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ABSTRACT:

‘Let X, X,, ... be independent identically distributed ran-
dom variables.having a common probabilifﬁ density:function. f. Affef
a’so~called kernel class of estimates »fni of‘ f  ba$ed on |

‘(Xl,-,.., Xé) was introduced by Rosenblatt (1956), various cénve:gencel

’ :propertiéé of these estimate§ have_béen studiéd.. The strongestfre— 

sult in thisiairection was due tovNadéraya»(l965) whé pro&ed that if"

- f is uni&ormly continuous then for a 1arge ciass.of kernels the'esti—,

 m§tes fn'rconVerge'uniformly oﬁ the fealtliné to -f. witﬁ probaﬁiiit}
dne, For a‘very general class of kerneis,~we wiliﬁéhbﬁ.that.thevébové‘
assumpfions'on f are necessary-fbf this type of convergence. That

is, if ﬁﬁ‘ converges_uﬁifotmly to a funcfioh g With probgbility.
one, then g Jmust be uniforﬁly;continuoué:and the &isiribution_lF;;
from which we-aré sambling ﬁust be absolutély éontinuous with

._F‘(x) = g(%) e&erywhere.

When iﬁ addition ;ortﬁe édnditioﬁé.mentionéd'aboVe,lit ié'aéf

:fsqmed thaf £ -énd its first r + 1 dérivétivés are bounded, We'arék

con— .

-able to show how to construct estimates fn such that fés)

verges‘uﬁifofmly to f(s)‘ at a given rate with prdbability"one for-
s =0, 1, sovj Yo
Several applications of the density estimates are considered,

~the main ones being the proposed estimatés of a regression function

v



Tvi

which arise quite naturally from the kernel estimates of a_bivariaté—l
density. TFurthermore, various convergence properties of these

regression -estimates are studied.



CHAPTER 1

INTRODUCTION

In this paper we shall investigate the asymptotic properties of
the so-called kernel class of estimates of a probability density
function and apply these estimates to some problems in statistical in-
ference., Before stating this problem precisely we will list a few
definitions and indicate some notation to be used.

Let (Q, a, P) be a probability space and X a random variable

defined on Q.

Definition 1.1. The distribution function F corresponding to the

random variable X is defined by F(x) = P{X < x} = Plw ¢ Q|X(w) i_X}:

for all real x.

Definition 1.2. A distribution function F is said to be absolutely
continuous if there exists a Borel measurable function f over (-», =)

such that

X
(1) F(x) = (L) J f (u)du

for all real x. The function f 1is called a probability density

function of F.



b
In this paper J g(u)du will be understood to be a Lebesgue
a

b
integral and J g(u)dF(u) the Lebesgue-Stieltjes integral of g with
a

respect to the probability distribution P determined by the distri-
bution function F. The symbol (L) before an integral (as in (1)
above) will be used at times to emphasize that the integral is to be
understood in the Lebesgue sense while the symbols (R) or (L-S)
before an integral will mean the integral is a Riemann or a Lebesgue-
Stieltjes integral respectively. Also whenever the integration ex-

tends over (-, «®) no limits of integration will be given.

Definition 1.3. A random variable is called absolutely continuous if
it has an absolutely continuous distribution function. In addition,
we say that X has probability density f when the distribution

function F of X 1is given by (1) above.

Definition 1.4. A probability density is a non-negative Borel measur-

able function g with J g(u)du = 1.

If (@, a, P) 1is a probability space and X is a random vari-

v

able defined on £ then for any Borel measurable function h and

Borel set B, we will use the following notation:
EF[h(X)] = (L-S) j h(u)dF(u)

and



P{h(X)eB} = P{w ¢ 2|h[X(w)]eB}.

If F has density £ then Ef[h(X)] and Pf{h(x)eB} may also be
used to denote J h(u)dF(u) and .P{w ¢ th[X(w)]eB}. Whenever it is
clear from the context that X has distribution function F or density
f the subscripts on E and P may be dropped.

Let Xl’ X2, ««+y, be independent identically distributed random
variables having a common probability density function f. Functions of

the form

N
@) 00 = 1 K = )

for all real x, where k is any probability density function and
{an} is a sequence of positive numbers converging to zero, will be
called kernel estimates of f(x).

We shall inveétigate the asymptotic properties of the above
kernel estimates and apply these estimates to some problems in non-
parametric statistical inference.

The dissertation is divided into four parts. Chaptef 2 is de-
voted to a survey of relevant papers in the literature. In Chapter 3

we examine the convergence of the random variables

s;p bn|f§r)(x) - f(r)(x)l

(0)

for appropriate bn with bn + o, yhere for any function g, g =g



(r)

and g denotes the rth derivative of g.
| Iﬁ Chapter 4 a necessary and sufficient condition for the uni-
“form COﬁvergenée of fn on the fgal line withfprobability one is.
given.
The final two chaptefs are concerqed éith applications ofvthe

kernel estimates. Our main application is the estimate of a,regres—

sion function considered in Chapter 6..



CHAPTER 2

SURVEY

The problem of estimating the density function f of a random
variable X has recently begun to receive attention in the literature.

Fix and Hodges [5] have considered estimates of the form

S (x) = Eﬂffiﬁﬂl_zwfﬂff:gﬂl
n\ X =

where Fn is the empirical distribution function based on a random
sample (Xl’ cees Xn) from f and hn is a sequence of numbers
which approach zero as n tends to infinity. Rosenblatt [15] proved
that if (Xl’ cees Xﬁ) is a random sample of size n from £, then
any non-negative Borel estimate S(x; Xl’ ceey Xn) of f(x) must be
biased, i.e., there exist an x and a continuous density function g
such that EgS(x; Xl, RN Xn) + g(x). Rosenblatt also noted that the
estimates studied by Fix and Hodges were members of a more general

class of estimates of f(x) of the form

Sn(X) =

o |
I 2
e

wn(x—X )



where v is a probability density function for each n. If
wn(u) = k(u/an)an where a is a sequence of positive numbers con-

verging to zero and k is a probability density function, then

na

oo - B

is a kernel estimate of f(x) as defined in Chapter 1. In the fol-
lowing fn(x) will denote a kernel estimate of f(x) as given in
(1) above.

For the case when J u k(u)du = O, J|u|3k(u)du is finite, and
f has continuous derivatives of the first three orders, Rosenblatt
showed that for fixed x, the sequence {fn(x)} is an asymptotically
unbiased estimate of f(x); that is, %ig E[fn(x)] = f(x), with
E[fn(x)] - f(x) = O(ai). In addition he showed that the sequence
{fn(x)} is consistent in quadratic mean for f(x); in other words,

1lim E[f (x) - f(x)]2 = 0, with E[f (x) - f(x)]2 no smaller than
n-+o n n

o(n—4/5

).

Parzen [13] established these last two results under some-

what weaker conditions and also determined conditions under which

fn(x) is asymptotically normal when suitably normalized. In ad-

dition he proved a much stronger result, namely, that if f(x) is
uniformly continuous and %ig naﬁ = o, then for a large class of

kernels k, the kernel estimates of the form (1) are uniformly



consistent in the sense that for every e > 0
1im Pf{suplf (x) - f(x)l < g} =1,
n-><° X n

The uniform convergence of fn to f was also studied by
Nadaraya [11] who proved that if k is of bounded variation,

(-]

X exp(-cnai) is finite for all positive ¢, and £f(x) is uniformly
Zgitinuous, then for an estimate fn(x) of f(x) of the form (1),
s;plfn(x) - f(x)l converges to zero with probability one. In her
proof s;plfn(x) - Efn(x)l was tacitly assumed to be a measurable
function; however if the measure P corresponding to the distribu-
tion of the infinite sequence (Xl, X2, «es) 1s completed, then her
result remains valid whether or not s;plfn(x) - f(x)| is measurable
for each fixed n.

Under somewhat stronger assumptions than Parzen's, Bhattacharya

[1] showed for a large class of kernels k, how to choose the se-

quences {an} and {bn} such that sTp nclfér)(x) - f(r)(x)l con-
|x|<b
—'n

verges to zero with probability one for appropriate positive ¢ (de-
pending on r).

Cacoullos [2] noted that Parzen's results can be adapted in an
obvious manner to provide estimates of a multivariate density. The
consistency, asymptotic unbiasedness, and the mean square error of the
multivariate estimate fn follow by using straightforward modifica-

tions of Parzen's methods. With respect to asymptotic normality



Cacoullos obtained a stronger result than Parzen's; namely, he proved
the joint asymptotic normality of the estimates fn at continuilty
points of f.

Several authors have considered slight modifications of the
kernel estimates (1) of f(x). Bhattacharya [1] has considered

estimates of the form

n
k(x) when z In(xi) =0
i=

—

*

fn(x) - n x—Xi n n

=21/ 1 &) when § 1(x,)50
i1 i=1

o =

[T (x,) -
igl not n ' %n i=

where a and k are as in (1) and L is the indicator function of
[-bn, bn]’ with bn tending to infinity. He has given sufficient
conditions for the convergence of s;plf:(x) - £f(x)| to zero with
probability one.

Watson and Leadbetter [16] have considered estimates of the

form

and discussed the properties of such estimates on the basis of their
mean integrated square errors E[J{En(x) - f(x)}zd%] (abbreviated
MISE). They have shown that the MISE is a minimum if the Fourier
transform of the kernel kn denoted by ¢ is

k
n



<:>kn(t) = nl‘l’f(t)lz/{l+(n-—l)[‘i’f(t),2}

where Wf is the characteristic function of f which is assumed to

be in LZ' By making suitable assumptions on the asymptotic behavior
of ?f, they have been able to calculate the maximum rate of con-
vergence of the MISE. They have shown in any case that the MISE cannot
decrease faster than n-l.

The asymptotic behavior of the maximum deviation of the esti-

mated density function f(x) from estimates of the form

, . . . . 2
where g 1is a suitably chosen non-negative function defined on R",

has been studied by Woodroofe [17]. His main result gives suf-

ficient conditions for the convergence of

o .__:EZI_,~ 1/2 |fn(x)~f(x)|

leil -2 log a_

e, £ 6

to one in probability where []gxllg = fgz(x,y)dy.

Let B be the class of Borel sets of a Hausdorff topological
group (G, F) and u a left and right llaar measure on the measure
space (G, B)., Let X be a random variable on (G, B) with proba-

bility distribution P which is absolutely continuous with respect to



10

u. Craswell [3] has noted that Parzen's results can be used to con-
struct extimates of g.
When this work began the strongest results in the direction of

this paper were given by Nadaraya's theorem [11] on the convergence

of suplfn(x) - f(x)l to zero with probability one and Bhattacharya's
X
theorem {1] on the convergence of Tup nclfér)(x) - f(r)(x)l to
lx <b
—n

zero with probability one referred to above. Poth these results are
proved by first obtaining exponential bounds for the probability that
the supremum distances are greater than a given positive number «.

For a very general class of kernels we shall show that the as-
sumptions on f made by Nadaraya in proving that s§p|fn(x) - £(x)]
converges to zero with probability one are necessary for this type of
convergence. That is, we will show that if s;p[fn(x) - g(x)[ con-
verges to zero with probability one for some function g, then g
must be uniformly continuous and the distribution function F from
which we are sampling must be absolutely continuous with F'(x) = g(x)
everywhere (F' being the ordinary derivative of F). Thus combin-
ing Nadaraya's theorem with the result obtained here, we have a
necessary and sufficient condition for the uniform convergence of fn
with probability one.

With the same assumptions on £ and k made by Bhattacharya
we shall show how to strengthen his conclusion by proving
s;p nclfir)(x) - f<r)(x)| converges to zero with probability one.

The methods cmployed are different from Bhattacharya's.



CHAPTER 3

ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND ITS DERIVATIVES

Let X., ..., X be independent identically distributed random
1 n

variables with a common distribution function F. Let Fn be the

empirical distribution function based on (Xl’ cees Xn); i.e.,

nFn(x) is the number of Xi with Xi < x vwhere 1 < i <n.

Lemma 3.1. There exists a universal constant C such that for any

n>0, en>0 and distribution function F,
2
(1) Pp {s:p'Fn(x) - F(x)| » en} <C exp(—2nen).

Proof: For the case when F is continuous, see Dvoretzky, Kiefer and
Wolfowitz {4]. If F 1s discontinuous at some point then there exists

a continuous distribution function F for which
PF {s;pan(x) - F(x)l > en} fAPF-{s;pIFn(x) - F(x)[ > en}

(see [7] and [8]). Thus the lemma is true for all univariate F.

Let fn(x) be a kernel estimate based on (Xl, ey Xn) from

F as defined in Chapter 1 with kernel k chosen such that
(s)

[lulk(u)du is finite, and such that k is a continuous function

11



12
of bounded variation for s =0, 1, ..., r. The density function of

the standard normal, for example, satisfies all these conditions. The

(s)

variation of k on (-~, ») will be denoted by Hye In the fol-

1

i
or that J,u[k(u)du be finite. The continuity assumption on k

lowing lemma we do not require that the X,'s be absolutely continuous

(r)

was made solely to ensure that suplfér)(x) - Efér)(x)l is a random
x
variable. With the deletion of this assumption the following lemma

remains true when we replace the probability P_ by the outer proba-

F

%
bility P.. of P

F P Our proof remains valid in this case.

Lemma 3.2. There exists a universal constant C such that for any

n>0, en>0, and distribution function F,

PF {s;plfér)(x) - Efir)(x)l > en} <C exp(*2ne§a§r+2/ui)

where {an} is a sequence of positive numbers converging to zero and

£y oL k(r)(iﬁ).

n na;+1 i=1 an

k(r)

is of bounded variation on (-, ), we know

r)

Proof: Since

(see [12], page 239) that k( is bounded and that 1l1lim k(r)(x) and
X

lim k(r)(x) both exist. If r =0 then k is non-negative and
x>0

Ik(u)du = 1, so that since 1lim k(x) and 1lim k(x). both exist, these
X-ro

X->—00
(r-1)

limits must be zero. If 1r>1 then the function k has a



13

bounded derivative on [-a, a] for any a, and hence (see [12], page

133) k(r) is Lebesgue integrable on [-a, al. Thus (see [12], page

259)
& (x-1) [
vV kT = J [k 7/ (u) | du.
-a
-a
Now
o a
V [k(r""l)] - 1im v [k(r—])]
a o
= lim J |k(r)(uﬂdu = [ |k(r)(u)|du
a-»o
—-a -

so that I |k(r)(u)]du is finite., This fact together with the ex-

istence of 1im k) (x) and 1im k) (x) imply that these limits
b Giasd XF—c0

must be zero.

(r) (x) =

Upon integrating by parts and remembering that 1lim k
X->00

lim k(r)(x) = 0, we find that

N0

s;plfér)(x) - Efir)(x)l



14

= sup aril | f k(r)(x—;i-) aF_(u) - J 1) (-"—;i) dF (u) |
n

S () x-uy (r) x-u
) aFfl S;pl[{Fn(u) ~ Flu)JE an)l“ B J{Fn(u) = F(u)}dk" (xa:)l
n
— - (r) x-u
T sgpl J{Fn(u) F(u)}dk" 7 ( an)[
n
1 supIF x) - F(x)] .
— ar.-*-l x n Ur
n

Therefore by an application of Lemma 3.1 we have

P {siplfﬁr)(x) - Efér)(X)l > En}

e ar+1
n n 2 2r+2, 2
< P {S;PIFH(X) - F(x)| > ) } < Cexp(-2ne a ™ “/u)

and the proof is complete.

Lemma 3.3 below is found in [1]; however, we note here that the
symmetry condition imposed on k in [1] is not needed and that in the
proof given there the absolute integrability of the k(s),

s=1, 2, ..., r, -has been tacitly assumed. From the proof of
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s
k( ) tend to zero as x > + ® or -» and

Lemma 3.2, the
J lk(s)(u)|du is finite for s =0, 1, ..., r, so that the proof of

Lemma 3.3 can be completed exactly as in [1].

Lemma 3.3. Let X be an absolutely continuous random variable with
probability density function f and let a be any positive real
number, If f and its first r+l derivatives are bounded then there

exists a constant C, not depending on a, such that

1 . (x),xX (x)
s§p|Ef[ar+1K ( 2 Y] - £ (x)l < Ca.

Lemma 3.4. If f and its first r+l1 derivatives are bounded and if

{en} is a sequence of positive numbers such that a = o(en) as
(x) @
n>e where f x) = Z k - , then there exist positive
n r+l | a
nan i=1 n

éonstants C1 and C2 such that

exp(—Czneia§r+2)

pe tswpl £ 0 - £l > e ) < ¢

for n sufficiently large.

Proof: We have with the aid of Lemma 3.3

supl£ P (o) - £ )|
X



j_s;plfir)(x) - Efér)(x)l + s;plEfér)(x) - f(r)(x)]
f_s;plfér) x) - Efér)(x)l + Can.
Since a = O(en) it follows that for ﬁ sufficiently large
P {s;plfér)(x) - f(r)(x)l > en} <P {S;p]fﬁr)(x) - Efér)(x)] > enlz}

An application of Lemma 3.2 yields the desired result.

The theorem below tells us that for special sequences {an},
(r) (r) .
suplfn (x) - £77(x)| converges to zero with probability ome. A
X
sequence {bn} with bn going to infinity is introduced to indicate

the rate at which the above convergence takes place.

Theorem 3.5. If f and its first r+l derivatives are bounded and

if the sequences {an} and {bn} are such that anbn = o0(1) and

(<3

Z exp(—cnair+2/bi) is finite for all positive ¢, then

n=1

Lim sup bnlfér) @ - £ =0

with probability one.

Proof: TFor any € > 0, we obtain by Lemma 3.4 that

16
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(r) _ (0 € . 2 2r+2, 2
PF {s;.(lplfn (x) f (x)l > bn} j_Cl exp(—C2€ na_ /bn)
for n sufficiently large. Since Z exp(—cna§r+2/bi) is finite

n=1

for all positive ¢, it follows that

] P {suplfsr)(x) - f(r)(x)l > %—J
n=1 X n

is finite for all positive e. Consequently, with the aid of the

Borel-Cantelli Lemma we see that lim sup b |f(r)(x) - f(r)(x)l = 0
nreo  x n'n

with probability one.

f(r+l)

It can be seen that the assumption that be bounded

could be relaxed somewhat and the conclusion would still hold. The

f(r+1)

fact that is bounded was used in Lemma 3.3 in [1] to ensure

that suplEfér)(x) - f(r)(x)l = O(an)' To establish
x

lim suplf(r)(x) - f(r)(x)| = 0 with probability one following the
neo x 0

lines of our argument we would only need supIEfsr)(x) - f(r)(x)l = o(1)
X

which would be true, for instance, if f(r) were uniformly continuous.
A corollary follows which will indicate the rate of convergence

for a particular choice of a .

Corollary 3.6, If f and its first r+l1 derivatives are bounded,
- n—l/(2r+4)

a and 0<c<1/(2r+4), then

n



lim s

n->e

with probability one.

up nclfsr)(x) - f(r)(x)[ =0
x

18



CHAPTER 4

UNIFORM CONVERGENCE OF ESTIMATING PROBABILITY DENSITY FUNCTIONS

Let fn(x) be a kernel estimate based on a random sample

(X,, «eey X) from F as defined in Chapter 1, i.e.,
1 n

In this chapter we shall assume that the sequence {an} is

o

such that Z exp(—cnaﬁ) is finite for all positive ¢ and that k
n=1 :
is a probability density function satisfying the following conditions:

(i) k is continuous and of bounded variation on (-», «),
(ii) uk(u) > 0 as u >+ = or -«

(iii) There exists a & in (0, 1) such that

)
—u (-] .
ul V() +V (k) » 0 as u -+ «,
—C0 6
u

(iv) Jluldk(u), the integral of |u| with respect to the signed

measure determined by k, is finite.

19
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For example, the density function of any normal or Cauchy distribution
satisfies these conditions. Lemmas 4.1 through 4.10 below hold for

any distribution function F.

Lemma 4.1, For any distribution function F,

AN

1im suplf (x) - Ef (x)l =0
nr x N n

with probability one.

Proof: By Lemma 3.2

PF {s;plfn(x) - Efn(x)l >e} <C exp(—anaﬁ)

wvhere o = 282/u2 and U=V (K). Since Z c exp(—anaﬁ) is finite,
-—00 n=1

it follows that z P {sup|f (x) - Ef (x)| > e} 1is finite, and the
n=1 F ""¢'™n n

proof is complete in view of the Borel-Cantelli Lemma.

We note here that this lemma was proved in [11] for continuous
distribution functions F. We have extended this lemma to arbitrary

F by using Lemma 3.1 to establish inequality 5 on page 187 of [11].

Lemma 4.2. In order for 1lim sup|f (x) - g(x)| = 0 with probability
- nre x N
one for some function g, it is necessary and sufficient that

1im suplEf (x) - g(x)l = 0,
nreo X n A



Proof: This result follows directly from Lemma 4.1 in conjunction

with the following inequalities:
suplf x) - g(x)l j_suplf (x) - Ef (x)| + suplEf (x) - g(x)l
x n x n n X n

and

s;:(pIEfn(x) - gx)]| < s;plfn(x) - Efn(x)| + s;plfn(x) - g(x)|.
Lemma 4.3. If 1lim suplf (x) - g(x)l = 0 with probability one for
T n*>> x n

some function g, then g is uniformly continuous.

Proof: For any € > 0 there exists by Lemma 4.2 an M = M(e) such

that s§p|Efn(x) - g(x)l < e/4 for n > M. Conditions (i) and (ii)

on k imply that k 1is uniformly continuous, so that given €' > 0
there exists a §' such that |k(x) - k(y)| < €' whenever

|x - y] < 6'. With e' = %-am wve define 6 to be G'am so that

whenever |x - y| < §, we shall have

lg(x) - g(y)| <

lgGx) - Ef G| + |BE,(x) - EE ()] + [EE () - g(y

iA

|E£yG0) =~ Efy ()] + 2 sup|Ef () - g(x)]

1A

|EE, (x) - Ef, ()] + g-

21

)|
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- lf L EY - k@arw] + £
M %M M I +2

€, €
< 2 + 7= €.
Lemma 4.4. If 1lim sup|f_(x) - g(x)| = 0 with probability one for

some function g, then k{xe(—w,m)lF'(x) + g(x)} = 0 (X represents

the Lebesgue measure on the real line).

Proof: Suppose x 1is a point where F'(x) exists. Using integration

by parts we see that

1 X-Uy 4on
Efn(x) J 2 k(T)dP (u)

n n

1 -
-J' = F(u)dk(if-)
n n

I i;F(x—anu)dk(u)

J'% F(x—anu)dk(u) - Eéﬁlj dk (u)

n n

F(x~-a u) - F(x)
J n dk(u), since J dk(u) = 0.
n

Let & be such that (iii) holds. Then we may write
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F(x—a u) - F(x)

Efn(x) = J y " — dk(u)
H n
n
F(x~a u) - F(x)
+ [ L i (~u)dc(u)

where In is the Indicator function of [—3;6, a;é]. We observe by

(iii) that

F(x—a u) - F(x)
Lim | [ e dw |
n-e a
-4 n
[u|>a
-8
-a
2/ -
< lim=| V (k) +V (k)| = 0.
T fpl e a-§
n

Also, given € > 0 there exists an N = N(g, x) such that for n > N

F(x—anu) - F(x)

|In(u) | < F'(x) + e.

-a u
n

By condition (iv) on k we have that I(F'(x) + e)lu]dk(u) is
finite. Thus Lebesgue's Dominated Convergence Theorem for signed

measures applies and hence

lim
n-io

J F(x-a u) - F(x)

T (u)._—"_i;;i;-———-(—u)dk(u)
n
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F(x-a u) - F(x)
J 1im I (u) n (-u)dk(u)
n->oo n - an

1t

f F'(x) (~u)dk(u)

F'(x)

since J (-u)dk(u) = 1. Therefore %33 Efn(x) = F'(x) whenever F'(x)
exists. By Lemma 4.2, %iz Efn(x) = g(x) everywhere and hence

F'(x) = g(x) whenever F'(x) exists. Since it is well known that the
derivative of a monotone function exists almost everywhere, this

completes the proof.

Lemma 4.5. If 1lim sup|f (x) - g(x)| = 0 with probability one for
T n» x 0

some function g, then J g(u)du < 1.
Proof: Let F(x) = FAC(X) + Fs(x) + FD(x) where FAC’ FS and FD

denote the absolutely continuous, the singular, and the discrete part

of F respectively. Now F'(x) = F', (x) almost everywhere, and

AC
F'(x) = g(x) almost everywhere by Lemma 4.4, so that F'AC(x) = g(x)

almost everywhere. Thus

X x
FAC(x) = j F'Ac(u)du = J g (u)du
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which implies J g(u)du <1 since 1lim F,  (x) exists and is less

than or equal to one.

Lemma 4.6. If 1im sup|f_(x) - g(x)| = O with probability one for
ndo x D

some function g, then

1 X-u
%12 s;p J g;k(~;;)d(FS(u) + FD(U)) = 0.

Proof: In the proof of Lemma 4.5 we have shown that F'AC(x) = g(x)

almost everywhere. Consequently

Fio(®) = Fpo(a) = L)

1
AC F AC(u)du

B

(L)

g(u)du

W

(R)

g(u)du

[ R ]

since g is uniformly continuous on [a, x] by Lemma 4.3. So

F (x) = g(x) by the Fundamental Theorem of Calculus for Riemann

1
AC

integrals.



Lemma 4.7. If lim sup|f (x) - g(x)| = 0 with probability one for
T nre x I

some function g, then

. 1 X~u
rlxﬂ sup j;n k(—;;)d(FS(u) + Fp(u)) = 0.

Proof: From Efn(x) = J i-k(zig)dF(u) we obtain
n n

1 X-u 1 X~-u
Efn(X) - J;nk('a—n)dFAC(U) = J Py k(—;r‘l‘)d(FS(u) + FD(u)).

n

So for 6 > 0 we have with the aid of Lemma 4.6

1 X-u
0 < J 2 k(—;—)d(FjS(u) + FD(u))
n n

| A

|Ef () - g(x)| + |gtx) - Jif:n“%?d%c‘“)'

= |Ef_(x) - gx)]| + |g(x) - J 2 kEY g (w)aul
n n

|pg () - g + | f (8() - g‘X-u)}'lgnk<§n>d“'

26
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f_lEfn(x) - g(x)[ + f [g(x) - g(x—u)f% kef)du
Jul<s vt

+J 860 - gx-w) |2k Hau

luf>s von

ﬁ_lEfn(x) - g(x)l + sup |g(x) - g(x-u)| + 2 sup g(x) - j k (u)du.
x

ul<6
lu]>6/a
It follows that
(1) sup J'% kczig)d(FS(u) + FD(U))
X n n
< sup |Ef (x) - g(x)| + sup sup [g(x) - g(x-u)]
X . X |u|<s
+ 2 sup g(x) -J k(u)du.
* lul>8/
u|>8/a

In view of Lemmas 4.3, 4.5 and 4.6, g 1is uniformly continuous
and non-negative and J g(u)du is finite, whence g is bounded.

Let € > 0 be given, Since g 1s uniformly continuous we can
choose § so small that the second term on the right side of (1) is
less than €/3. Having so chosen & we can now choose N so large

that if n > N, then the remaining terms on the right side of (1) will



28

each be less than €/3, since the first term tends to O by Lemma
4,2 and the last term goes to zero for any fixed 6 > 0. The desired

conclusion now follows.

Lemma 4.8. If lim sup|f (x) - g(x)| = 0 with probability one for
T ne x 0

some function g, then FD(x) =0 for all x.

Proof: Suppose there exists an X such that FD(xo) - FD(xo—O) > 0.

Then

1 X-u 1 x"Xo
J Py k( z:)dFD(U) > ;nk(——-—— FD(xo) - FD(xo—O)}.

a
n n

If ¢ 1is such that k(c) > 0 and x, = ca + X, then

1, xu (L[5 k(e
sgp I égk( an)dFD(u) i-Jank(—z;n)dFD(u) > a {ED(xo) - FD(xo~O)}

which contradicts Lemma 4.7. (Recall that a > 0o .)

Lemma 4.9. If 1lim suplfn(x) - g(x)| = 0 with probability one for
n

00 x

some function g, then 0 1s a derived number of FS at X (as

defined on page 207 of [12]) for any x, in (-, «),

Proof: Let a be such that k(a) > 0. Since k 1is continuous there

exists a.number b > a such that inf k(x) > k(a).
aﬁ;ﬁb - 2

Now
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X—aa

1, x-u n 1l x-u
f 2 k( A )dFS(u) Z_J 3 k( 2 )dFS(u)
n n n n
x-ba
n
_ F_.(x-aa ) - F_(x-ba )
> inf k(x u) . S n S n
x-ba <u<x-aa an -an
n— — n

Fs(x~aan) - Fs(x—ban)

(b a) K(a) - T > 0.
n

Let X, be an arbitrary but fixed real number and x = X, + aa .

It then follows that

F (xn~aan) - Fs(xn—ban)

(b- a) S —
(b—a)an

SUPJ"k(— )dF()> k(a)
X n

Fs(xo) - Fs(xo—(b~a)an)
(b—-a)an

(b a)

k(a)

F (xo) - Fs(xo—(b—a)an)

From Lemma 4.7 we can easily deduce that 1lim S
n->w (b—a)an

= 0.
Since X, was arbitrary the proof is complete.

Lemma 4.10. If 1im sup|f (x) - gx)| = with probability one for
nre  x

some function g, then Fs(x) = 0 for all x.

Proof: Let a and b be real numbers with a < b, and put
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h(x) = Fs(x) + x. Then h is strictly increasing on [a, b] and by
Lemma 4.9 it has a derived number equal to one at every point. Thus if

we take E = [a, b] in Lemma 2 on page 208 of [12] then we have
* *
(2) 0 < X (hla, b]) <1 - A ([a, b])

*
where A (E) denotes the Lebesgue outer measure of E and hl[a, b]
is the image of [a, b] under h. Since hla, b] = [a + Fs(a),

b+ FS(b)] we can rewrite (2) as
0 <b+F(b) -a-T(a) <b-a

which means Fs(b) = Fs(a). Since a and b were arbitrary, FS

must be constant and hence FS must be identically zero since

lim FS(x) = 0.
X

We are now ready to obtain the main theorem of this chapter,

Theorem 4.11. A necessary and sufficient condition for

lim suplf (x) - g(x)l =0
x ' n

n->o

with probability one for a function g is that g be the uniformly

continuous derivative of F,.

Proof: The sufficiency of this condition has been established by
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Nadaraya [11] for a larger class of kernels than that considered

here.

Conversely, Lemmas 4.8 and 4.9 show that F = FAC' Lemma 4.6

states that F', _(x) = g(x) everywhere and hence F'(x) = g(x) ecvery-

AC

where. Finally Lemma 4.3 yields the uniform continuity of g and the

necessity of the condition is established.



CHAPTER 5

APPLICATIONS

In this chapter we will mention some possible applications of
the density estimates considered in the earlier chapters. We will
first use the density estimates to construct estimates of the unknown
distribution function and then use the density with the distribution
estimates to construct estimates of the hazard rate (defined below) at
a given point x for an absolutely continuous distribution function F
having probability density f. The use of density estimates to con-
struct estimates of a hazard rate was suggested by Parzen [13] and
studied by Murthy [10] who showed that the estimates considered belcw
are consistent and asymptotically normal at continuity points of F

and f.

Let (Xl, X2, «++) be independent identically distributed ran-

dom variables having common distribution function F and let the ker-
1 n x--Xi
nel estimate f (x) = —— Z k("-—) be as in Chapter 1. As an esti-
n na .2y a
mate of the value F(x) of the distribution function at a given point

x we will take

x
Fn(x) = J fn(u)du.

32
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If we let

G(x) = k (u)du

g

then we may write

f?n(x) = ;11— Igl G(X—Xi)

where G is a (continuous) distribution function.

Lemma 5.1. If F is continuous, then for every n >0 and ¢ > 0

there exists a universal constant C such that
2 2
PF {sup]Fn(x) - F(x)l > e} < C exp[~(2-n)e"n]
X

for n sufficiently large.

Proof: If n > 2 the statement is trivially true; so let us assume
that 0 < n < 2. Let Fn denote the empirical distribution function
based on (Xl, eonsy Xn) as defined in Chapter 3. Upon integrating by
parts and observing that J dG(Zig) = 1, we find that

n

s;pan(x) - EFn(x)I

= s;pl f c(%:)dxvn(u) - J G(%:i)dl“(u)[
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sipl f (F_(u) - F(u)}dG(z(i‘:f) - [{F_(u) - F(u)}G(%)_]_Z |

= s;pl J {Fn(u) - F(U)}dGczgi)l

A

sup|Fn(x) - F(x)l.
X
Since

suplEﬁn(x) - F(x)l = supl J G(E:H)dF(u) - F(x)l
X X an

= sup| J {F(x-u) - F(x)}-l k(—E )dul
% a "a

we have for any 6 > .0

¢h) suplE% (x) - F(x)l < sup sup |F(x-u) - F(x)l + 2 sup J l'k(g )du.
<o T Jul<s st
ul>

Given €' > 0, the uniform continuity of F allows us to make the

first term on the right side of (1) less than g— by choosing §

sufficiently small; having so chosen § we can make the second term

el

less than 2 for n large enough. Thus we have shown

lim suplEF (x) - F(x)l = 0. By combining the above results it is seen
nHe  x n
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that for n sufficiently large

P, {s;p|§n(x) - P > e <Py {s:p|§n<x> - F@] > e@-m) %)

-1/2

<Py swplF_(x) - F)| > e2-m /),
x 0

An application of Lemma 3.1 completes the proof. (We note that this

proof is almost a verbatim repetition of the argument used in Theorem 1

of [11] if we replace there fn and f by Fn and F, respectively.)

Lemma 5.2. If F is continuous, then
lim suplF (x) - F(x)l =0
n>e x N

with probability one.

Proof: By applying Lemma 5.1 and the Borel-Cantelli Lemma.

-

We remark here that the estimate Fn is of dubious importance
since the well-known estimate Fn (the empirical distribution function)
has many desirable properties as well as the added advantage of being
readily computed. However, since ﬁn is continuous in x for each
sample point, it is easy to verify that certain functions of the type
igg g(Fn(x)) are random variables (see for example the hazard function

discussed below).

The results of Chapter 3, together with Lemmas 5.1 and 5.2,
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~

indicate that we may choose Fn in such a manner that

(s) (s) . Lo
supIFn (x) - F (x)l converges to zero with probability ome for
x

F(S)

s=0,1, ..., r, provided that exists and is bounded for
s =0,1, ..., r +1. As discussed in [1], this suggests the possibility

of estimating functionals I of F with

I(F) = f HF@), FO W, ..., P wldu

by I(Fn).

Estimation of the Hazard Rate
If the random variable X represents the time to failure of an
item, then F(x) is the probability of the event that by time x the
item has failed and R(x) = 1 - F(x) is the probability that the item

survived time x. If F'(x) = f(x), then
Py {x < X < x + &x|x < X}

] ] - f(x) - f(x)
Z(x) Aii§+ Ax 1-F (x) R(x)

is called the hazard rate of X at x. We mgght say Z(x) gives the
probability density of almost immediate failure of an item that has
survived time x.

Now let Rh(x) =1 - %n(x). We will consider estimates of

Zn(x) of Z(x) for which



37

0 if Rn(x) =0
Zn(x) = fn(x)
R (x)

if Rn(x) >0

and obtain two properties concerning them. In order to do this we will

need the following.

Lemma 5.3. Let k be a continuous probability density function satis-—

fying the condition Ile |uk(u)| = 0 and 1let {an} be a sequence of
U | e

positive constants converging to zero. Suppose a and b are ele-
ments in the extended real number system. If there exists an open
interval containing [a, b] on which g is uniformly continuous and

if J |g(u) [du is finite, then

lim sup | j‘i k(g )g(x-u)du - g(x)| = O.
n>e a<x<b n n

Proof: For 6 > 0, the inequality

Iz [ k(G glxu)du - g(x)|

n n

< sup |g(x-u) - g(x)| +-% sup luk (u) | J lg(u)|du
uj<¢ u|>8/a
- — " n
+ Ig(x)l k(u)du

lul>68/a



has been established in the proof of Theorem 1A of [13]. So if

Ml = sup Ig(x)l and M2 - [ |g(u)]du it then follows that
[a,b]

sup |= J k(ﬁ-)g(x—u)du - gx)|
a<x<b "n n

M
< sup sup |g(x-u) - g(x)] +-Eg sup  |uk(u)]
a<x<b lu <8 |u|3§/an
+ Ml k(u)du
Iulzﬁ/an

which tends to zero as we first let n tend to <« and then let §

tend to O.

Lemma 5.4. Suppose F(b) < 1, f(x) is uniformly continuous on
(-2, b+ 8) for some &8 > 0 and the kernel %k is a continuous

function of bounded variation on (-», «) for which 1lim luk(u)l =
u|-ree
Then there exist constants C1 and C2 (C2 depending on b) such

that

Po {sup|z (x) - 2(x)| > e} < C

exp(—Cznaz)
x<b n

1

for n sufficiently large.

38
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Proof: Let M = sup Z(x). If Rn(b) > 0, then for x < b we may

x<b
write
F (x) - F(x) f (x) - f(x)
- R&x) n n i
12,00 - 2 = g Gy 1260 R T TTR®
R(x) - R (x)
Since ﬁg%%y > 2 implies --§(xi~—‘— >'§, it now follows that

P{supl? (x) - 7(x)| > ¢}
x<b

< P{supl? (x) - Z(x)[ > €, R (b) > 0} + P {R (b) = 0}

x<b
I% (x) - F(X)l lf x) - f(x)l
< P{e < 2M sup|——57—v—| + 2 sup|— ~—57-+|}
x<b R(x) x<b R(x)
R(x) _ -
+ P{i:g R e > 2, Rh(b) >0} +P {Rn(b) 0}
{ lF (x) - F(x)'} Ifn(X) - f(X)I}
< Ple < 4M s e + P {eg <4
U R
lR(x) - R (x)
+ P{~‘< s
x‘;g Gy
F (x) - F(x)
< P{e R(b) < &M sup] ~~~~~~~ R I} + P {e R(b) < & sup f (x) - f(x)l}
x<b x<b
F (x) - F(x)
+ P{—i—l < supl 1 R(x) !}.

x<b
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As a consequence of Lemmas 3.2 and 5.3

P{e R(b) < 4 suplfn(x) - f(x)|} < P{e R(b) < 8 sup[fn(x) - Efn(x)[}
x<b x<b

< P{e R(b) < 8 suplf (x) - Ef (x)l} <.C exp(—esz(b)naz/uz)
x ''n n n

for n sufficiently large (C is the constant in Lemma 3.1 and u is
the variation of k on (-», «).) Therefore by Lemma 5.1 and the

above we have for n large

P, {supiZ (x) - Z(x)| > €}
F xﬁbl n l

< Clexp(~¢ k2 (b)n/1647) + exp(~e R’ (b)na’/32u%) + exp(-k’(bIn/4)].

Since exp(—esz(b)nai/32p2) is dominating the result follows.

Lemma 5.5. If J exp(—cnai) converges for all positive ¢, then
n=1

under the conditions of Lemma 5.1

lim sup]Zn(x) -2(x)| =0
n>® x<b

with probability one.

i
Proof: Apply Lemma 5.3 in conjunction with the Borel-Cantelli Lemma.



We also mention that in [11] and [13] the kernel estimates fn
have been used in an obvious manner to construct estimates of the
mode of a density. If the estimated mode and the true mode are de-
noted by en and 6 respectively, then sufficient conditions under
which 1im 6 = 6 with probability one are found in [11]. An ex-

n¥e n
ponential bound for PF {|en - 8] > €} can be deduced from Theorems
1 and 2 there.

Our main applications of the kernel estimates are the proposed

estimates of a regression function which will be studied in detail in

Chapter 6.

41



CHAPTER 6

ESTIMATION OF A REGRESSION FUNCTION

Let us suppose that X and Y are real-valued random variables
having a joint distribution function F. If EF|Y| is finite then
any version of the conditional expectation of Y given X, EF[Y]X],
will be called a regression function (of Y on X). We will be inter-
ested in those distributions F which have a density, that is, those

for which there exists a Borel-measurable function f such that

X Yy
F(x,y) = J J f(u,v)dvdu for all real x and Yy.

In this case the regression function m_ associated with a particular

f

J yf(x,y)dy
density f of F is defined to be mf(x) =4 - whenever

f(x,y)dy
f f(x,y)dy > 0. 1In this chapter we will assume that a version of the
density f can be chosen which satisfies certain regularity conditions
to be specified. The problem considered here is: Given a random
sample (Xl, Yl),. o ey (Xn, Yn) from a distribution F which has
a density f satisfying the regularity conditions, how can me be
estimated? In order to motivate properly our search for an estimate

of a regression function, we shall try to estimate the regression

42
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function me corresponding to a "smooth'" density function f (if

such a density exists). However, the arbitrariness resulting from

this will be immaterial as is seen in the following case. If m
n

denotes an estimate of m and if  sup ]mn(x) - mf(x)] converges to
x|<a

zero with probability one, then clearly ess sup lmn(x) - n(x)| con-
|x|<a

verges to zero with probability one for any other version m of the
regression function.

In the sequel the subscript £ on m, will be dropped and a

f

statement like ''the regression function m has property A" is to be
interpreted as meaning there exists a choice of the density f such

that the regression function m corresponding to f, has property

£,
A,

Three Estimates and Their Motivation

Let (Xl’ Yl)’ (X2, Y2)’ . . . be independent identically dis-
tributed bivariate random variables Having a common probability density
f. The kernel estimates considered in the first four chapters can be
adapted to provide estimates of the bivariate probability density

function f; i.e., if

1 n
@ R h( 5
nn i=

where {an} and {bn} are sequences of positive numbers going to
zero and h dis a bivariate probability density function, then the

following convergence properties of fn to f are obtained directly
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as in the univariate case (see [2]):
(i) The asymptotic unbiasedness of fn at every
continuity point of f.
(11) The consistency of fn in quadratic mean at every
continuity point of f.
(iii) The joint asymptotic normaiity of the estimates fn
at continuity points of f.
(iv) The uniform consistency of fn whenever f is
uniformly continuous.
Moreover, if f is uniformly continuous, the results in [1] may be
used to construct estimates fn of the form (1) for which

su

p Ifn(x,y) - f(x,y)l converges to zero with probability
[xleh s Iyl <k

one and an exponential bound on P{ sup [f (x,y) - f(x,y)]| > s]
|x]<h , lylsk  ®

exists for appropriate hn and kn going to infinity.

If the densit§ f were known then the regression function m
could be constructed by ordinary Lebesgue integration. This together
with the above discussion suggests we might first estimate f and
then construct estimates of m by integration; i.e., if fn denotes

an estimate of £ of the form (1), we might estimate

yfn(x,y)dy

f yf(x 9Y)dy

m(k) =+ . by a function of the form mél)(x) =

J f(x,y)dy J fn(x,y)dy

(henceforth we will define the regrecsion estimates to be zero at those

points where their explicit formulas are logically undefined).
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If the bivariate kernel h 1is chosen to be a product kernel,

% * .
say h(x,y) = k(x)k (y) where k and k are univariate probability

*
densities with J yk (y)dy = 0, then the above estimate mil)

(2)

simplifies to an estimate m given by

(2) } n k(g—xi n ' x—Xi
m (%) 'Zl Y, . ) igl k( o ).

1=

(2)

Note that m is somewhat simpler, computationally and otherwise,

than m(l). For example méz)

N is independent of the sequence {bn}.

In attempting to find an estimate for which
lim sup |m_(x) - m(x)| = 0 with probability one for a fixed real
nre |x|<a
number a, we found that such an estimate could be obtained if we

. . 2 .
replaced the Yi in the estimate mé ) by a truncated version of

the Yi' Thus we were led to our third estimate

ra,apnTY/ 8 W

n i= n

(3) T
m (x) = z
n i=1

where In is the indicator function of [—cn, cn] with c going

to infinity.

Bounds for the Supremum Distance on a Finite Interval

(1)
n

(x) - mx)| > €}

We will now find bounds for P{ sup |m
x|<a

(i=1,2,3) for those distribution functions having a density which
satisfies certain regularity conditions. From here on, a will

denote an arbitrary but fixed positive real number.
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Let Xl, X2, . . . be independent identically distributed
random variables having a common univariate probability density func-
tion g. Let gn(x) be a kernel estimate of g as defined in Chapter

1; i.e.,

1 n . x-—Xi
(2) g, (x) = —=— Zl k( " )

n i= n
where k 1is a probability density function and {an} is a sequence of

positive constants converging to zero.

Lemma 6.1. Suppose k has a bounded derivative, lim Iuk(u)l =0
u|->

and there exists an open interval containing [-a, a] on which g is
continuous. Then given any € > 0 there exist positive constants Cl

and C2 such that

P { sup Igﬁ(x) - gx)]| > €} i_Cl[exp(-Cznai)]/ai
x|<a

for n sufficiently large.

Proéf: Since g is uniformly continuous for |x|<a there exists a

§ > 0 such that |g(x) - g(y)]| < %- for |x - y| <§ and x,y belong-
ing to [-a, a). Let us take &(n) = eai/&Ml where Ml = sgplk'(x)[.
For n sufficiently large &(n) < 6§ so that Ign(x) - gn(y)l < e/4

and |g(x) - g(y)| < e/4 whenever |x - y| < §(n) and x,y belong

to [-a, a]l.

The desired conclusion now follows as in Lemma 2 of [1] using
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our Lemma 5.3 in place of the corollary to Lemma 1 in [1].

Let (Xl, Yl), (Xz, YZ)’ . « . be independent bivariate random
variables identically distributed as a bivariate random variable (X,Y)

whose distribution function F has density f. Let k and {an} be

as in (2) above. TFor simplicity we write:

wn(x)

1}
,H
o~
<
=
—
N
<
——

wn(x) f yf(x,y)dy

px) = J exp (iux)k(u)du where i2 = -]

=R

n
z Ys exp(luXS).

'¢n(“) = .

[

Lemma 6.2. Let k be a continuous univariate probability density

function satisfying the condition 1lim Iuk(u)!= 0. If there exists
[uf-e
an open interval containing [~a, a] on which the function w is

continuous and if EleI is finite, then

lim sup IEwn(x) - w(x)l = 0.
nre |x|<a

Proof: Since f lw(u)ldu f_Elel and Ewn(x) = J-i k(% Yw(x~u)du
n n

the proof follows directly from Lemma 5.3. .
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If we assume that the characteristic function ¢ is absolutely

integrable, then by the standard inversion formula we may write:

1 n x-X
w (x) = —— Z Y k(——J%
n na s a
n s=1 n
1 n x-XS
= 5 Z Ys I W(u)exp[—lu( 2 )]du
n s=1 n

1 ~fux
57 J e w(anu)¢n(u)du.

]

Lemma 6.3. Suppose k satisfies the conditions of Lemma 6.2 and
suppose Y 1is absolutely integrable. If there exists an open interval
containing [-a, al] on which w is continuous and if Esz is
finite, then for every € > 0 there exists a constant C > 0 such

that

Pf{ sup Iwn(x) - w(x)[ > ¢} §_C/nai
x|<a

for n sufficiently large.
Proof: From the discussion preceding the lemma and the fact that

j lw(anu)IEleIdu is finite we have

sup Iwn(x) - Ewn(x)'
x|<a

- 'STP Ié%-f e—iux ¢(anu)¢n(u)du —'g;'f I e—iux w(anu)¢n(u)du |
x|<a
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= sup ]»2;;[ e"iux ‘P(anu)wn(u) - E¢n(u) }dul|
:_§%~f lv€a w[]¢ () - E¢_(u)|du,

Thus sup ]wn(x) - Ewn(x)l2 f_;liij lw(anu)l|¢n(u) - E¢n(u)ld€]2

xlfﬂ T

=.;i5 ff [ w][¢ () - B [|va v)]]¢_(v) - Es_(v)]dudv

so that by the Schwartz inequality we have

E sup |w (x) - Ew (x)l2
x[<a "

5:2i3-ff loCa ) [l ya v) el () - Bo_(w)|]¢_(v) = Eé (v)]}dudv

5.zi§ ff l¢<anu>llwfanv)|E1’2l¢n(u) - £ |2EY?[s_) - E¢_(v)|Pdudv
=(2‘];;f |¢(anLI)IE1/zl¢n(U) - E¢n(u)l2du 2,

Now Elo_(u) - E%(u)lz } ;%EISEI(YS;UXS“ EYSeiuxs)lz

_ %EIYeinx - Eyelv¥|2 . _rl;(ElYeiuXIZ _ IEYeiuXIZ)

2

=

- (EY - lEYeiuxlz)
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Thus we have shown

2
E sup lwn(x) - Ewn(x)l2 f_—l;'gg—(f Iw(anu)ldu)z
X|[<a 4o

By Lemma 6.2, Tchebychev's inequality and the above inequality,

we have for n sufficiently large

P{ sup Iw (x) - w(x)| > e} < P{ sup lw (x) - Ew (x)l > e/2}
x|<a T |x|<a ™ n

< l%E sup lw (x) - Ew (x)l2 < —l~-ﬁ—EY2(J Iw(u)[du)z-
e |x|<a na_ €

If we take C = —%EYZ(J ]¢(u)]du)2 then the proof is complete.
€
Let h be a bivariate probability density such that h and
k(x) = f h(x,y)dy satisfy the conditions:
(i) J vh(x,y)dy is bounded and continuous on (-, «),

(i1) 1lim [xk(x)]| = 0.

X |
(1ii) suplk'(x)| < .
X

We tabulate here some simplified notation:

1 i + +
fn(x,y) =T Z h ) wvhere a - 0 ,bn + 0
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B S G -
gn(x) =0 z k( - where k(x) h(x,y)dy
n i=1 n
1 n x-X
v (x) =1 ¥ Yk—-—)
n nan i=1 i ( an
j yE_(x,y)dy J yf_(x,y)dy
m(l) (X) =
n g, (x)
J £ (x,y)dy
n x-X
Ry
(2)( y = i=]1 ) _ wn(x)
Tn W ? (x—Xi) T ()
k ———l
i=1 an

g(x) = f £ (x,y)dy

wi(x)

J yf(x,y)dy

f yf(x,y)dy
m(x) = L _

f(x,y)dy

Theorem 6.4. 1If bn= 6(an), if there exists an open interval contain-
ing [-a, a] on which

(i) ¢ 1is continuous and bounded away from zero

(ii) w is continuous
and if E Y2 is finite, then corresponding to each € > 0 there

f
exist positive constants Cl’ C2 and C3 such that
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. C. C
P{ sup lm(l)(x) - m(x)[ > e} < —l'exp(—C naz) +——~—3i
n - 2 2 n 2

xj<a a, na

for n sufficiently large (i=1,2).

Proof: Let Q be the set of rationals in [-a,a)] and let ¢ > 0 be

given. Since J yfn(x,y)dy and gn(x) are continuous functions of x

for each sample point it follows for 1=1,2 that

{ sup lméi)(x) - m(x)| > e} = kv) {Iméi)(x) - mx)] > e}

x|_<_a X|<a

=<U {lmﬁki)(X) - m(x)]| > e,g (x) > 0}>

|x|<a

U <H {nx)| > e, (x) = 0}>

x|<a

= <er{|mx£i) (x) - mx)| > e,g (x) > 0}>

U, <zk'=-)1 ) Udmeol > « + g (x) < l}).

=1 xeQ J

Now for fixed x, mﬁl)(x) and gn(x) are both random variables.

Hence sup |m(1)(x) - m(x)l is a random variable (i=1,2).
x|<a

Let Ml = sgplj yh(x,y)dyl, M2 = sup ]m(x)’ and
x|<a

b = inf g(x). For gn(x) >0 it is seen that
X|<a

n x-X
|m£1)(x) - m(x)| = |m152)(x) - m(x) + b Z] f yh( 2 i,y) dy/nangn(x)!

i=1 n
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b M
hs lmrEZ) (x) - m(x)| + 5.‘;_]&_}5
n“n

g, (x) g() 5 (x) a g (x)

I g (x) v (x)-w(x) b I
g(x) n(x) (l n ) 4 0 4. nl ]

|A
I

o}

L) | T g (x) g(x) a b

A I g (x) w_(x)-w(x) b M
f.’,(_)\_) m(X) (l n ) + _n g1+ n 1}

so that

P{ sup [m(i)(x) - m(x)| > €)
x|<a

(1)

‘< P{ sup |m
X{<a

(x) - n(x)| > e, gn(X) >0 for |[x|<a}

+ P{gn(x) = 0 for some x with |x|§p}

b M
1
+ anb}> €,
n

gn(x) >0 for |x|<a}

|x|<a 8 T g(x) g (x)

g (x) v (x)-w(x)
< P{ sup .g__(fi)_[m(,{) (1 on_ )+ n

+ Plg (x) = 0 for some x with |x|<a}

g _(x) w_(x)-w(x) b M
< P{ sup ZHm(x) (1 - -2 ) + -2 - + a“bli|> e}
n

x| <a g (x)
+ P{ sup .g_(?_(‘.ij > 2, gn(x) > 0 for ‘leﬂ}
|x|§p n

+ P{gn(x) = 0 for some x with ]xlgp].



g(x)-g_(x)
Now 800 _ > 2 implies —_— 1 and b = o0(a ) so that for
g, (x) g (x) 2 n n

n large the last member in the string of inequalities above is less

than or equal to

g_(x) v (x)-w(x) g (x)-g (%)
P __n n 7 £5 . R D 1
{ i‘,‘ia m () (l g(x) ) g (x) TPt P{IiTBa g (x) 2!
So
P{ sup Im(l)(x) - m(x)l > e}
x|<a
g (%) w_ (x)~w(x)
< P{ sup [m(x) (1 - ) Moo= > £} 4 P{ sup g, ()-8 0 1
|| <a 5(x) G |4 Ix|<a| T BG] ?
gn(X)‘g(X) e v (x)-w(x) .
< P{lilll[:aMz -—-*--é—(—)-{—)-——. > g} + P{ ]:Tia g—(x‘)‘—' > '8“]
g, ()-8 (x) 1
A LR T By
b eb
< P{ sup |g (x) - g(x)| > Sy 4+ P sup |w (%) - wx)| > 52}
<P e, > G e I, | >
+ P( sup g 0-gG] > D).

x|<a

Hence the theorem follows by Lemmas 6.1 and 6.3.



Theorem 6.5. 1If JE-exp(—Cnaﬁ) converges to zero for every C > 0
a
n

then, under the conditions of Theorem 6.4, for every e > 0

lim P{ sup |m(i)(x) - m(x)[ >e} =0 (i=1,2).
n-e x|<a n

Proof: Observe that JE exp(—Cnaﬁ) -+ 0 dimplies that nai -+ o and
2h
then apply Theorem 6.4.

If we now define

n x-X,
v () ==} YiIn(Yi)k( 1)

na_ ., a
n i=1 n
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where In is the indicator function of [*cn, cn] with c,6 = we

may write

n x--Xi
A e B
" () = n xX-X - E*?§7
) k( i) n
i=1 ®n

(k satisfying conditions (ii) and (iii) on page 50).



Lemma 6.6. If there exists an open interval containing [-a, a]

which
(i) w 1s continuous
(ii) J lylf(x,y)dy is uniformly integrable
and if Ef|y| is finite, then 1lim sup ]Evn(x)—w(x)l = 0.

n¥e Ix|[<a

Proof: For any 6 > O

sup | f j éLk(g:g)f(u,v)dudvl
|x|§g | ' n n
v]>e
= sup l f f iLk(gL)f(x—u,v)dudvl
x| < lv|>c non
n
< sup | J I iLk(jL)f(x—u,v)dvdul
|x|_<_a IU|<5 |V|>C n n
- —n
+ sup ] J [ é!k65~)f(x—u,v)dvdu|
X_E_a |u|>6 ‘\'|>c n n
— —n
< sup | f éif(x,v)dvl + % sup |uk(u)]| - Eflyl
| x| <a+6 n u|>6/a
- |V|icn - n

on

56

which approaches zero if we choose & sufficiently small and then let

n tend to infinity. Since
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sup IEv x) - w(x)l < sup |Ewn(x) - w(x)]
x[<a " x|<a

+ sup ] J f g?k(zigjf(u,v)dudvl

lxl_<_a |V|>C n n
—n

the desired result now follows from Lemma 6.2.

Lemma 6.7. Under the condition of Lemma 6.6, for any € > 0 there

exist constants C1 and C2 such that

1 2,2
P.{ sup lvn(x) - wx)| > €} < 5 exp(=Cyna_/c ).
x|<a a_

Proof: Let M, = sup!k'(x)l and M, = suplk(x)l and define
X X

2 1 2
%n £ 2a
§(n) = % (note &(n) = 0). For simplicity assume Sty is
nl (n)

an integer Bn and partition [-a, a] into Bn intervals of length

§(n). Denote these intervals by Jnl an, e ey Jan and Select an
x , from J ., for i=1,2,...B_. Then
nj nj n
sup lvn(x) - w(x)| = max sup Iv“(x) - wx)]|
|x|<a j=1,2,..B_ xeJ_.
- n nj
< max sup Ivn(x) - vn(xnj)[ + | max Ivn(xnj) - Evn(xnj)l
j=1,..,B xeJ_, j=1,..B
n nj n
+ max |Ev_(x_.) - w(x_ )| + max sup |w(x_,) - w(x)].
j=1,..B. ©* ™ n j=1,2,..0 xef , ™
n n nj

It follows by the uniform continuity of w “on [-a, a)
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and by Lemma 6.6 that for n sufficiently large,

P{ sup Ivn(x) - w(x)| > €} < P{ max [vn(xnj) - Evn(xnj)l > E&_

A[x <a j=l,..Bn

The conclusion is now obtained from Theorem 2 of Hoeffding in [7]) with

16aM e2
c, = and C, = :
! € 2 32M§(1+Ef|Y|2)

Theorem 6.8. If there exists an open interval containing [-a, a] on
which
(i) gx) = J f(x,y)dy is continuous and bounded away from zero
(ii) w(x) 1is continuous and J |y|f(x,y)dy is uniformly
integrable
and if Elel is finite, then given € > 0 there exist positive

constants Cl and C2 such that

C.c
Pf{ sup |m§3)(x) - m(x)| > €} §.~ligexp(—c2nai/ki)

X|[<a a
- n

for n sufficiently large.

Proof: The fact sup |m§3)(x) - m(x)l is a random variable is
X|<a

obtained as in the proof of Theorem 6.4. For gn(x) > 0 we have

lm§3)(x) - m(x)l = gjz—jwm(x)(l -

)
n

gn(X)) vn(X) - W(X{

g(x) g(x)
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Proceeding as in Theorem 6.4 yields the theorem, in view of Lemmas
6.1 and 6.7 and the domination of the error term in Lemma 6.7.

@ ¢
Theorem 6.9. If ) —%exp(—Cnai/ci) is finite for every C > 0
n=1 a

then, under the conditions of Theorem 6.8,

1l
o

lim sup ]m(3)(x) - m(x) |
n*e |x|<a n

with probability one.
Proof: By Theorem 6.3 in conjunction with the Borel-Cantelli lemma.,

Remark: Inspection of the estimates méz)(x) and m(3)(x) reveals

n

that suplm(l)(x)| < maxIY.! for i=2,3. If f were the density of a
x 0 AL "

bivariate normal with non-zero correlation coefficient and

i

0, then the regression function m

f yf(x,y)dxdy = f xf (x,y)dy £

would be of the form mf(x) bx. Consequently,

sup[m(i)(x) -m (x)| = sup]m(l)(x) - bx| = ®» for all n. This shows
x n f % n
the impossibility of proving the result in Theorems 6.5 and 6.9 if the

supremum were taken over the entire real line.

Estimation of the Point at which a Regression

Function zttains its Maximum

A problem which frequently arises in practice is to estimate
the point 0 at which a regression function attains its maximum

value. We will now show our regression estimates can be used
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to construct estimates of 0.

Let 6 satisfy sup m{x) = m(6) and let us choose a kernel
Xl<a

. i . . .
h such that for each sample point, mi )(x) is a continuous function

(1)

of x for 1i=1,2,3. Then there exist random variables en , 1=1,2,3,

mapping the sample space into [-a, a] such that

1), 1)y _ (1)
m (en Yy = sup n x).
x|<a
In the following theorem h and k satisfy conditions (i),
(ii) and (iii) on page 50 and k(x) > 0 for all real x. This added
(1)

condition on k guarantees the continuity requirement on m

(i=1,2,3) above.

Theorem 6.10. Let m have a unique maximum on [-a, a] at 6. Then:

(i) Under the conditions of Theorem 6.4, given € > 0 there
exist positive constants C1 and C2 such that for n
large

C C
(1) 1 2 3 .
P{IOn ~ BI > e} 5_—§exp(~02nan) + —‘E‘(l—l,z).
a na_

(ii) Under the conditions of Theorem 6.9, given € > 0 there

exist positive constants Cl and C2 such that

C,c

(3) 1L 2,2
- 6| > g} < -E—exp( Cznan/cn).

P{|e
n

a
n
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(iii) VUnder the condition of Theorem 6.5

1im 08 = 0 in probability (i=1,2).

n+o

(iv) Under the conditions of Theorem 6.9,

lim 0(3) = @ with probability one.
nreo Il
Proof: If b = inf {m(8) - m(t)}, then the continuity of m on
te[-a,a]
|e-t|>e

[-a, a] and the uniqueness of 0 imply that b > ¢ (for e suf-

ficiently small).
(1)
n

’6 - t] > ¢ and mél)(t)— mn(O) > 0. Therefore,

Now |0 - 0| > ¢ implies that t exists in [-a, a] with

méi)(t) - m(t) + m(t) - m(e) + m() - méi)(o) 2.0 so that

méi)(t) - m(t) + m(8) - méi)(ﬁ) > m(0) - m(t) > b > 0. Thus we see that

Ia{lo(i) - 6] > e} < P{ sup' lm(i)(x) -mG)| 2 :g—}'
n R X ia n

The theorem now follows from Theorems 6.4, 6.5, 6.8 and 6.9.

In this scction we shall study the estimated regression function

(2)

m at two distinct points. The results obtained here remain valid

for any finite number of distinct points.
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Assume that (Xl, Yl) (Xz, Y2), . + . are independent bivariate
random variables identically distributed as a bivariate random vari-
able (X,Y) whose distribution function F has density £, that
{an} is a sequence of positive numbers converging to zero and that k
is an univariate probability density fungtion. Let Xy and Xy be
distinct real numbers and let ¢ = (cl’dl’CZ’dZ) be an arbitrary point

in Ra. We will use the superscript t to denote the transpose. For

brevity we define for 1i=1,2, . . ., n and s = 1,2:

x =X,
U:i(xs) ='l;k("?{_£)
n n
- *
U () = Va U L (x) - EBU_,(x)]
* *
Vni(xs) N YiUni(Xs)

vn;(xs) =./;;IV:i(xs) - EV:i(Xs)]

n
Z Uni(x )

U (x )
ns 421 s

it

n
Vn(xs) Z Y .(xs)

ln1
t
Mz o= (U (), Vo (xp), U (), V(%))

Wag = o)y Vo (xpds UL G)y VL (6)))
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gx) = f f(x,y)dy
w(x) = J yf(x,y)dy
2
v(x) = f y f(x,y)dy
—;(xl) w(xl) 0 0 ]
wix,) v(x,) 0 0
A= llkllg ! ! where llk]]g = J kz(u)du.
0 0 g(xz) W(XZ)
0 0 w(xz) v(xz)
- _

Let Z be fourvariate normal with mean vector 0 and covariance

matrix A.

Lemma 6.11. If x is an arbitrary but fixed point for which g(x) > 0,
then gG)v(x) & vo(x).
Proof: Assume that g(x)v(x) - wz(x) = 0. Then
v(x) wz(x)
= Sl L A e V[Y|X = x] (the variance of Y given X = x),
g(x) gZ(X)

which means f(x,y) = 0 almost everywhere (y) and hence
g(x) = J f(x,y)dy = 0.

Lemma 6.12. Suppose the density k satisfies the conditions
(i) k(u) and |uk(u)[ are bounded

(ii) j ,ulk(u)du <
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and suppose nas + o, Let Ef{Y!3 be finite and let g', w' and

v' exist and be bounded. If Xy 3 x, and g(xi) >0 for i=1,2,

t . , . . t
then ¢ - Zn converges in.distribution to ¢ - Z for any

\ 4
c = (cl, dl’ c2,d2) in R,

Proof: The following hold for s = 1,2 and r = 1,2 under the as-
sumption that s % r whenever s and r appear in the same expres-
sion:

vy 2
(1) LUni(xs)

2
g(xs)llkl l2 +0(a ).

2
(2) EVni(xs)

]

v(xs>|1k||§ +0(a).

]

(3) EU_, (x )V . (x ) w(xS)Hng +0(a).

(4) EUni(xs)Uni(xr) = O(an).
(5) Evni(xs)vni(xr) = O(an).
(6) Euni(xs)vni(xr) = O(an).

We will sketch the proofs of (1) and (4) to illustrate the method. To

obtain (1), we see

EUni(xs) = an[J é%kz(xz_u)g(u)du - (J ;Lk(x:_u)g(u)du)z]

a n n n

=a, [21— j kz(u)g(x - aHU)du - (J k(u)g(x - anU)dU)zjl-

=]
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Since g' and ]yk(y)l are bounded and [ Iulk(u) is finite, it

follows that
IJ k(u){g(x - anu) - g(x)}du] < suplg'(x)]a J [ulk(u)du = O(az)
x n n
and
IJ kz(u){g(x - anu) - g(x)}du] §_s§p|g'(x)|anj ]ulkz(u)du = O(an).
Thus we have
2 2
EUni(xs) = g(xs)llkllz + O(an).

As for (4), suppose Xy > % and let 6 = X, — X and

§ = 6/a . Then
n n

X "U) X,—u

1 1
EUni(xl)Uni(XZ) = an[ ;Ed{ a k(~;;~)g(u)du + O(an)
n

I k(u)k(én + u)g(x1 - anu)du + O(an)

J k(uk(s_ + u)g(x, - a_ u)du + 0(a_)
|u|<6n/2 n 1 n n

]

+ J k(u)k(s_ + u)g(x, - a_u)du + 0(a )
IUI_{‘Sn/Z n . 1 n n



< sup k(6 + u) - f.k(z)g(x - a z)dz
IUIiﬁn/Z n 1 n

+ sup k(u) - J k(6§ + z)g(x,-a z)dz + 0(a )
Iulidn/z n l n n

< sup k(u) = 0(1) + sup k (u) -.[ k(z)g(x2 - a z)dz + 0(a )
lul>8_/2 lul>s_/2 n n

= 2 sup k(u) . O(l) + O(a )

lul>68 /2 "
—n
4
5_-6-— sup Iuk(u)l - 0(1) + O(an)
n"u[>6 /2
~n
ba

n
——  sup Juk(u)| + 0(1) + 0(a )

= O(an) + O(an) = O(an)

which was to be shown.

Now let orz‘ = Var(c - Zttl) so that by (1)-(6) above, we have

3

o> = ||x||? E [c2g(x ) + d®v(x ) + 2c_d w(x )] + O(a )
n 2 .1 s s s s s s s n’’
3 cW . 3 3 nog
Put Pai = Ej—— and p~ = z Phi SO that
/o nog=1
3 -1/2, .. 3
Py =M h|c wnl'
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< n—l/ZI

c|3E[wnll3

8n’1/2]cl3 max {E[Unl(xs)|3, EIan(xs)|3}.

s=1,2

<

Since g', w', v' and k are bounded and Ef[Y|3 is finite it

follows by arguments similar to those above that

-1/2

3 _ 3 _ -3/2 _
EjU ,(x)]|” = 0(a_ ) and EIVni(xs)l = 0(a_ ) (s=1,2) so that

3 _
Pn = O(an

—3/2n-1/2).

For c¢ + 0 we can deduce from Lemma 6.8 that A is positive

definite whenever g(xl) >0 and g(xz) > 0. Thus for c $ 0

02 t
lim n = cAc > 0
-»00 2
"k, ||

. t . . . . . os o s
since cAc is a quadratic form associated with the positive definite

p
matrix A. Hence it follows that 1lim 32-= 0 whenever c % 0.
n+® “n

An application of the Berry-Esseen Theorem on page 298 of [9]

now completes the proof.

Lemma 6.13. Under the conditions of Lemma 6.12 Z ~converges in dis-

tribution to Z (recall that Z is multivariate normal with mean

vector zero and covariance matrix A).

Proof: Apply Lemma 6.12 together with Theorem (xi) on page 103 of

(14].
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Let us write

E t3
(U .(x;) - g(x,)]
121 ni 1 1
n *
_ 121 [Vni(xl) - W(xl)]
N VS V2 i
n n n .
IO, (x,) - glx,))
1=1 ni "2 2
E %
(v {(x,) - w(x,)]
i=1 ni 2 2

Lemma 6.14. Suppose [ uk(u)du = 0, f uzk(u)du is finite and
(2) (2)

nai >0, If g and w exist and are bounded then, under the

*
conditions of Lemma 6.13, Zn converges in distribution to Z.

* % *
Proof: Let .Bn = (g(xl) ~ Eunl(xl)’ w(xl) - Ean(xl), g(xz) - EUnl(XZ)’
* .
W(XZ) - Ean(xzﬂt. Since J uk(u)du = 0, f uzk(u) is finite and g(z)

is bounded, it follows that

IEU:1(Xi) - g(xi)l = IJ k(w{glx; - au) - g(xi)}dul

2

a
< SUPlg(z)(x)l‘§'f uzk(u)du = O(az) (i=1,2).
< sy n

. 2 2
Similarly ]EVni(xi) w(xi)' = O(an) so that Bn = O(an). Then

% -
Z -2 =+vnaB = O(V 5) = 0(1) since na5 -+ 0. The desired result
n n nn na_ n

now follows from standard large sample theory and lLemma 6.13.



Theorem 6.15, Under the conditions of Lemma 6.14

% *
converges in distribution to Z where Z is bivariate normal

with mean vector zero and covariance matrix

2
¢ = [kl

[~ )
m(z)(x ) - m(x,)
n 1 1
vna
n
(2)
L?n (XZ) —.m(xz)

E3

Proof: Let the function h from R4 to R2

t
h(yl,yz,y3,y4) = (hl(yl,yz,y3,y4), hz(yl,yz,y3,y4)),

C given by
— —
L vry|x = x,] 0
8(x;) 1
1 =
L 0 m;‘)—V[YI)\ = X2]

be defined so
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where hl(yl,yz,y3,y4) = yz/yl, and hz(yl,yz,y3,y4) = ya/y3 and let

6 = (g(xl), w(xl), g(xz), w(xz)). Then

-
3hl Bhl Bhl ahl

3y, 3y, 3y, 3y,

8h2 3h2 8h2 th

Byl 8y2 8y3 Z)y4

u J

(yl,yz,y3,y4) =
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_;w(x ) ]
5 g(»lc y 00
g (xl) 1
0 0 O 1
gy B

t
DA = - =
and hence D C. Let Tn (Tnl’TnZ’TnB’Tn4) where

s *
Tnl T n 'Zl Uni(xl)
1 T %
T, == ] V (%)
n2 n oL ni 71
n
1
T, ="~ Z vV ., (x,)
n3 n i=1 ni "2
R
Tn4 " n .Z Vni(xz)
i=1
Let us now write
Th1 ~ 8(xp)
. Tn2 - w(xl)
Z = /EE; T . - a(x)
n3 )
T , - w(x,)
n 2
L s

We note that the proof of Theorem (ii) on page 321 of [l4] remains

valid if v/h 1is replace by r provided L tends to infinity.
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Thus it now follows from the above-mentioned theorem and

*
Lemma 6.14 that Vnan(h(Tn) - h(8)) converges in distribution to Z

*
where Z  1is N(O,DADt). Since

T w(x,) B ]
ng N g(xl) m§2)(xl) - m(Xl)
nl 1
h(Tn) - h(8) = =
T w(x.,)
_n4 72 (2) -
fﬁ £(,) Lmn (x5) = m(x,)

the proof is complete.
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