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ABSENCE OF LIMIT CYCLES FOR KUKLES-TYPE SYSTEMS *

Osuna, Osvaldo, Rodriguez-Ceballos, Joel, Villasenor, Gabriel |

Abstract

In this note, we give a few new criteria for constructing Dulac function related
to Kukles-type systems, which allows us to determine the non existence of limit
cycles for some generalized Kukles systems. We also present examples in order
to illustrate our results.

Keywords: Bendixson-Dulac criterion, Dulac functions, limit cycles, Kukles
systems.

1 Introduction

In the now classic work [6], I. Kukles gives necessary and sufficient conditions
in order such that the system

= 37 hil1)ah
has a center at the origin; in the literature, there are numerous studies on the
Kukles equation, see [12], [10] and [9]. In particular, it contains the Liénard
equation given by

{ oy i )
To = ho(ZEl) + h1(331>$2.
It is well-known the importance of Liénard systems modelling several oscilla-
tory phenomena, see [1] and [6]. Given the relevance of the equation 1 in the
qualitative theory of differential equations is natural to consider some genera-
lizations of this equation. There are some studies in this direction, see [2], [5]
and [9].

In this note, we are concerned about limit cycles (isolated periodic orbits)
for Kukles-type systems with the following form:

d k
xl = $2,

{ B9 = ho(z1) + hi(x1)x2 + ho(21)23 + hy(21)25, ()

*2000, Classifications numbers AMs. 34C25, 34C07, 34A34.
fInstituto de Fisica y Mateméticas, Universidad Michoacana / Instituto Tecnolégico de
Morelia.


https://core.ac.uk/display/357193439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

6 Osuna, O., RODRIGUEZ, J., VILLASENOR, G.

where k,n € N and n > 3. We obtain some criteria of non-existence of limit cy-
cles for 3. We also present some applications and examples in order to illustrate
our results.

Below we review some basic concepts useful in our exposition. Given an
open set Q C R?, we consider

{ 1 :fl(xlaxQ)v (4)

&y = fo(wy,m2), (21, ®2) € Q,

where f1, f2 are real C''-functions on 2. Considering the vector field F(x1,z2) =
(fi(z1,x2), fo(x1,z2)), then the system 4 can be rewritten in the form

&= F(x), xr = (z1,22) € Q. (5)
As usual the divergence of the vector field F is defined by
. ofi | 0f
d =d —=.
7’/1)( ) Z’U(fth) 85[71 + 61172

We consider C°(£2,R) the set of continuous functions and define the sets
Fi={f€C®Q, R*U{0}) : vanishes only on a measure zero set},

and Fo = F5 U ]-"SJ{, along the paper we will use the Lebesgue measure.

Recall that an open subset 2 C R? intuitively is said to be I-connected if it
has [-holes, i.e., if its first fundamental group is a free group with [-generators,
we denote () = [.

For h :  — R a continuous function, let Z(h) := {x € Q : h(z) = 0} be
the set of zeros of h.

Following [4] we denote by (€2, h) the sum of the quantities [(U) over all
the connected components U of 2\ Z(h). By a closed oval we mean a subset
homeomorphic to the circle S'; therefore, denote by co(h) the numbers of closed
ovals of Z(h) contained in §.

The extended Bendixson-Dulac criterion is a very useful tool for investi-
gation of limit cycles for planar vector fields which provides bounds for the
number of limit cycles, see for instance [3], [4]. The following states a version
of extended Bendixson-Dulac criterion:

Proposition 1.1. ([4], Cor. 1) Let Q C R? be an open set with a regular
boundary. Suppose that for an analytic function h : Q@ — R and a real number
s, we have

ofi | 0fs

fl— + f2 ((%1 + am) = (Vh, F) + shdiv(F),  (6)
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does not change sign and vanishes only on a measure zero set. Then the limit
cycles of system 4 are either totally contained in Z(h), or do not intersect Z(h).
Moreover, the number of limit cycles contained in Z(h) is at most co(h) and
the number N of limit cycles that do not intersect Z(h) satisfies

() if >0,
N<{ 0 if s=0, (7)
(Q,h) if s<O.

Furthermore, for any s # 0 the limit cycles of this second type are hyperbolic.

We call a function h in Proposition 1.1 a Dulac function. Despite the
relevance of this extension of Bendixson-Dulac’s criterion it suffers the drawback
that there is no general algorithm for finding Dulac’s functions. Our results are
established with the help of the techniques developed in [8], let us recall the
following result:

Proposition 1.2. (/8]) Let Q C R? be an open set with a reqular boundary.
Suppose that there are both s € R and a function ¢ : Q@ — R such that

(Vh, F) + shdiv(F) = ch, (8)

admits an analytic solution h with ch defined on ) and does not change sign
and vanishes only on a null measure subset. Then h is a Dulac function and the
conclusions of the Proposition 1.1 are true. In particular, the number of limit
cycles contained in Z(h) is at most co(h) and the number N of limit cycles that
do not intersect Z(h) satisfies
() of s> 0,
N<¢O0 if s=0, (9)
(Q,h) if s<O.

Furthermore, for any s # 0 the limit cycles of this second type are hyperbolic.

2 Results
The next result in [7] provides sufficient conditions in order that a quadratic
function does not change sign:

Lemma 2.1. Given go, 91,92, w : U C R? = R continuous functions. If gy €
Fu and A = g1(u)? — 4go(u)g2(u) <0, then

Q(u) = go(w)w? + g1 (w)w + ga(u) > 0 (or <0).
Moreover, if A € F;, then Q € Fy.
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Let us consider the case k = 1 and n = 3, i.e., the Kukles system (1), we
get the following;:

Proposition 2.2. If hy € Fgo and h3 — 4h1hg € F, r2s then the Kukles-type
system (1) has no limit cycles.

Proof. The associated equation 8 is

> . Oh ,
xga—xl + (z% h,-(a;l)az:2)a—$2 = hlc — sdiv(F)], (10)

assuming that h = h(z) depends on z = z(x1, z2), and taking

0z
To—=— + ho(x1)z2=——

z
=0
81‘ ox T2 ’
which admits as a solution to z = — [** ho(7)dT + %%, then the above equation
becomes
2y 2140 .
[(h1(21) + ha(@1)a2 + ha(w1)az)23] o~ = hic — s(div(F))), (11)

taking s = 0 and ¢ = (h1(x1) + ha(z1)22 + h3(x1)x3)r3, we need to show that
hi(z1) + ho(x1)x2 + h3(x1)r3 belong to Fe, but by our hypothesis and Lemma

2.1 this held. Solving 11 we have that h(z1,z2) = exp(— [** ho(T)dT + = )
a Dulac function. Note that Z(h) = () contains no ovals, thus co(h) = 0. AISO

as s = 0, by Proposition 1.2 the system 1 has no limit cycles, so the result
follows. O

Example 2.3. We consider the system

T = g,

T9 = ho(l’l) + 2h2(3:1)x2 + hg(xl)x% + 2h2(x1)x%.
By Proposition 2.2 admits no limit cycles if hy € Fpe.

Let us consider the case hg = 0 in the Kukles system (1), we get the
following:

Proposition 2.4. Assume that there exists 1(x1) a C'-function such that the
following two conditions hold:

i).- ¢/($1) + T,Z)(l‘l)hg(l‘l) c ]:RQ and
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it).- (hi(z1)y(21))? — 4(¢/ (21) + (@1 ho(1)) (ho (1) (21)) € Fpe,

then the system 1 has no limit cycles.

Proof. The associated equation (8) is written as
oh : -\ on
xga—ml + (Z hz(xl)aé) pre h(c — sdiv(F)),

suppose that h has the form h = ¢(z1)z2 and taking s = 0, we get

(' (z1) + P (z1)ha(71)) 5 + b1 (21)Y(21)22 + ho(21)9(21) = Cch.

Considering the left side as a quadratic function in z9, its discriminant becomes

A = (hy(z1)p(21))* — 4" (1) + (21) ha(21)) (ho (1) (21)),

by Lemma 2.1 ch € Fgrz2. Note that Z(h) contains no ovals and since s = 0,
then by Proposition 1.2 the system 1 admits no limit cycles. O

Let us consider the following Kukles-type system:

. 4
.%1—1'2,

{ o = ho(z1) + h1(z1)z2 + ho(21)23 + hy(z1) 2k, (12)

we obtain the next result:

Proposition 2.5. If hy € Fpo and h? — 4hohy € Fga, then the generalized
Kukles system (12) has no limit cycles.

Proof. The associated equation 8 is

, Oh

735+ (ho(@) +ha(@1)2s + ho (1)) +hk(x1)x§)@ = hlc— sdiv(F)], (13)

63:2

assuming that h = h(z) depends on z = z(z1, x2) with x§§;+hk(:p1)$§§g -

0, which admits as a solution to z = — [** hy(7)dT+22, then the above equation
becomes

dlnh

[ho(x1) + hy(21)z2 + hg(m’l)a:g]? = ¢ — s(div(F)), (14)
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taking s = 0 and ¢ = hgo(z1)+h1(21)x2+ho(x1)23, which is a quadratic function

respect to a2, by our hypothesis and Lemma 2.1 we have that ¢ € Fpe, thus
dlnh

the equation (14) is written as = 1, whose solution is

h(z1,z2) = exp[/w1 hi(T)dT + x2].

Note that Z(h) = () contains no ovals. In particular, co(h) = 0. Since s = 0,
then by Proposition 1.2 system 12 has no limit cycles, so the result follows. [J

Example 2.6. We consider the system

il = x;

b — 94 g2 4\ 2 _ 3\,.5

ty = 2+ a7+ zxe+ (1+ 327)2; + (1 — 321 + 827)z5.
By Proposition 2.5 we get that the system admits no limit cycles.

Let us consider the following system:

i9 = ho(z1) + h1(x1)T2 + hop(21)73",

we obtain the next result:

Proposition 2.7. If any of the following conditions hold:
a).- ho € Fiy and (£)hay > 0,
b).- hayp € F and (£)ho > 0,

then the system 15 has no limit cycles.

Proof. Assume hg € .7-"]1"{2 and hg, > 0 the other cases are analogous. The
associated equation 8 is

oh oh .
To—— + (ho(z1) + hi(z1)x2 + hon(21)23") =— = hlc — sdiv(F)], (16)
ox1 O0xa
assuming that h = h(z) depends on z = z(x1, 22), and taking
0z 0z
P ih 2= 0
z2 a1 + hi(z1)w2 s )
which admits as a solution to z = — [** hy(7)d7 + x2, then the above equation
becomes i
[ho(1) + han(21)23"]—— = h(c — s(div(F))), (17)

dz
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taking s = 0 and ¢ = ho(x1) + hon(21)73", which by our hypothesis belong to
Frz. Solving 17 we have that h(z1,x2) = exp(— f hi(7)dT + x2) is a Dulac
functlon. Note that Z(h) = ) contains no ovals. In partlcular, co(h) = 0. Also
as s = 0, by Proposition 1.2 the system 15 has no limit cycles, so the result
follows. O

Example 2.8. We consider the system

j"l = T2,

iy = 14zt +x+ (1 -8z + 32wy + (sin(zy) + 1)
By Proposition 2.7 the above system admits no limit cycles.

Let us consider the following system:

2k+1
{ L= 2t (18)
t9 = ho(z1) + h1(21)m2 + hoptr(@1)z3

we obtain the following:

Proposition 2.9. If any of the following conditions hold:
a).- h1 € Fy and (£)hony1 > 0,
b).- hopi1 € F and (£)h1 >0,

then the system 15 has no limit cycles.

Proof. Assume hy € .7-"]1'{2 and honp4+1 > 0. We seek a Dulac function h depending
on z such that

0z 0z
2k-+1
+ ho(x =0,
> an, o(21)5 s
and we take s = 0. The rest proof is similar to that of Proposition 2.7. O
Example 2.10. We consider the system
i’l = l'g,
iy = 3—ai+x+ (2427 + 421" 2o + (2F + 32F — 7)%2d.

By Proposition 2.9 the above system admits no limit cycles.
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