.41) 
M7io I y)u 0.26 0.63 (-0.98, 1.53) 

Increment in TM effect given high im iplementation (711) 
MVN 

/ * 7 n i y , T = = TmI, a2 
= <T2ml) 1.78 0.78 (0.24, 3.31) 

p(iu iy)iw 1.78 0.86 (0.07, 3.48) 
M7n 'y)u 1.77 0.93 (-0.06, 3.62) 

MVT4 

p(7n ' y W 1.87 0.84 (0.21, 3.55) 
p(7n iy)u 1.87 0.91 (0.07, 3.65) 

Taking Into Account Uncertainty in the Variance Components via the 
Gibbs Sampler 

We first present results based on uniform priors for T and a2, and begin 
by focusing attention on the marginal posterior distributions of the variance 

151 

 at PENNSYLVANIA STATE UNIV on October 6, 2016http://jebs.aera.netDownloaded from 

http://jebs.aera.net


Seltzer, Wong, and Bryk 

components (see Table 3 and Figure 1). Under assumptions of uniform priors, 
these distributions correspond to the marginal likelihood functions of the 
variance components, for example, p(T22\y) a /(r22ly). Examining p(Tu\y) 
and p(T22\y) enables us to see the crux of the problem that Rubin (1981) 
draws attention to in his fully Bayesian analysis of SAT coaching effects: 
Likelihood functions for Level 2 variances will tend to be highly positively 
skewed when J is small such that most of the mass of the likelihood will lie 
above the ML estimate. Hence, treating ML estimates for the Level 2 variances 
as known values results in an "underpropagation" of uncertainty in con
structing intervals for parameters of interest (e.g., fixed effects) (Draper, 
1995) and can yield point estimates for parameters of interest that are poor 
summaries of the data (Rubin, 1981). 

Under the assumption of uniform priors for the variance components, we 
find that the standard deviations of the marginal posteriors of the fixed effects 
are appreciably larger than the standard deviations based on the conditional 
posteriors (Table 2). In addition, we see that the resulting 95% interval for 
7n includes a value of 0. However, based on the empirical distribution of 
the deviates generated for yn, we find that 77(71 { < 0ly)u = .028; hence, it 
would be unwise to dismiss the notion of increased effectiveness of TM in 
high-implementation sites. 

To grasp how taking into account uncertainty concerning the variance 
components results in increases in dispersion in the posterior distributions 
of the elements of 7, it is helpful to consider that calculating p(y\y) is 
equivalent to averaging 77(71y, T, a2) over/?(T, cr2ly). From Equation 4, it is 
clear that different values for the variance components that we might condition 
on result in conditional posterior distributions for 7 that differ in terms of 
dispersion (e.g., D*) and possibly location, as well. In averaging over /?(T, 
cr2ly), the posterior probabilities for different possible values for the variance 
components serve as weights for the corresponding conditional posterior 

TABLE 3 
Marginal posterior distributions of the variance components under MVN Level 
2 assumptions and based on uniform priors for the variance components 

bution Mode Mean 

Quantiles 

Distri bution Mode Mean .025 .25 .5 .75 .975 

/Vi y) 9.20 9.26 8.21 8.88 9.24 9.63 10.43 
p(Tn iy) 1.45 2.00 0.74 1.30 1.77 2.41 4.66 
P(T22 iy ) 2.25 3.33 0.72 1.89 2.86 4.22 8.70 
P(T2i iy) -0 .35 -0 .39 -2 .54 -0 .88 -0 .33 0.16 1.41 

Note. These are the marginals that would be obtained by integrating over the joint likelihood 
for the variance components, i.e., /(T, cr2ly). The marginal modes for Tn and r22 are larger 
than the joint modal values (r,lml and r22ml) due to the asymmetry in /(T, cr2ly). In cases 
where the joint likelihood is symmetric (i.e., when J is large), the joint modes and marginal 
modes for the variance components would be identical. 
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Tn 
FIGURE 1. Histogram of the marginal posterior distribution ofT22 under MVN Level 
2 assumptions and based on uniform priors for the variance components 

distributions for 7 that could be formed. Thus, given the asymmetry of the 
posterior distribution of the variance components (i.e., the positive skew 
connected with Tn and r22), considerable weight will be attached to condi
tional posterior distributions of 7 based on values of Tn > Tnm\ (TUml = 
1.22) and T22 > T22mX (T22ml = 1.76). (For a discussion of this conceptualization 
in the context of the one-sample problem—that is, viewing p(|jUy) as a 
weighted average of p([x\cr2, y) over p(cr2\y)—see Box and Tiao, 1973, 
chap. 2.) 

As noted earlier, a potential drawback of the uniform prior is that even 
for arbitrarily large values for the Level 2 variances, prior probabilities do 
not diminish. Hence, the credibility intervals that we obtain may be somewhat 
conservative. Thus, as an alternative, we now assume that T is a priori IW 
distributed with v2 = 3 degrees of freedom and scale matrix S2 with diagonal 
elements Sn = 5.8 and S22 = 9.0 and off-diagonal elements 5 l2 = S2\ = 0. 
With v2 = 3, the information provided by this prior is weak relative to the 
information contributed by the likelihood. Using results presented in Zellner 
(1971), the values of the elements of S2 were chosen so that the prior slightly 
favors values of Tn and T21 that are approximately equal to the modes of 
'(Tiily) and /(r22ly), respectively.4 While giving some support to the informa
tion provided by the data, this prior, unlike the uniform prior, downweights 
arbitrarily large values for Tu and T21. 

Due to the downweighting a priori of extreme values for the Level 2 
variances, we see that the IW prior results in a decrease in dispersion for the 
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marginal posterior distributions of the fixed effects (Table 2). It is also seen 
that the lower boundary of the 95% interval for 7 U is slightly larger than 0. 

While this example helps to illustrate the conservative nature of the uniform 
prior, the answers that we obtain under the two priors do not differ greatly from 
a substantive standpoint. In particular, based on the empirical distributions for 
7n» P(l\\ < Oly) = .022 under the IW prior versus a value of .028 under 
the uniform prior.5 However, as J decreases and, in turn, the amount of 
information provided by the data concerning the Level 2 variance components 
decreases—that is, as the likelihood for the variance components becomes 
increasingly flat and disperse—one's results become increasingly sensitive 
to choice of priors (e.g., U, IW) for T. 

In anticipating the extent to which answers concerning fixed effects of 
interest might differ based on EB and fully Bayesian approaches, it is helpful 
to consider again the one-sample problem, that is, yt ~ A (̂JJL, a2). We know 
that in treating the sample variance s1 as the known value for a2 and using 
critical values based on the z distribution to construct intervals for |x, under
statements of uncertainty in the intervals that we obtain tend to be inconse
quential when, for example, n — 1 > 30. However, understatements of 
uncertainty become more consequential as n — 1 decreases. In particular, in 
settings where n — 1 is quite small (e.g., < 10), intervals based on t critical 
values can potentially lead to conclusions that differ substantially from conclu
sions reached using z critical values. 

Whereas the number of degrees of freedom available for estimating a2 

plays a crucial role in the one-sample problem, the number of Level 2 units 
in a sample (J) and the number of fixed effects that are being estimated (K) 
play a key role in drawing inferences concerning fixed effects in the HM 
(Bryk & Raudenbush, 1992). With J — K > 30, understatements of uncertainty 
due to treating the ML estimates of the variance components as known values 
(Equation 7) are likely to be quite minor. But as J — K decreases, propagation 
of uncertainty in the variance components via a fully Bayesian analysis will 
begin to render less plausible the conclusions that we might base initially on 
Equation 7. As in the one-sample problem, it is in settings where J — K is 
very small (e.g., 10 or less) that taking into account uncertainty in the variance 
components can potentially result in conclusions concerning fixed effects of 
interest that differ markedly from those based on the use of an EB approach 
(Seltzer, 1991). 

Note that in the case of simple, balanced hierarchical designs (see, for 
example, Kirk, 1982), one can, in the frequentist framework, construct inter
vals of desired levels of confidence by employing standard errors based on 
Equation 7 and critical values based on a t distribution with J — K degrees 
of freedom (see Raudenbush, 1992). While the kinds of hierarchically struc
tured data sets that we typically encounter in educational research are unbal
anced, Bryk and Raudenbush (1992, chap. 9) point out that, provided one's 
data are not too unbalanced, using critical values based on the family of t 
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distributions should in many instances provide a reasonable ad hoc approach to 
adjusting for uncertainty in the variance components when drawing inferences 
concerning 7 in small-sample settings. When it is not possible to carry out 
fully Bayesian analyses due to, for example, unavailability of software, this 
ad hoc approach would be preferable to a standard EB strategy that entails 
the use of z critical values; such an approach can, however, still result in 
underestimates of uncertainty (see Bryk & Raudenbush, 1992, chap. 9). 

Studying the Sensitivity of Results to Extreme Level 2 Units 

Using diagnostics suggested by Waternaux, Laird, and Ware (1989) for 
checking the adequacy of Level 2 models, a plot of EB residuals (i.e., 
p* lml minus the estimated prior mean [y%m{ + yf{m] IMPLMNTj]) revealed 
a large negative residual for Site 8, a high-implementation site (see Figure 
2). The Gibbs sampler was used to conduct a sensitivity analysis in which 
the marginal posterior distributions of the fixed effects were recalculated 
under heavy-tailed (MVT4) distributional assumptions at Level 2, that is, 
P,l Y, T ~ //>(W/Y, T, v = 4) (see Lange, Little, & Taylor, 1989, pp. 882-883). 
Through a series of reanalyses with v fixed at several different values (e.g., 
20,7,4,2), one can examine the sensitivity of one's results to varying degrees 
of heavy-tailedness, as in Seltzer (1993). For illustrative purposes, we have 
chosen to reanalyze the data under the assumption of rather heavy tails at 
Level 2 (i.e., v = 4). We present results based on a uniform prior for the 
Level 2 variance components and on an IW prior with v2 = 3 and scale 
matrix values of Su = 4.4, S22 = 5, and Sn = S2{ = 0 (see Note 6). 

Comparing the MVT4(U) and MVT4(IW) results (Table 2), we see that both 
analyses yield a similar increase in the posterior mean for yn, but as in the 
MVN analyses, the use of the IW prior for the Level 2 variance components 
results in a smaller posterior standard deviation. Interestingly, the lower 
boundary of the 95% interval for Y U produced by the MVT4(IW) analysis is 
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nearly as large as the lower boundary based on the initial analysis in which 
we condition on the ML estimates of the variance components, while the 
upper boundary is appreciably larger. 

Just as in the case of the normal/gamma univariate t formulation (see, e.g., 
Seltzer, 1993), outlying Level 2 units in the multivariate t formulation are 
downweighted via small values of q}. In this regard, the median of p(qs\y) 
in our analysis is equal to .49, while the medians of p(qj\y) for the remaining 
19 sites range between values of .75 and 1.0. (The quantiles of piq/y) for 
Sites 8 and 11 are displayed in Table 4; we focus on drawing inferences 
concerning the TM/Comparison class contrasts ((3;i) for these sites in the 
next subsection of the article.) 

Note that the degree of sensitivity of fixed effects to outlying Level 2 units 
will depend in part on the number of outliers in a sample, how extreme they 
are, and the extent to which they are also extreme on Wy, the set of Level 
2 predictors (i.e., the degree to which they leverage the Level 2 fit). For a 
detailed discussion of the use of the qj in identifying outlying Level 2 units, 
see Seltzer (1993). 

Random Regression Parameters 

Propagating Uncertainty in the Variance Components 

To explicate the kinds of changes that can occur in location and dispersion 
for posterior distributions of random regression parameters upon taking into 
account uncertainty in the variance components, we focus on the TM/Compar
ison class contrast for Site 8, an outlying site (Figure 2) which has the smallest 
OLS contrast among the high-implementation sites (fJ(8)i = —2.52), and for 
Site 11, which has the smallest OLS contrast among the low-implementation 
sites (p ( l l ) 1 = -2.21) (Table 1). 

Substituting Tml and a2
ml into Equation 5 yields the EB estimates P*(8)imi 

= - . 24 and (3*(n)lrai = —1.17. The reason why the EB estimates for these 
sites differ substantially becomes clear when we consider that the prior mean 
for within-site contrasts based on the Level 2 model is 710 + -ynIMPLMNTj 

TABLE 4 
Posterior distributions ofq^ and T'22/qj for Sites 8 and 11 

Posterior 
Mean 

Quantiles 

distribution Mean .025 .25 .5 .75 .975 

Site 8 
P (is 1 y) 0.63 0.07 0.27 0.49 0.84 2.00 
P (T22/q%\y) 7.14 0.59 2.36 

Site 11 
4.47 8.46 29.99 

P fan 1 y) 1.07 0.18 0.56 0.92 1.41 2.83 
P (T22l qn ly) 3.78 0.37 1.27 2.36 4.38 15.48 

Note. Results are based on uniform priors for the Level 1 and Level 2 variance components, 
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(see Equation 34). Substituting the EB estimates of the fixed effects into 
Equation 34, we see that the OLS contrast for Site 8 (IMPLMNT = 1) is 
shrunk toward an estimated prior mean of .24 + 1.78 = 2.02, whereas the 
OLS contrast for Site 11 (IMPLMNT = 0) is shrunk toward an estimated 
prior mean of .24. 

We next examine the marginal posterior distributions for (3(8)1 and p(11)1 

under the assumption of uniform priors for the variance components.7 First, 
it can be seen that the posterior means have to some extent been pulled back 
toward the OLS estimates of the TM/Comparison class contrasts (see Table 
5). In particular, we see that the posterior mean for Site 8 has shifted from 
a value of -.24 to a value of -.58 (Figure 3). The reason for these shifts 
becomes clear in view of the following. The magnitude of T22 (i.e., the prior 
variance for within-site contrasts) directly affects how the data for a particular 
site (P7i) and the prior mean (i.e., 710 + ynIMPLMNTj) are weighted in 
forming a composite estimate of (37l. Given the structure of the conditional 
posterior mean 0* (Equation 5), it is clear that as the values of T22 that we 
condition on increase, the amount of weight placed on (3yl increases. Since 
E(fy\y), the marginal posterior mean of ($,-, can be viewed as a weighted 
average of (if over p(T, a2ly), and noting that more than 75% of the mass 

TABLE 5 
TM/Comparison class contrasts for Sites 8 and 11 under MVN and MVT4 Level 
2 assumptions. Marginal posteriors were calculated using weak inverse 
Wishart (FW) and uniform (U) priors for the Level 2 variance components. 

TM/Comparison 
class contrast Mean SD 95% interval 

Contrast for Site 8 
MVN 

/KP(8)i i y, T = TmI, a2 = Gf2
m i) -0.24 0.91 (-2.02, 1.54) 

p(P(8)i i y)iw -0.49 1.11 (-2.73, 1.61) 

/KP(8)i i y)u -0.58 1.22 (-3.04, 1.74) 
MVT4 

p(P(8)i i y)iw -0.85 1.30 (-3.48, 1.57) 

p(P(8)i i y)u -0.94 1.35 (-3.62, 1.65) 

Contrast for Site 11 
MVN 

p ( 0 a i ) i i y , T = = Tzmi, cr = °"2ml) -1.17 0.87 (-2.88, 0.54) 
P O O O I iy)iw -1 .26 0.97 ( -3 .21 , 0.59) 

p(0(ini iy)u -1 .33 1.01 (-3.36, 0.58) 
MVT4 

p(0(iDi iy)iw -1.18 0.98 (-3.18,0.68) 
p(0(iDi iy)u -1.22 1.02 (-3.37, 0.64) 
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Density 

P(*)i 
FIGURE 3. Histograms of the posterior distributions of the TMIComparison class 
contrast for Site 8 (solid line = conditional posterior assuming an MVN prior; 
dashed line = marginal posterior assuming an MVN prior; dotted line = marginal 
posterior assuming an MVT^ prior). Marginal posteriors were calculated based on 
uniform priors for the variance components. 

of p(r22ly) lies above T22m\ (see Figure 1 and Table 3), we find that consider
ably more weight is placed on the data in calculating E(0yily) than in 
computing 3j|ml. 

Using the IW prior for the Level 2 variance components results in slightly 
less of a decrease in the posterior means for Sites 8 and 11. This is due to 
the fact that the IW prior results in a posterior distribution for the variance 
components that places somewhat less probability on extreme values of r22. 

For those sites where 0;1 is approximately equal to the prior mean, 3ji 
remains essentially unchanged over all possible values of r22. For such sites, 
£(fyily) ^ P*mi (see Table 1). In many applications, however, substantive 
interest often centers on cases where the OLS estimate for a Level 1 parameter 
is substantially larger or smaller than the corresponding prior mean. When 
J is small, it is precisely in such cases that taking into account uncertainty 
in the variance components can result in substantial shifts in the posterior 
means of random regression parameters as depicted above. 

We now focus on changes in dispersion of posterior distributions for TM/ 
Comparison contrasts resulting from taking into account uncertainty in the 
variance components. We first consider results under uniform priors for the 
variance components. In Table 5, it can be seen that the marginal posterior 
standard deviations of the within-site contrasts are substantially larger than 
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the standard deviations of the corresponding conditional posterior distribu
tions based on the ML estimates of the variance components. 

While the standard deviations of the conditional posteriors for Sites 8 and 
11 are nearly identical, calculation of the marginal posterior distributions of 
the within-site contrasts results in a much greater increase in dispersion in 
the case of Site 8. This stems from the fact that a key component of Var(P7ly) 
is the variance of the conditional posterior mean ([$*) over /?(T, a2ly) (see 
Rubin, 1980). Now, for sites where Pyl is approximately equal to the estimated 
prior mean, the composite estimator fy* will remain virtually unchanged over 
possible values for T22 (e.g., the range of values for T22 spanned by p{T22\y)\ 
see Figure 1); hence, VarO,*) «* 0. However, as Pyl becomes more extreme 
in relation to the prior mean, fy* will change considerably as we condition 
on possible values for T22. Thus, for Site 8, with (3(8)1 = -2.52 and an 
estimated prior mean of 2.02, Var(0(*)i) is substantial. An implication is that 
in taking into account uncertainty in the variance components, increases in 
posterior variance will be particularly large in the case of outlying Level 
2 units. 

As in the case of the fixed effects, we see somewhat less of an increase 
in posterior dispersion under IW priors for the Level 2 variance components. 
However, whereas a value of (3(8)1 = -2.52 is highly implausible based on 
the EB analysis, the 95% credibility intervals for (3(8)1 under uniform and 
IW priors comfortably include this value. 

In terms of potential guidelines, intervals for random regression parameters 
of interest based on a fully Bayesian approach may be appreciably wider 
than those based on a standard approach even when J — K approaches a 
value of 30 (Seltzer, 1991). This is particularly so for outlying Level 2 units, 
since in these cases Var((l*) can be quite substantial (see Rubin, 1980, 1981). 

Reanalysis Under the Assumption of Heavy-Tailed Priors 

The marginal posterior distributions of the contrasts for Sites 8 and 11 
were recalculated under MVT4 distributional assumptions at Level 2. In the 
case of Site 11, we see that the posterior mean has been pulled back slightly 
toward the prior mean (Table 5). However, for Site 8, we see another substan
tial shift in the posterior mean toward J3(8)1. 

While the magnitude of T22 plays a crucial role in the MVN formulation 
in determining how the data (P;1) and the prior mean are weighted in forming 
a composite estimate of p ;1, this role is supplanted by T22/qj in the normal/ 
gamma formulation of the t. Thus, as qj decreases, the prior variance for pyl 

increases, and more weight, in turn, will be placed on the data. Now, while 
the lower and upper quartiles for p(T22\y) in the MVN analysis are 1.89 and 
4.22, respectively (Table 3), the lower and upper quartiles for p(T22lq%\y) are 
substantially larger: 2.36 and 8.46 (Table 4). This helps us see that in calculat
ing the marginal posterior distribution of (3(8)1, considerably more weight is 
placed on the data (3(8)1) in the MVT4 analysis than in the MVN analysis. 
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The opposite, however, holds true for Site 11. Though the upper quartiles of 
p(T22\y) and p(T22/qi\\y) are similar in magnitude, the .025, .25, and .50 
quantiles of ^(TW^n'y) are considerably smaller; hence, somewhat more 
weight is placed on the prior mean in the MVT4 setting. 

We also see that the assumption of heavy tails results in a substantial 
increase in the standard deviation of the posterior distribution of the TM/ 
Comparison contrast for Site 8. Since the posterior variance of pyl depends 
on both the magnitude of the sampling variance of $j{ and the magnitude of 
the prior variance for (3yl, this increase is understandable in view of the large 
values spanned by p(T2Jq^y). 

Summary and Discussion 

The standard approach to drawing inferences concerning fixed effects and 
random regression parameters of interest in the HM entails treating ML 
estimates of the variance components as known, true values. In this article, 
we have presented a general Gibbs sampling formulation that can be used 
to calculate marginal posterior distributions of parameters of interest in a 
broad range of continuous-outcome, two-level HM settings encountered in 
practice (see Equations 1 and 3), thus providing a means of taking into 
account uncertainty in the variance components. Furthermore, we have tried 
to clarify situations in which such an approach becomes especially important. 

In using a fully Bayesian approach, it is prudent to examine the sensitivity 
of one's results to choice of priors for the variance components.8 In this 
article, two priors for the Level 2 variance components were used: a uniform 
prior and a weak inverse Wishart prior with degrees of freedom and scale 
described above. Since prior probabilities under the uniform prior do not 
diminish for arbitrarily large values of the variance parameters, intervals 
resulting from the use of a uniform prior will tend to be more conservative. 
It is in settings where the number of groups in a sample is extremely small 
(i.e., where the information provided by the data regarding T is sparse) that 
results will potentially be most sensitive to choice of priors, and hence where 
sensitivity analyses become especially important. 

Typically, normality is assumed at Level 2 of the HM. In this article we 
have illustrated the use of the Gibbs sampler in calculating marginal posterior 
distributions of fixed effects and random regression parameters under MVT 
Level 2 assumptions. Such analyses yield posterior distributions for fixed 
effects of interest that are resistant to outlying Level 2 units. In connection 
with inferences for random regression parameters, MVT analyses provide 
protection against overshrinkage for outlying Level 2 units. 

The notion of examining the sensitivity of results to different distributional 
assumptions—particularly different degrees of heavy-tailedness—is a central 
part of the Bayesian approach (see Box & Tiao, 1973, chap. 3; Box, 1979, 
1980; and Barnard, 1980). On the one hand, if posterior means and intervals 
for parameters of interest change substantially under different assumptions, 
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then this is something that needs to be brought to light in attempting to 
draw final conclusions. On the other hand, if our results remain essentially 
unchanged, this is something that helps to strengthen our conclusions. This, 
of course, applies to the above discussion concerning choice of priors for 
the Level 2 variance components. 

While the use of numerical integration techniques in calculating marginal 
posteriors becomes problematic when joint posteriors are of high dimension, 
the strength of the Gibbs sampler is that it extends fairly easily to many 
complex settings. In addition to the kinds of models discussed in this article, 
the Gibbs sampler can be used in fitting HMs that consist of three or more 
levels and HMs with categorical Level 1 outcomes (Albert & Chib, 1993; 
Dellaportas & Smith, 1993; Zeger & Karim, 1991). Whereas EB estimation 
strategies for such models are available, the Gibbs sampler provides a viable 
means of taking into account uncertainty in the variance components and 
conducting sensitivity analyses in instances where the use of an EB approach 
may be problematic (e.g., when sample sizes are small). Finally, while Gibbs 
sampling algorithms can be implemented fairly readily using such high-level 
languages as XLISP-STAT, much progress has been made in developing 
software expressly designed for conducting fully Bayesian analyses via the 
Gibbs sampler (i.e., BUGS; see Thomas, Spiegelhalter, & Gilks, 1992). 

Notes 
1 The mode, degrees of freedom (df), and scale parameter (5) of an inverse chi-

square distribution with df>0 and S > 0 are connected to each other in the following 
way: Mode = 5/(2 + dj). Thus, if one assumes that a variance component is a priori 
inverse chi-square distributed with small degrees of freedom and a particular mode, 
it is easy to find the value of the corresponding scale parameter S. 

2 The use of the normal/gamma representation of the t and multivariate t in obtaining 
ML estimates of location and scale parameters in linear models is discussed in 
Dempster, Laird, & Rubin (1977, 1980); Rubin (1983); Little & Rubin (1987); and 
Lange, Little, & Taylor (1989). 

3 The MVN and MVT algorithms were written in Fortran 77 and implemented on 
a Hewlett Packard 9000 minicomputer. IMSL subroutines were used in order to 
generate values from the distributional forms (e.g., normal, gamma) found in the 
various steps of the algorithms, and to perform matrix operations. Completion of 
1,000 iterations of the MVN algorithm required approximately 60 seconds of CPU 
time, while completion of 1,000 iterations of the MVT algorithm required approxi
mately 1 minute and 15 seconds. 

4 In the current example, the dimension of T is P = 2. We now assume that T is 
a priori inverse Wishart distributed with v2 = 3 and scale matrix S, which consists 
of the diagonal elements 5 n and S22 and the off-diagonal elements Sl2 and S2i- Based 
on Zellner (1971, p. 395), Tn is inverse chi-square distributed with (v2

 _ P + 1) 
= 2 degrees of freedom and scale SUy and T22 is inverse chi-square distributed with 
(v2

 _ P + 1) = 2 degrees of freedom and scale S22. Then, choosing a mode for Tu 

equivalent to the mode of l(Tn ly) (i.e., 1.45; see Table 3), we solve for Sl{ based 
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on the simple formula provided in Note 1. We proceed in a similar fashion in 
choosing S22. 

5 Using an IW prior that is even less informative (i.e., v2 = 2) and that favors 
values of Tn and T21 slightly smaller than Tllm] and r22mi produces results that are 
nearly identical to the IW results presented in Table 2. 

6 Using the logic outlined in Note 4, the values of the elements of S were chosen 
so that the prior slightly favors values of Tn and T22 that are approximately equal 
to the modes of p(Tu ly) and p(T22 ly) obtained under the assumption of a uniform 
prior for T and under MVT4 Level 2 assumptions. 

7 Morris & Normand (1992) point out that in HM settings where the random 
regression parameters are scalars assumed normally distributed at Level 2, and where 
the sampling variances of the p7 are known and equivalent across units (i.e., V, = 
V), placing a uniform prior on the Level 2 variance component leads to minimax 
estimators for the fy. 

8 Rather than rerun the Gibbs sampler for each respecification of the prior, one 
can use the deviates from a Gibbs analysis using, for example, uniform priors, and 
use importance ratios (Tanner, 1993) to recalculate posterior means and variances 
under different specifications of the prior using the same set of deviates. 

APPENDIX A 
Expansion of the model used in the illustrative example 

Including student pretest scores in the Level 1 model specified in Equation 33 
(i.e., $j2PRETESTij)y and treating the pretest slope as constant across groups, we write 
the Level 1 model in the form used in Equation 2: 

y,- = Xfij + Xj+y+ + e,, (Al) 

where 

* - & 

with XUj = (TRTij - TRTj\ and where 

fX2ij} 

%22j 
X,+ = • > 7+ = P,2, (A2) 

with X2ij = PRETESTy. (Centering options for X2 are discussed below.) 
Treating py0 and (3,1 as MVN distributed, and utilizing the same Level 2 predictors 

specified in Equation 34, we have Py 17, T ~ N2(Wj 7, T), with 7, W, and T arrayed 
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as in Equations 35-37. The 5-step MVN Gibbs sampling formulation depicted in 
Equations 14, 17, 19, 21, and 23, with P = 2 and F = 1, can be applied directly to 
this model. In particular, given the data and current values for T, 7, 7+, and a2, the 
mean of the conditional posterior distribution of the random regression parameters 
((J,) (Step 2; Equation 17) is a composite estimate based on the prior mean for site 
j (W/y) and $(d)j, where $(d)j is obtained by regressing d7 = (y, - Xj+y+) on X,. In 
addition, the mean of the conditional posterior distribution of 7+ given the data and 
current values for the P7 (Step 5, Equation 23) is a pooled regression estimator 
involving the d/+ = (y, - X, py) and X,+, j = 1, . . . , 7; the current value of a2 is 
used in calculating the variance of this conditional posterior. 

The use of the MVT formulation in this setting is as depicted in Equations 14, 
17, 29, 31, 23, and 32, with T in Equation 17 replaced by T % 

We wish to point out that the type of centering that one chooses for X2 has 
implications for the interpretation of (3y0. Under group mean centering, the interpreta
tion of (3,0 remains the same as in the illustrative example. Using grand mean centering, 
p,0 represents site mean achievement adjusted for differences among sites in pretest 
scores, and 701 in Equation 34 represents the contextual effect of the pretest variable 
(see Bryk & Raudenbush, 1992, pp. 115, 121-123). 

Bryk and Raudenbush (1992, pp. 21-22) also discuss settings in which a Level 1 
regression parameter (say, p,2) might be modeled as a function of a Level 2 predictor 
(Wj), but with the corresponding residual Level 2 variance component (Var((3y2l WJ)) 
constrained to be 0. This can be handled easily through the inclusion of cross-level 
interaction terms in X,+. Thus, continuing with this example, the matrix X,+ would 
include columns containing values for X2ij and for the cross-level interaction term 
X2ij X Wj. 

APPENDIX B 
Sampling from a Wishart distribution of dimension P = 2 

In implementing the Gibbs sampler under MVN Level 2 assumptions, we must 
obtain realizations of T"1 from Wishart distributions as defined in Equation 19. Thus, 
in iteration i, we need to obtain a single realization T" l(0 from a Wishart distribution 
with vw degrees of freedom and scale matrix B0), where the latter is a sum of squares 
and cross-products based on the current values (i.e., the most recently sampled values) 
for P, (/ = 1> • • •» J) and 7- In m e c a s e of the TM application where T"1 is a 2 X 
2 matrix, we proceed as follows (see Odell & Feiveson, 1966, and Smith & Hocking, 
1972, for generalizations). 

(1) Draw Z*0 from a standard normal distribution, tfp from a chi-square distribution 
with vw degrees of freedom (see Equation 19), and K^} from a chi-square distribution 
with vw - 1 degrees of freedom. 

(2) Form the following matrix: 

/ tip 2»K\™ \ 
^0^/2(0 22(0 + ^ 1 <B1) 

(3) We then obtain T"l(/) by rescaling M(0 using the scale matrix B(/) (see above): 
j-K0 = c>H) M(o C('">, where B(0 = C'(|-) C(/). 
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Under MVT Level 2 assumptions, we generate T" l ( 0 in a similar fashion, the only 
difference being that the scale matrix B (0 now becomes a weighted sum of squares 
and cross-products, with current values of q} (j = 1, . . . , J) serving as the weights 
(see Equation 29). 
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