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Absence of limit cycles for Kukles-type systems ∗

Osuna, Osvaldo, Rodŕıguez-Ceballos, Joel, Villaseñor, Gabriel †

Abstract

In this note, we give a few new criteria for constructing Dulac function related
to Kukles-type systems, which allows us to determine the non existence of limit
cycles for some generalized Kukles systems. We also present examples in order
to illustrate our results.
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1 Introduction

In the now classic work [6], I. Kukles gives necessary and sufficient conditions
in order such that the system{

ẋ1 = x2,

ẋ2 =
∑3

i=0 hi(x1)xi2
(1)

has a center at the origin; in the literature, there are numerous studies on the
Kukles equation, see [12], [10] and [9]. In particular, it contains the Liénard
equation given by {

ẋ1 = x2,
ẋ2 = h0(x1) + h1(x1)x2.

(2)

It is well-known the importance of Liénard systems modelling several oscilla-
tory phenomena, see [1] and [6]. Given the relevance of the equation 1 in the
qualitative theory of differential equations is natural to consider some genera-
lizations of this equation. There are some studies in this direction, see [2], [5]
and [9].

In this note, we are concerned about limit cycles (isolated periodic orbits)
for Kukles-type systems with the following form:{

ẋ1 = xk2,
ẋ2 = h0(x1) + h1(x1)x2 + h2(x1)x2

2 + hn(x1)xn2 ,
(3)
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where k, n ∈ N and n ≥ 3. We obtain some criteria of non-existence of limit cy-
cles for 3. We also present some applications and examples in order to illustrate
our results.

Below we review some basic concepts useful in our exposition. Given an
open set Ω ⊂ R2, we consider{

ẋ1 = f1(x1, x2),
ẋ2 = f2(x1, x2), (x1, x2) ∈ Ω,

(4)

where f1, f2 are real C1-functions on Ω. Considering the vector field F (x1, x2) =
(f1(x1, x2), f2(x1, x2)), then the system 4 can be rewritten in the form

ẋ = F (x), x = (x1, x2) ∈ Ω. (5)

As usual the divergence of the vector field F is defined by

div(F ) = div(f1, f2) =
∂f1

∂x1
+
∂f2

∂x2
.

We consider C0(Ω,R) the set of continuous functions and define the sets

F±Ω := {f ∈ C0(Ω, R± ∪ {0}) : vanishes only on a measure zero set},

and FΩ := F−Ω ∪ F
+
Ω , along the paper we will use the Lebesgue measure.

Recall that an open subset Ω ⊂ R2 intuitively is said to be l-connected if it
has l-holes, i.e., if its first fundamental group is a free group with l-generators,
we denote l(Ω) = l.

For h : Ω → R a continuous function, let Z(h) := {x ∈ Ω : h(x) = 0} be
the set of zeros of h.

Following [4] we denote by l(Ω, h) the sum of the quantities l(U) over all
the connected components U of Ω \ Z(h). By a closed oval we mean a subset
homeomorphic to the circle S1; therefore, denote by co(h) the numbers of closed
ovals of Z(h) contained in Ω.

The extended Bendixson-Dulac criterion is a very useful tool for investi-
gation of limit cycles for planar vector fields which provides bounds for the
number of limit cycles, see for instance [3], [4]. The following states a version
of extended Bendixson-Dulac criterion:

Proposition 1.1. ([4], Cor. 1) Let Ω ⊂ R2 be an open set with a regular
boundary. Suppose that for an analytic function h : Ω → R and a real number
s, we have

Ms := f1
∂h

∂x1
+ f2

∂h

∂x2
+ sh

(
∂f1

∂x1
+
∂f2

∂x2

)
= 〈∇h, F 〉+ shdiv(F ), (6)
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does not change sign and vanishes only on a measure zero set. Then the limit
cycles of system 4 are either totally contained in Z(h), or do not intersect Z(h).
Moreover, the number of limit cycles contained in Z(h) is at most co(h) and
the number N of limit cycles that do not intersect Z(h) satisfies

N ≤


l(Ω) if s > 0,
0 if s = 0,
l(Ω, h) if s < 0.

(7)

Furthermore, for any s 6= 0 the limit cycles of this second type are hyperbolic.

We call a function h in Proposition 1.1 a Dulac function. Despite the
relevance of this extension of Bendixson-Dulac’s criterion it suffers the drawback
that there is no general algorithm for finding Dulac’s functions. Our results are
established with the help of the techniques developed in [8], let us recall the
following result:

Proposition 1.2. ([8]) Let Ω ⊂ R2 be an open set with a regular boundary.
Suppose that there are both s ∈ R and a function c : Ω→ R such that

〈∇h, F 〉+ shdiv(F ) = ch, (8)

admits an analytic solution h with ch defined on Ω and does not change sign
and vanishes only on a null measure subset. Then h is a Dulac function and the
conclusions of the Proposition 1.1 are true. In particular, the number of limit
cycles contained in Z(h) is at most co(h) and the number N of limit cycles that
do not intersect Z(h) satisfies

N ≤


l(Ω) if s > 0,
0 if s = 0,
l(Ω, h) if s < 0.

(9)

Furthermore, for any s 6= 0 the limit cycles of this second type are hyperbolic.

2 Results

The next result in [7] provides sufficient conditions in order that a quadratic
function does not change sign:

Lemma 2.1. Given g0, g1, g2, w : U ⊆ R2 → R continuous functions. If g0 ∈
FU and ∆ := g1(u)2 − 4g0(u)g2(u) ≤ 0, then

Q(u) := g0(u)w2 + g1(u)w + g2(u) ≥ 0 (or ≤ 0).

Moreover, if ∆ ∈ F−U , then Q ∈ FU .
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Let us consider the case k = 1 and n = 3, i.e., the Kukles system (1), we
get the following:

Proposition 2.2. If h3 ∈ FR2 and h2
2 − 4h1h3 ∈ F−R2, then the Kukles-type

system (1) has no limit cycles.

Proof. The associated equation 8 is

x2
∂h

∂x1
+ (

3∑
i=0

hi(x1)xi2)
∂h

∂x2
= h[c− sdiv(F )], (10)

assuming that h = h(z) depends on z = z(x1, x2), and taking

x2
∂z

∂x1
+ h0(x1)x2

∂z

∂x2
= 0,

which admits as a solution to z = −
∫ x1 h0(τ)dτ +

x22
2 , then the above equation

becomes

[(h1(x1) + h2(x1)x2 + h3(x1)x2
2)x2

2]
dh

dz
= h(c− s(div(F ))), (11)

taking s = 0 and c = (h1(x1) + h2(x1)x2 + h3(x1)x2
2)x2

2, we need to show that
h1(x1) +h2(x1)x2 +h3(x1)x2

2 belong to FR2 , but by our hypothesis and Lemma

2.1 this held. Solving 11 we have that h(x1, x2) = exp(−
∫ x1 h0(τ)dτ +

x22
2 ) is

a Dulac function. Note that Z(h) = ∅ contains no ovals, thus co(h) = 0. Also
as s = 0, by Proposition 1.2 the system 1 has no limit cycles, so the result
follows.

Example 2.3. We consider the system

ẋ1 = x2,

ẋ2 = h0(x1) + 2h2(x1)x2 + h2(x1)x2
2 + 2h2(x1)x3

2.

By Proposition 2.2 admits no limit cycles if h2 ∈ FR2 .

Let us consider the case h3 = 0 in the Kukles system (1), we get the
following:

Proposition 2.4. Assume that there exists ψ(x1) a C1-function such that the
following two conditions hold:

i).- ψ′(x1) + ψ(x1)h2(x1) ∈ FR2 and
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ii).- (h1(x1)ψ(x1))2 − 4(ψ′(x1) + ψ(x1)h2(x1))(h0(x1)ψ(x1)) ∈ F−R2,

then the system 1 has no limit cycles.

Proof. The associated equation (8) is written as

x2
∂h

∂x1
+

(
3∑
i=0

hi(x1)xi2

)
∂h

∂x2
= h(c− sdiv(F )),

suppose that h has the form h = ψ(x1)x2 and taking s = 0, we get(
ψ′(x1) + ψ(x1)h2(x1)

)
x2

2 + h1(x1)ψ(x1)x2 + h0(x1)ψ(x1) = ch.

Considering the left side as a quadratic function in x2, its discriminant becomes

∆ = (h1(x1)ψ(x1))2 − 4(ψ′(x1) + ψ(x1)h2(x1))(h0(x1)ψ(x1)),

by Lemma 2.1 ch ∈ FR2 . Note that Z(h) contains no ovals and since s = 0,
then by Proposition 1.2 the system 1 admits no limit cycles.

Let us consider the following Kukles-type system:{
ẋ1 = xk2,

ẋ2 = h0(x1) + h1(x1)x2 + h2(x1)x2
2 + hk(x1)xk2,

(12)

we obtain the next result:

Proposition 2.5. If h2 ∈ FR2 and h2
1 − 4h0h2 ∈ F−R2, then the generalized

Kukles system (12) has no limit cycles.

Proof. The associated equation 8 is

xk2
∂h

∂x1
+(h0(x1)+h1(x1)x2 +h2(x1)x2

2 +hk(x1)xk2)
∂h

∂x2
= h[c−sdiv(F )], (13)

assuming that h = h(z) depends on z = z(x1, x2) with xk2
∂z

∂x1
+hk(x1)xk2

∂z

∂x2
=

0, which admits as a solution to z = −
∫ x1 hk(τ)dτ+x2, then the above equation

becomes

[h0(x1) + h1(x1)x2 + h2(x1)x2
2]
d lnh

dz
= c− s(div(F )), (14)
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taking s = 0 and c = h0(x1)+h1(x1)x2+h2(x1)x2
2, which is a quadratic function

respect to x2, by our hypothesis and Lemma 2.1 we have that c ∈ FR2 , thus

the equation (14) is written as
d lnh

dz
= 1, whose solution is

h(x1, x2) = exp[

∫ x1

hk(τ)dτ + x2].

Note that Z(h) = ∅ contains no ovals. In particular, co(h) = 0. Since s = 0,
then by Proposition 1.2 system 12 has no limit cycles, so the result follows.

Example 2.6. We consider the system

ẋ1 = x5
2,

ẋ2 = 2 + x2
1 + x1x2 + (1 + 3x4

1)x2
2 + (x1 − 3x1 + 8x3

1)x5
2.

By Proposition 2.5 we get that the system admits no limit cycles.

Let us consider the following system:{
ẋ1 = x2,

ẋ2 = h0(x1) + h1(x1)x2 + h2n(x1)x2n
2 ,

(15)

we obtain the next result:

Proposition 2.7. If any of the following conditions hold:

a).- h0 ∈ F±R2 and (±)h2n ≥ 0,

b).- h2n ∈ F±R2 and (±)h0 ≥ 0,

then the system 15 has no limit cycles.

Proof. Assume h0 ∈ F+
R2 and h2n ≥ 0 the other cases are analogous. The

associated equation 8 is

x2
∂h

∂x1
+ (h0(x1) + h1(x1)x2 + h2n(x1)x2n

2 )
∂h

∂x2
= h[c− sdiv(F )], (16)

assuming that h = h(z) depends on z = z(x1, x2), and taking

x2
∂z

∂x1
+ h1(x1)x2

∂z

∂x2
= 0,

which admits as a solution to z = −
∫ x1 h1(τ)dτ + x2, then the above equation

becomes

[h0(x1) + h2n(x1)x2n
2 ]
dh

dz
= h(c− s(div(F ))), (17)
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taking s = 0 and c = h0(x1) + h2n(x1)x2n
2 , which by our hypothesis belong to

FR2 . Solving 17 we have that h(x1, x2) = exp(−
∫ x1 h1(τ)dτ + x2) is a Dulac

function. Note that Z(h) = ∅ contains no ovals. In particular, co(h) = 0. Also
as s = 0, by Proposition 1.2 the system 15 has no limit cycles, so the result
follows.

Example 2.8. We consider the system

ẋ1 = x2,

ẋ2 = 1 + x4
1 + x1 + (1− 8x1 + 3x5

1)x2 + (sin(x1) + 1)x6
2.

By Proposition 2.7 the above system admits no limit cycles.

Let us consider the following system:{
ẋ1 = x2k+1

2 ,

ẋ2 = h0(x1) + h1(x1)x2 + h2n+1(x1)x2n+1
2 ,

(18)

we obtain the following:

Proposition 2.9. If any of the following conditions hold:

a).- h1 ∈ F±R2 and (±)h2n+1 ≥ 0,

b).- h2n+1 ∈ F±R2 and (±)h1 ≥ 0,

then the system 15 has no limit cycles.

Proof. Assume h1 ∈ F+
R2 and h2n+1 ≥ 0. We seek a Dulac function h depending

on z such that

x2k+1
2

∂z

∂x1
+ h0(x1)

∂z

∂x2
= 0,

and we take s = 0. The rest proof is similar to that of Proposition 2.7.

Example 2.10. We consider the system

ẋ1 = x5
2,

ẋ2 = 3− x4
1 + x1 + (2 + x2

1 + 4x10
1 )x2 + (x5

1 + 3x2
1 − 7)2x7

2.

By Proposition 2.9 the above system admits no limit cycles.

Acknowledgements. The authors want to thank the comments from
anonymous referee.
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