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ABSTRACT

Let be independent identically distributed: ran".

dom variables having a coiranon probability density function f« After

a so-called kernel class of estimates f of f based onn
(X1 s , 0 0 3  X ) was introduced by Rosenblatt (1956)9 various convergence . n
properties of these estimates have been studied«. The strongest re­

sult in this direction was due to Nadaraya (1965) who proved that if 
' ' ' . : 

f is uniformly continuous then for a large class of kernels the esti-

mates f converge uniformly on the real line to f with probability 

one• For a very general class of kernels9 we will, show that the above 

assumptions on f are necessary for this type of convergence• . That

is 9 if f converges uniformly to a function g with probability
n .. . : ■' -  • ' ■ 

one9 then g must be uniformly continuous and the distribution F

from which we are sampling must be absolutely continuous with 

F’(x) = g(x) everywhere.

When in addition to the conditions mentioned above, it is as­

sumed that f and its first r -f 1 derivatives are bounded, we are

able to show how to construct estimates f such that f c o n -  .n n
verges uniformly to f^S  ̂ at a given rate with probability one for 

s = 0, I, «, r.

Several applications of the density estimates are considered, 

the main.ones being the proposed estimates of a regression function

, ' ' . '  ̂ V- '' - / '" ' \ - '



which arise quite naturally from the kernel estimates of a bivariate 

density.. Furthermore, various convergence properties of these 

regression estimates are studied.



CHAPTER 1

INTRODUCTION

In this paper we shall investigate the asymptotic properties of 

the so-called kernel class of estimates of a probability density 

function and apply these estimates to some problems in statistical in­

ference. Before stating this problem precisely we will list a few 

definitions and indicate some notation to be used.

Let (ft, A, P) be a probability space and X a random variable 

defined on ft.

Definition 1.1. The distribution function F corresponding to the 

random variable X is defined by F(x) = P{X x} = P{w c ft|x(w) x} 

for all real x.

Definition 1.2. A distribution function F is said to be absolutely 

continuous if there exists a Borel measurable function f over (-°°, 00) 

such that

(1) F(x) = (L) f(u)du

for all real x. The function f is called a probability density 

function of F.

1



In this paper 
b

g (u)du will be understood to be a Lebesgue

integral and g(u)dF(u) the Lebesgue-Stieltjes integral of g with

respect to the probability distribution P determined by the distri­

bution function F. The symbol (L) before an integral (as in (1) 

above) will be used at times to emphasize that the integral is to be 

understood in the Lebesgue sense while the symbols (R) or (L-S) 

before an integral will mean the integral is a Riemann or a Lebesgue- 

Stieltjes integral respectively. Also whenever the integration ex­

tends over (-00, 00) no limits of integration will be given.

Definition 1.3. A random variable is called absolutely continuous if 

it has an absolutely continuous distribution function. In addition, 

we say that X has probability density f when the distribution 

function F of X is given by (1) above.

Definition 1.4. A probability density is a non-negative Borel measur­

able function g with g (u)du = 1.

If (ft, CCy P) is a probability space and X is a random vari­

able defined on ft then for any Borel measurable function h and 

Borel set B, we will use the following notation:

Ep[h(X)] = (L-S) h(u)dF(u)

and
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PF{h(X)eB} = P{w e fi |h[X(aj) ]eB}.

If F has density f then E^[h(X)] and P^{h(x)eB} may also be

clear from the context that X has distribution function F or density 

f the subscripts on E and P may be dropped.

variables having a common probability density function f. Functions of 

the form

for all real x, where k is any probability density function and 

{a } is a sequence of positive numbers converging to zero, will be

called kernel estimates of f(x).

We shall investigate the asymptotic properties of the above 

kernel estimates and apply these estimates to some problems in non- 

parametric statistical inference.

The dissertation is divided into four parts. Chapter 2 is de­

voted to a survey of relevant papers in the literature. In Chapter 3 

we examine the convergence of the random variables

used to denote h(u)dF(u) and .P{w e ft|h[X(w)]eB}. Whenever it is

Let X^, X2, be independent identically distributed random

(2)

n

sup b | f ̂  (x) - f ̂  (x) | x n n

(0)for appropriate b^ with b^ -* 00, where for any function g, g = g



and denotes the derivative of go

In Chapter 4 a necessary and * sufficient condition for the uni­

form convergence of f on the real line with probability one isn
given,

The final two chapters are concerned with applications of the. 

kernel estimates. Our main application is the estimate of a regres­

sion function considered in Chapter 6.



CHAPTER 2

SURVEY

The problem of estimating the density function f of a random 

variable X has recently begun to receive attention in the literature 

Fix and Hodges [5] have considered estimates of the form

F (x+h ) - F (x-h ) 
r% / \ n n n nS (x) = —--- -— -rv---------n znn

where F^ is the empirical distribution function based on a random 

sample (X̂ , ..., X^) from f and h^ is a sequence of numbers

which approach zero as n tends to infinity. Rosenblatt [15] proved

that if (X̂ , X^) is a random sample of size n from f, then

any non-negative Borel estimate S(x; X̂ , X^) of f(x) must be

biased, i.e., there exist an x and a continuous density function g 

such that EgS(x; X^, ..., X^) + g(x). Rosenblatt also noted that the 

estimates studied by Fix and Hodges were members of a more general 

class of estimates of f(x) of the form



where is a probability density function for each n. If

w (u) = k(u/a )a where a is a sequence of positive numbers con- n n n n
verging to zero and k is a probability density function, then

x-X.
v »  -  £ -  I H - r 1 )

is a kernel estimate of f(x) as defined in Chapter 1. In the fol­

lowing f^(x) will denote a kernel estimate of f(x) as given in

(1) above.

For the case when J u k(u)du = 0, uPk(u)du is finite, and

f has continuous derivatives of the first three orders, Rosenblatt

showed that for fixed x, the sequence (f^(x)} is an asymptotically

unbiased estimate of f(x); that is, lim E[f (x)] = f(x), withn-̂ ° n
2E[fn (x)] - f(x) = O(a^). In addition he showed that the sequence

(f (x)} is consistent in quadratic mean for f(x); in other words,

lim E[f (x) - f(x)]^ = 0, with E[f (x) - f(x)]^ no smaller thann-xxi n n

oof*'5).
Parzen [13] established these last two results under some­

what weaker conditions and also determined conditions under which 

f^(x) is asymptotically normal when suitably normalized. In ad­

dition he proved a much stronger result, namely, that if f(x) is
2uniformly continuous and lim na = °°, then for a large class ofn**30 n

kernels k, the kernel estimates of the form (1) are uniformly



consistent in the sense that for every e > 0

7

lim P-{sup|f (x) - f(x)I < e> = 1. n-x» t x n

The uniform convergence of f to f was also studied by

Nadaraya [11] who proved that if k is of bounded variation,
00 2
X exp(-cna ) is finite for all positive c, and f(x) is uniformly 

n=l n
continuous, then for an estimate f^(x) of f(x) of the form (1),

sup|f (x) - f(x)| converges to zero with probability one. In herx n
proof sup|f^(x) - Ef^(x)| was tacitly assumed to be a measurable 

function; however if the measure P corresponding to the distribu­

tion of the infinite sequence (X̂ , , ...) is completed, then her

result remains valid whether or not sup|f (x) - f(x)| is measurablex n
for each fixed n.

Under somewhat stronger assumptions than Parzen’s, Bhattacharya 

[1] showed for a large class of kernels k, how to choose the se­

quences {a } and {b } such that sup nC|f^r^(x) - f^r (̂x)| con- 
n n |xI<b ni i— n

verges to zero with probability one for appropriate positive c (de­

pending on r).

Cacoullos [2] noted that Parzen's results can be adapted in an 

obvious manner to provide estimates of a multivariate density. The 

consistency, asymptotic unbiasedness, and the mean square error of the 

multivariate estimate f follow by using straightforward modifica­

tions of Parzen's methods. With respect to asymptotic normality



Cacoullos obtained a stronger result than Parzen's; namely, he proved 

the joint asymptotic normality of the estimates f at continuity 

points of f.

Several authors have considered slight modifications of the 

kernel estimates (1) of f (x). Bhattacharya [1] has considered 

estimates of the form

f*(x) =

f n
k(x) when £ I (X ) = 0

i=l n i 
x-X, n

when  ̂ I (X )>0 
i=l n 1

where a and k are as in (1) and I is the indicator function of n n
[-b̂ , b^], with bn tending to infinity. He has given sufficient

i * iconditions for the convergence of sup|f (x) - f (x)| to zero withx n
probability one.

Watson and Leadbetter [16] have considered estimates of the

form

f (x) - 1 I 1 k (— i-
n n 1=1 an an

and discussed the properties of such estimates on the basis of their

mean integrated square errors E (fn (x) - f(x)} dx (abbreviated

WISE). They have shown that the MISE is a minimum if the Fourier

transform of the kernel k denoted by isn k
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$k (t) = nl^ (t) l^l+Cn-l) |Yf (t) |2}
n

where is the characteristic function of f which is assumed to

be in L̂ . By making suitable assumptions on the asymptotic behavior 

of they have been able to calculate the maximum rate of con­

vergence of the MISE. They have shown in any case that the MISE cannot
-1decrease faster than n

The asymptotic behavior of the maximum deviation of the esti­

mated density function f(x) from estimates of the form

where g is a suitably chosen non-negative function defined on R , 

has been studied by Woodroofe [17]. His main result gives suf­

ficient conditions for the convergence of

Let B be the class of Borel sets of a Hausdorff topological

group (G, F) and u a left and right Haar measure on the measure

space (G, B). Let X be a random variable on (G, B) with proba­

bility distribution P which is absolutely continuous with respect to

2

max
M l A

to one in probability where ||g^ | | 2 = g^(x,y)dy.
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u. Craswell [3] has noted that Parzen's results can be used to con­

struct extimatcs of g.

When this work began the strongest results in the direction of 

this paper were given by Nadaraya's theorem [11] on the convergence 

of sup|f^(x) - f(x)| to zero with probability one and Bhattacharyn’s 

theorem [1] on the convergence of sup nC|f^r^(x) - f^r^(x)| to
IX I — "n

zero with probability one referred to above. Both these results are 

proved by first obtaining exponential bounds for the probability that 

the supremum distances are greater than a given positive number e.

For a very general class of kernels we shall show that the as­

sumptions on f made by Nadaraya in proving that sup|f^(x) - f(x)| 

converges to zero with probability one are necessary for this type of

convergence. That is, we will show that if sup|f (x) - g(x)| con-
x n

verges to zero with probability one for some function g, then g 

must be uniformly continuous and the distribution function F from 

which we are sampling must be absolutely continuous with F*(x) = g(x) 

everywhere (F* being the ordinary derivative of F). Thus combin­

ing Nadaraya’s theorem with the result obtained here, we have a 

necessary and sufficient condition for the uniform convergence of f 

with probability one.

With the same assumptions on f and k made by Bhattacharya 

we shall show how to strengthen his conclusion by proving

sup nC|f^r^(x) - f^r^(x)| converges to zero with probability one. 
x n
The methods employed arc different from Bhattacharya’s.



CHAPTER 3

ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND ITS DERIVATIVES

Let X^, be independent identically distributed random

variables with a common distribution function F. Let F be then
empirical distribution function based on (X̂ , X^); i.e.,

nF (x) is the number of X with X. < x where 1 < i < n.n 1 1  — —

Lemma 3.1. There exists a universal constant C such that for any

n>0, en>0 and distribution function F,

(1) {sup|F (x) - F(x)| > e } < C exp(-2ne2).* x n n — n

Proof: For the case when F is continuous, see Dvoretzky, Kiefer and

Wolfowitz [4]. If F is discontinuous at some point then there exists 

a continuous distribution function F for which

P {sup | F (x) - F(x) | > e } _< Prr {sup|F (x) - F(x) | > e } r x n n * x n

(see [7] and [8]). Thus the lemma is true for all univariate F.

Let f^(x) be a kernel estimate based on (X̂ , ..., X^) from

F as defined in Chapter 1 with kernel k chosen such that

|u|k(u)du is finite, and such that k^S  ̂ is a continuous function

11



12

of bounded variation for s = 0, 1, r. The density function of

the standard normal, for example, satisfies all these conditions. The 
(s )variation of k on (-00 , 00) will be denoted by In the fol­

lowing lemma we do not require that the X^'s be absolutely continuous

or that |u|k(u)du be finite. The continuity assumption on k^1̂

was made solely to ensure that sup|f^(x) - Ef ̂ (x)| is a random
x  n n

variable. With the deletion of this assumption the following lemma

remains true when we replace the probability P by the outer proba- 
*bility Pp of Pp. Our proof remains valid in this case.

Lemma 3.2. There exists a universal constant C such that for any 

n>0, cn>0, and distribution function F,

P {sup|f^(x) - Ef^(x)| > e } < C exp(-2ne2a2r+2/y2) r x n n n — n n r

where {a^} is a sequence of positive numbers converging to zero and

n

(r)Proof: Since k is of bounded variation on (-00, 0o), we know

(see [12], page 239) that k^r  ̂ is bounded and that lim k^r (̂x) andx-x»
(r)lim k (x) both exist. If r = 0 then k is non-negative andX->-oo

k(u)du = 1, so that since lim k(x) and lim k(x) both exist, thesex-xo x->— 00
limits must be zero. If r>l then the function k^r has a
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bounded derivative on [-a, a] for any a, and hence (see [12], page 
(r)133) k 

259)

is Lebesgue integrable on [-a, a]. Thus (see [12], page

Now

a
V [k 
-a

(r-1)

-a
k^r^(u)|du,

lim V [k 
a-x”

(r-1)

lima-x» k^r  ̂(u)|du k^r^(u)|du

so that |k^r^(u)|du is finite. This fact together with the ex-
( r) (r)istence of lim k (x) and lim k (x) imply that these limits

X-X» ŷ -y— co

must be zero.
(r)Upon integrating by parts and remembering that lim k (x)x-x»

lim k^r^(x) = 0, we find that
x->-co

sup | f (x) - Ef ̂  (x) | 
x n n



14

n
k(r)(^i) dFn (u) - 

n

= "T+T supH{F (u) - F(u)}k(r)(2_“)]" - f{F (u) - F(u)}dk(r)(— )|ar+i x n n ”” J n

sup
ar+1 x n

(Fn(u) - F(u)}dk(r)(^-)
n

n

Therefore by an application of Lemma 3.1 we have

Pp (sup|f^r^(x) Ef (r)(x)| > e } n n

1 Fp (sup|Fn (x)
e ar+1

F(x) | > ~-y-n- - ■} <_ C exp(-2ne^a^r+2/p^)

and the proof is complete.

Lemma 3.3 below is found in [1]; however, we note here that the

symmetry condition imposed on k in [l] is not needed and that in the
Cs }proof given there the absolute integrability of the k , 

s = 1, 2, ..., r, -has been tacitly assumed. From the proof of
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C s )Lemma 3.2, the k tend to zero as x -* + 00 or -<» and 

| ( u ) | d u  is finite for s = 0, 1, r, so that thso that the proof of

Lemma 3.3 can be completed exactly as in [1].

Lemma 3.3. Let X be an absolutely continuous random variable with 

probability density function f and let a be any positive real 

number. If f and its first r+1 derivatives are bounded then there 

exists a constant C, not depending on a, such that

Lemma 3.4. If f and its first r+1 derivatives are bounded and if 

{e } is a sequence of positive numbers such that a = o(e ) as

a

n n n

then there exist positive
n

constants and such that

for n sufficiently large.

Proof: We have with the aid of Lemma 3.3

sup|f^r^(x) - f^(x) 
x n



16

<_ sup | f ̂  (x) - Ef^r\x)| + sup|Ef^r\x) - f^r^(x) y n n y n

£ sup|f^r  ̂ (x) - Ef^r^(x)| + Ca^.

Since a = o(e ) it follows that for n sufficiently large n n

P (sup|f^r\x) - f(r)(x)| > e } £ P (sup|f^r^(x) - Ef^r^(x)| > e /2} ^ n n x  n n n

An application of Lemma 3.2 yields the desired result.

The theorem below tells us that for special sequences {a^},

sup|f^r^(x) - f(r)(x)| converges to zero with probability one. A 
x n
sequence {b^} with b^ going to infinity is introduced to indicate 

the rate at which the above convergence takes place.

Theorem 3.5. If f and its first r+1 derivatives are bounded and

if the sequences {a } and {b } are such that a b = o(l) andn n n n

£ exp(-cna^r+^/b^) is finite for all positive c, then 
n=l n n

lim sup b |f^r^(x) - f^r^(x)| = 0 n-x» x n n

with probability one.

Proof: For any e > 0, we obtain by Lemma 3.4 that
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P {sup | £ r> (x) - f(r)(x)| > N  < C exp(-C E2na2r+2/b2) i1 x n n ~ ~  z n n

00

for n sufficiently large. Since £ exp(-cna r+ /b^) is finite
n=l n n

for all positive c, it follows that

I p {sup|f^r^(x) - f^r^(x)| > r—} 
n=l * n n

is finite for all positive e. Consequently, with the aid of the

Borel-Cantelli Lemma we see that lim sup b If ̂ ( x )  - f^(x)I = 0n-̂ 00 x n n
with probability one.

It can be seen that the assumption that be bounded

could be relaxed somewhat and the conclusion would still hold. The

fact that bounded was used in Lemma 3.3 in [1] to ensure

that sup|Ef (x) - f^r^(x)| = 0 (a ). To establish 
x n n

lim sup|f (x) - f(r)(x)| = 0 with probability one following the
n-x» x n
lines of our argument we would only need sup|Ef r (x) - f r (x)| = o(1)

x n
(r)which would be true, for instance, if f were uniformly continuous.

A corollary follows which will indicate the rate of convergence 

for a particular choice of â .

Corollary 3.6. If f and its first r+1 derivatives are bounded, 

a = n 1/ (2r+4) an(j 0<c<l/ (2r+4), then
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with probability one.



CHAPTER 4

UNIFORM CONVERGENCE OF ESTIMATING PROBABILITY DENSITY FUNCTIONS

Let f^(x) be a kernel estimate based on a random sample 

(X̂ , X^) from F as defined in Chapter 1, i.e..

In this chapter we shall assume that the sequence {a } is 
2 .such that ][ exp (-cna ) is finite for all positive c and that k 

n=l n
is a probability density function satisfying the following conditions

(i) k is continuous and of bounded variation on (-«>, <»).

(ii) uk(u) -* 0 as u ->- + 00 or

(iii) There exists a 6 in (0, 1) such that

u
I 6 -u \

V (k) + V (k) ■* 0 as u ->■ oo.
u

(iv) |u|dk(u), the integral of |u| with respect to the signed 

measure determined by k, is finite.

19
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For example, the density function of any normal or Cauchy distribution 

satisfies these conditions. Lemmas 4.1 through 4.10 below hold for 

any distribution function F.

Lemma 4.1. For any distribution function F,

lim sup|f (x) - Ef (x)| = 0 n-*» x n n

with probability one.

Proof: By Lemma 3.2

Pp {sup|f^(x) - Ef^(x)| > e} £ C exp(-ana^)

2 2 00 00 2 where a = 2e /)J and P = V (K). Since £ c exp (-ana ) is finite,
-co n=l n

it follows that  ̂ P^ (supjf (x) - Ef (x)| > e} is finite, and the
n=l x

proof is complete in view of the Borel-Cantelli Lemma.

We note here that this lemma was proved in [11] for continuous 

distribution functions F. We have extended this lemma to arbitrary 

F by using Lemma 3.1 to establish inequality 5 on page 187 of [11].

Lemma 4.2. In order for lim supjf (x) - g(x)| = 0 with probability ' n-*» x n
one for some function g, it is necessary and sufficient that

lim supjEf (x) - g(x)| = 0.n-Ho x n
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Proof: This result follows directly from Lemma 4.1 in conjunction

with the following inequalities:

sup|f (x) - g(x)| £ sup|f (x) - Ef (x)| + sup|Ef (x) - g(x)| x n x n n x n

and

sup | Ef (x) - g(x) | _< sup|f (x) - Ef (x) | + sup | f (x) - g(x) | . x n x n n x n

Lemma 4.3. If lim sup|f (x) - g(x)| = 0 with probability one for n-xo x n
some function g, then g is uniformly continuous.

Proof: For any e > 0 there exists by Lemma 4.2 an M = M(e) such

that sup|Ef (x) - g(x)| < e/4 for n >.M. Conditions (i) and (ii)x n
on k imply that k is uniformly continuous, so that given e' > 0 

there exists a 61 such that |k(x) - k(y)| < e' whenever

I x - y I < 6 ’. With e 1 = a we define 6 to be 6 ' ̂  so thatI I  2 m m
whenever |x - y| < 6, we shall have

|b(x) - g(y)| £ |g(x) - EfM (x)| + |EfM(x) - EfM (y)| + |Ef^(y) - g(y)|

1 |EfM(x) - EfM(y)| + 2 sup|Ef^(x) - g(x)|

< l E f ^ W  - E f ^ W l  +  §-



Lemma 4.4. If lim sup If (x) - g(x)I = 0 with probability one for-------------------  n -*co x  n

some function g, then X{xe C-00,00) | F’ (x) =}= g (x) } = 0 (X represents 

the Lebesgue measure on the real line).

Proof: Suppose x is a point where F’(x) exists. Using integration

by parts we see that

Ef (x) = n 7  M “ ~)dF(u) 
n n

~ F (u)dk(— ~) 
n n

— F(x-a u)dk(u) 
an n

— F(x-a u)dk(u) - — —  a n  an n
dk(u)

F(x-a u) - F(x)n —  dk(u), since dk(u) = 0,
n

Let 6 be such that (iii) holds. Then we may write
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Efn(x) = |
F(x-a^u) - F(x)

dk(u)
u >a- 6

F(x-a u) - F(x)
In ( u) ----   (-u)dk(u)

n

where I is the indicator function of [-a ^, a 1̂. We observe by n n n J

(iii) that

lim n-̂00 J
F(x-a u) - F(x) 
 H-------  dk(u)

u >a

-a- 6tn
< lim —  V (k) + V (k) = 0.n-x» n\ -oo a-6 n

Also, given e > 0 there exists an N = N(e, x) such that for n > N

F(x-a u) - F(x)n
V " ) -  -au I <_ F'(x) + E.

By condition (iv) on k we have that (F*(x) + e)|u|dk(u) is 

finite. Thus Lebesgue's Dominated Convergence Theorem for signed 

measures applies and hence

limn->oo
F(x-a u) - F(x)

I (u)------------ —  (-u)dk(u)n —a un
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F(x~a u) - F(x)
lim I (u) -----  (-u)dk(u)n-x» n -an

■ I
Ff(x) (-u)dk(u)

= F’ (x)

since (-u)dk(u) = 1. Therefore lira Ef (x) = F1(x) whenever F*(x)n-x» n
exists. By Lemma 4.2, lira Ef (x) = g(x) everywhere and hencen-*» n
F’ (x) = g(x) whenever F1(x) exists. Since it is well known that the 

derivative of a monotone function exists almost everywhere, this 

completes the proof.

Lemma 4.5. If lim sup|f (x) - g(x)| = 0 with probability one for
n-*» x n

some function g, then g(u)du < 1.

Proof: Let F(x) = FAC(X) + Fs(x) + FD(x) where F^, Fg and F^

denote the absolutely continuous, the singular, and the discrete part 

of F respectively. Now F’(x) = FlAq (x) almost everywhere, and 

F1 (x) = g(x) almost everywhere by Lemma 4.4, so that F'^(x) = g(x) 

almost everywhere. Thus

x
g(u)duFAC(x) = F,AC(u)du =
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which implies g (u)du < 1 since lira F (x) exists and is less
x-ko AC

than or equal to one.

Lemma 4.6. If lim sup|f (x) - g(x)| = 0 with probability one for 
n-*» x n

some function g, then

lim sup n-x» x J “ k(^y-)d(Fs(u) + Fd (u)) = 0. 
n n

Proof: In the proof of Lemma 4.5 we have shown that F'^(x) = g(x)

almost everywhere. Consequently

fa c ^  f a c ^ F'AC(u)du

= (L) g(u)du

= (R) g (u)du

since g is uniformly continuous on [a, x] by Lemma 4.3. So 

F'^(x) = g(x) by the Fundamental Theorem of Calculus for Riemann 

integrals.
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Lemma 4.7. If lira sup|f (x) - g(x)| = 0 with probability one for n-xo x n
some function g, then

lim sup I k(~^-)d (F (u) + F (u)) = 0, 
n-xo x J n n

Proof: From Ef^(x) = — k(^— -̂)dF(u) we obtain 
an an

Efjx) - j i k(2^)dFAC(u) = 
 ̂ n n

i k ( ^ ) d ( F s(u) + F (u)>. 
n n

So for 6 > 0 we have with the aid of Lemma 4.6

0 < 7  k(^--)d(F (u) + F (u))
"J  an an S D

1 |Ef^(x) - g(x)| + |g(x) -

= |Efn (x) - g(x)J + |g(x) - ~  k(— -^)g(u)du |
n

|Ef (x) - g(x) | + | [ {g(x) - g(x-u) }- k(" )du|
n J 3n an
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— ~ 8(x) I + |g(x) - g(x-u)|i k(^)du
|u|<6 3,1

u|>5
|g(x) - g(x-u) |— k(— )du 

n n

f. |E£ (x) - g(x) | + sup |g(x)
|u|<6

g(x-u)I + 2 sup g(x)
X

k(u)du, 
|u|>6/a

It follows that

(1) sup [ ~ k(— -— )d (F (u) + Fn(u))
x J an an b

<_ sup I Ef (x) - g (x) I + sup sup | g (x) - g(x-u) 
x n x |u|<6

+ 2 sup g(x)
X

k(u)du.
uI>6/an

In view of Lemmas 4.3, 4.5 and 4.6, g is uniformly continuous 

and non-negative and g(u)du is finite, whence g is bounded.

Let c > 0 be given. Since g is uniformly continuous we can 

choose 6 so small that the second term on the right side of (1) is 

less than e/3. Having so chosen 6 we can now choose N so large 

that if n N, then the remaining terms on the right side of (1) will
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each be less than e/3, since the first term tends to 0 by Lemma 

4.2 and the last term goes to zero for any fixed 6 > 0. The desired 

conclusion now follows.

Lemma 4.8. If lim sup|f^(x) - g(x)| = 0 with probability one for 

some function g, then F^(x) = 0 for all x.

Proof: Suppose there exists an x q such that F^(xo) - F^Cx^-G) > 0,

Then

I  k(X"T)dFD(u) i a  k( ' a ~ K (Xo) ' FD(xo'°)}i n n n n

If c is such that k(c) > 0 and x = ca + x thenn n o

sup x J a  k ( - x i r ) d V u )  i  "n n a kft--)dFU(u) > JSfSi{FD<*o) " FD(xo-°)}

which contradicts Lemma 4.7. (Recall that an 0 +.)

Lemma 4.9. If lim sup|f (x) - g(x)| = 0 with probability one forn-x® x n
some function g, then 0 is a derived number of Fg at x q (as

defined on page 207 of [12]) for any x q in (-00, «>).

Proof: Let a be such that k(a) > 0. Since k is continuous there

exists a number b > a such that inf k(x) > Nowa<x<b ^
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x-aa

a k(2T )dFS(u) -  n n

n

x-ba
7 k<27 i>dFs(u>n n

n

> ln£ k ( ^ ) . v ^ . : . Fs(x-banl
x-ba <u<x-aa n • ann n

...

Let x be an arbitrary but fixed real number and x = x + aa . o n o n
It then follows that

. Jfcfil k(a) . FS(Xo) - rs < V (b-‘>an)
2 k(a) (b-a)an

Fs(x0) ~ Fs(xo"(b_a)an )From Lemma 4.7 we can easily deduce that lim-------- r:---;---   = 0,n-x” (b-a)a

Since xq was arbitrary the proof is complete.

Lemma 4.10. If lim sup|f (x) - g(x)| = 0 with probability one for 
n->™ x n

some function g, then (x) = 0 for all x.

Proof: Let a and b be real numbers with a < b, and put
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h(x) = Fg(x) + x. Then h is strictly increasing on [a, b] and by

Lemma 4.9 it has a derived number equal to one at every point. Thus if

we take E = [a, b] in Lemma 2 on page 208 of [12] then we have

(2) 0 < A*(h[a, b]) <_1 • A*([a, b])

where A (E) denotes the Lebesgue outer measure of E and h[a, b] 

is the image of [a, b] under h. Since h[a, b] = [a + Fg(a), 

b + Fg(b)] we can rewrite (2) as

0 < b + Fn(b) - a - F (a) < b-a— D b —

which means Fg(b) = Fg(a). Since a and b were arbitrary, Fg

must be constant and hence Fg must be identically zero since

lim F (x) = 0.x-*» ^

We are now ready to obtain the main theorem of this chapter.

Theorem 4.11. A necessary and sufficient condition for

lim sup If (x) - g (x) | = 0 n-*00 x n

with probability one for a function g is that g be the uniformly 

continuous derivative of F.

Proof: The sufficiency of this condition has been established by
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Nadaraya [11] for a larger class of kernels than that considered 

here.

Conversely, Lemmas A . 8 and A .  9 show that F = F^. Lemma A .  6 
states that F'^(x) = g(x) everywhere and hence F’ (x) = g(x) every­

where. Finally Lemma A . 3 yields the uniform continuity of g and the 

necessity of the condition is established.



CHAPTER 5

APPLICATIONS

In this chapter we will mention some possible applications of 

the density estimates considered in the earlier chapters. We will 

first use the density estimates to construct estimates of the unknown 

distribution function and then use the density with the distribution 

estimates to construct estimates of the hazard rate (defined below) at 

a given point x for an absolutely continuous distribution function F 

having probability density f. The use of density estimates to con­

struct estimates of a hazard rate was suggested by Parzen [13] and 

studied by Murthy [10] who showed that the estimates considered below 

are consistent and asymptotically normal at continuity points of F 

and f.

Estimation of a Distribution Function 

Let (Xj|, Xg, ...) be independent identically distributed ran­

dom variables having common distribution function F and let the kcr-
l n , x-X̂ x

nel estimate f (x) = --- j k -----be as in Chapter 1. As an esti-
n nan i=l  ̂ an '

mate of the value F(x) of the distribution function at a given point

x we will take
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G(x) = k(u)du

then we may write

, n ,x-X.
' . < »  ■ ;  X  i i r

where G is a (continuous) distribution function.

Lemma 5.1. If F is continuous, then for every n > 0 and e > 0 

there exists a universal constant C such that

P {sup | F (x) - F(x) | > e> C exp[-(2-n)e^n]x n

for n sufficiently large.

Proof: If n 2; 2 the statement is trivially true; so let us assume

that 0 < n < 2. Let F^ denote the empirical distribution function 

based on (X^, ...» X^) as defined in Chapter 3. Upon integrating by

parts and observing that dG(^— -̂) = 1, we find that 
n

sup|F (x) - EF (x)| 
x  n n

= sup x G(^^)dF (u) - a n n
G(2=Jl)dF(u) | 

n
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= sup
X

{F (u) - F(u) }dG(— -) - [{F (u) - F(u) }G(^— I n a n  a —<» 1n n

= sup| [ {F (u) - F(u)}dG(^-^)| 
x j n an

_< sup| Fn (x) - F (x)
x

Since

sup|EF (x) - F(x)| = supn x J G(^)dF(u) - F(x) 
n

= sup | {F(x-u) - F(x) }— k(— )du|
x J an an

we have for any 6 > .0

(1) sup | EF (x) - F (x) | <_ sup sup | F(x-u)
X |u|<6

F(x)| + 2 sup x . j
M i 5

— k(— )du, a a n n

Given e’ >0, the uniform continuity of F allows us to make the
e*first term on the right side of (1) less than y by choosing 6

sufficiently small; having so chosen 6 we can make the second term 
£ *less than — for n large enough. Thus we have shown

lim sup|EF (x) - F(x)| = 0. By combining the above results it is seen n-xo x n
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that for n sufficiently large

P {sup jF (x) - F(x) | > e} £ P {sup |F (x) - F(x)| > e(2-n) 
x n f x n

_< P {sup |F (x) - F(x) | > e(2-n)’*1^2}. 
x n

An application of Lemma 3.1 completes the proof. (We note that this 

proof is almost a verbatim repetition of the argument used in Theorem 1 

of [11] if we replace there f and f by F^ and F, respectively.)

Lemma 5.2. If F is continuous, then

lim sup|F (x) - F(x)| = 0
n -x» x  n

with probability one.

Proof: By applying Lemma 5.1 and the Borel-Cantelli Lemma.

We remark here that the estimate F^ is of dubious importance

since the well-known estimate F^ (the empirical distribution function)

has many desirable properties as well as the added advantage of being

readily computed. However, since F^ is continuous in x for each

sample point, it is easy to verify that certain functions of the type

sup g(F (x)) are random variables (see for example the hazard function
xcT n
discussed below).

The results of Chapter 3, together with Lemmas 5.1 and 5.2,
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indicate that we may choose in such a manner that

s u p | ( x )  - F^S^(x)| converges to zero with probability one for
(s)s = 0, 1, r, provided that F exists and is bounded for

s = 0 ,  1, r + 1 .  As discussed in [1], this suggests the possibility

of estimating functionals I of F with

1(F) = H[F(u), F(1)(u), .... F(r)(u)]du

by I(Fn).

Estimation of the Hazard Rate 

If the random variable X represents the time to failure of an 

item, then F(x) is the probability of the event that by time x the 

item has failed and R(x) = 1 - F(x) is the probability that the item 

survived time x. If F'(x) = f (x), then

is called the hazard rate of X at x. We might say Z(x) gives the

probability density of almost immediate failure of an item that has

survived time x.

Now let R (x) - 1 - F (x). We will consider estimates of n n
Z^(x) of Z(x) for which
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Z (x) n - < f (x)

if R (x) = 0 n

if R (x) > 0

and obtain two properties concerning them. In order to do this we will 

need the following.

Lemma 5.3. Let k be a continuous probability density function satis­

fying the condition lim |uk(u)| = 0 and let {a } be a sequence of
|u|-K» n

positive constants converging to zero. Suppose a and b are ele­

ments in the extended real number system. If there exists an open 

interval containing [a, b] on which g is uniformly continuous and

if g(u)Idu is finite, then

lim sup 
n-x” a<x<b

— k(— )g(x-u)du - g(x)| = 0, 
n n

Proof: For 6 > 0, the inequality

k(— )g(x-u)du - g(x) 
n

_< sup | g(x—u) - g(x) | + j  sup | uk(u) | | g (u) | du
Iu|>6/a Ju | <6 I ul >6/<— 1 n

+ |g(x)| k(u)du
l u l l 6 / a n



has been established in the proof of Theorem 1A of [13]. So if

M = sup |g(x)| and M - |g(u)|du it then follows that 
[a,b] J

sup |-j I k(— )g(x-u)du - g(x) | 
a<x<b n J n

M.
£ sup sup Ig(x-u) 

a<x<b IuI<6
g(x)| + sup |uk (u)

u| >6/an

+ M. k(u)du
|u|>6/ai i _  n

which tends to zero as we first let n tend to 00 and then let 6 

tend to 0.

Lemma 5.4. Suppose F(b) < 1, f(x) is uniformly continuous on

(-», b + 6) for some 6 > 0 and the kernel k is a continuous

function of bounded variation on (-00 , 00) for which lim |uk(u)| =
| u |-*»

Then there exist constants and (C^ depending on b) such

that

P (sup| Z (x) - Z(x) | > c} <_ C exp(-C na^) 
x<b n n

for n sufficiently large.



Proof: Let M = sup Z(x). If R (b) > 0, then for x < b we may
x<b n

write

■ , Rfx) , F (x) - F(x) f (x) - f(x)
|zn(x) - Z(x)| = |z(x)--- -£(-)—  + ----

R(x) . ^(x) Rn(x) 2.
Since ^  > 2 implies — r (x ) > Y* now follows that

P{sup|Z (x) - Z(x)| > c} 
x<b n

'< P{sup|z (x) - Z(x)| > e, R (b) > 0} + P {R (b) = 0} 
x<b n n n

F (x) - F(x) f (x) - f(x)
< P{e < 2M sup | x-- 1 + 2 sup|— — --- 1>

x<b W  x<b

. + P{sup > 2, R (b) > 0} + P {R (b) = 0}
x<b n n n
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As a consequence of Lemmas 3.2 and 5.3

P{e R(b) < 4 sup|f (x) - f(x)|} £ P{c R(b) < 8 sup(f (x) - Ef (x)|} 
x<b n x<b n

P{e R(b) < 8 sup|fn (x) - Ef^(x)|) <_.C exp(-e^R^(b)na^/u^)

for n sufficiently large (C is the constant in Lemma 3.1 and y is 

the variation of k on (-», eo).) Therefore by Lemma 5.1 and the 

above we have for n large

P {sup|Z (x) - Z(x)| > e} 
x<b n

C[exp(-e^R^(b)n/16M^) + exp(-E^R^(b)na^/32u^) + exp(-R^(b)n/4)]

2 2 2 2Since exp(-e R (b)na^/32y ) is dominating the result follows.

Lemma 5.5. If £ exp(-cna ) converges for all positive c, then 
n=l n

under the conditions of Lemma 5.1

lim sup|Z (x) - Z(x)| = 0 
n-*°° x<b n

with probability one.

Proof: Apply Lemma 5.3 in conjunction with the Borcl-Cantelli Lemma,
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We also mention that in [11] and [13] the kernel estimates fn
have been used in an obvious manner to construct estimates of the 

mode of a density. If the estimated mode and the true mode are de­

noted by 0^ and 0 respectively, then sufficient conditions under

which lim 0 = 0  with probability one are found in [11]. An ex- n->~ n
ponential bound for ^ I ~  ®I > can be deduced from Theorems

1 and 2 there.

Our main applications of the kernel estimates are the proposed 

estimates of a regression function which will be studied in detail in 

Chapter 6.



CHAPTER 6

ESTIMATION OF A REGRESSION FUNCTION

Let us suppose that X and Y are real-valued random variables 

having a joint distribution function F. If E^jY| is finite then 

any version of the conditional expectation of Y given X, Ep[Y|X], 

will be called a regression function (of Y on X). We will be inter­

ested in those distributions F which have a density, that is, those 

for which there exists a Borel-measurable function f such that

x y
F(x,y) = f(u,v)dvdu for all real x and y,

In this case the regression function associated with a particular

| yf(x,y)dy 

f(x,y)dy
density f of F is defined to be m^(x) = -̂-----------whenever

f(x,y)dy > 0. In this chapter we will assume that a version of the 

density f can be chosen which satisfies certain regularity conditions 

to be specified. The problem considered here is: Given a random

sample (X^, Y^),. . ., (X̂ , Y^) from a distribution F which has 

a density f satisfying the regularity conditions, how can m^ be 

estimated? In order to motivate properly our search for an estimate 

of a regression function, we shall try to estimate the regression

42
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function in̂ corresponding to a "smooth'1 density function f (if 

such a density exists). However, the arbitrariness resulting from 

this will be immaterial as is seen in the following case. If m^ 

denotes an estimate of m and if sup |m (x) - m (x)| converges to
l x l l a

zero with probability one, then clearly ess sup |m (x) - m(x)| con-
M i a n

verges to zero with probability one for any other version m of the 

regression function.

In the sequel the subscript f on m^ will be dropped and a 

statement like "the regression function m has property A" is to be 

interpreted as meaning there exists a choice of the density f such 

that the regression function m_ corresponding to f, has propertyIT ,
A.

Three Estimates and Their Motivation 

Let (Xp Y^), (X̂ , Y^), . . .  be independent identically dis­

tributed bivariate random variables having a common probability density 

f. The kernel estimates considered in the first four chapters can be 

adapted to provide estimates of the bivariate probability density 

function f; i.e., if

« . < * . »  ■ =  V  1n n 1=1 n n

where {a^} and {b^} are sequences of positive numbers going to 

zero and h is a bivariate probability density function, then the 

following convergence properties of f to f are obtained directly
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as in the univariate case (see [2]):

(i) The asymptotic unbiasedness of f at every 

continuity point of f.

(ii) The consistency of f in quadratic mean at every 

continuity point of f.

(iii) The joint asymptotic normality of the estimates f 

at continuity points of f.

(iv) The uniform consistency of f whenever f is

uniformly continuous.

Moreover, if f is uniformly continuous, the results in [1] may be 

used to construct estimates f of the form (1) for which

sup |f (x,y) - f(x,y)| converges to zero with probability
M l h n,|y|<kn

one and an exponential bound on P sup |f (x,y) - f(x,y)| > e
- M l h n,|y|<kn

exists for appropriate h^ and going to infinity.

If the density f were known then the regression function m 

could be constructed by ordinary Lebesgue integration. This together 

with the above discussion suggests we might first estimate f and 

then construct estimates of m by integration; i.e., if f denotes 

an estimate of f of the form (1), we might estimate

m(x) =

yfn(x,y)dy
yf (x,y)dy q x
--------  by a function of the form m (x) =
f(x,y)dy n I fn (x’y)dy

(henceforth we will define the regression estimates to be zero at those 

points where their explicit formulas are logically undefined).
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If the bivariate kernel h is chosen to be a product kernel,
* * say h(x,y) = k(x)k (y) where k and k are univariate probability

densities with * (i)yk (y)dy = 0, then the above estimate nv
(2)simplifies to an estimate m^ given by

(2)Note that m^ is somewhat simpler, computationally and otherwise,

than m ^ \  For example m^^ is independent of the sequence {b^}

In attempting to find an estimate for which

lim sup |m (x) - m(x)| = 0 with probability one for a fixed real 
n-*00 | x| <a n
number a, we found that such an estimate could be obtained if we

(2)replaced the in the estimate m^ by a truncated version of

the Ŷ . Thus we were led to our third estimate

/o\ n ,x-X.\ / n /X-X.
'■ “  • l  4 - r -

where I is the indicator function of [-c , c ] with c going n n n n
to infinity.

Bounds for the Supremum Distance on a Finite Interval

We will now find bounds for P{ sup |m^\x) - m(x) I > e}
|x|<a

(1=1,2,3) for those distribution functions having a density which 

satisfies certain regularity conditions. From here on, a will 

denote an arbitrary but fixed positive real number.
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Let X^, Xg, . . . be independent identically distributed 

random variables having a common univariate probability density func­

tion g. Let g^(x) be a kernel estimate of g as defined in Chapter 

1 ; i.e.,

. n .x-X x
(2) 8 n (x) = Z k ( ~ r jn i=l n

where k is a probability density function and {a^} is a sequence of 

positive constants converging to zero.

Lemma 6.1. Suppose k has a bounded derivative, lira |uk(u)| = 0
|u|-x*

and there exists an open interval containing [-a, a] on which g is 

continuous. Then given any e > 0 there exist positive constants 

and Cg such that

P { sup |g • (x) - g(x) I > e} <_ C [exp(-c„na2 )]/a2 
8 Ixl<a x  ̂ n n

for n sufficiently large.

Proof: Since g is uniformly continuous for |x|<a there exists a 

6 > 0 such that |g(x) - g(y)| < ^ for |x - y| < 6  and x,y belong­

ing to [-a, a]. Let us take 6 (n) = ea^/4M^ where = sup|k'(x)|. 

For n sufficiently large 6 (n) <_ 6 so that |g^(x) - g^(y)| < e/4 

and |g(x) - g(y)| < e/4 whenever |x - y| < 6 (n) and x,y belong 

to [-a, a].

The desired conclusion now follows as in Lemma 2 of [1] using
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our Lemma 5.3 in place of the corollary to Lemma 1 in [1],

Let (X̂ , Y^), (X^, Y ), . . . be independent bivariate random 

variables identically distributed as a bivariate random variable (X,Y) 

whose distribution function F has density f. Let k and {a^} be 

as in (2) above. For simplicity we write:

, n /X—X
Wn (x) = S T  ^  Yak(—  n s“l ' n

w (x) = yf(x,y)dy

^(x) = I exp(iux)k(u)du where î  = - 1

1 n(u) = - I Y exp (iuX ).n ss- 1

Lemma 6.2. Let k be a continuous univariate probability density

function satisfying the condition lim |uk(u)|= 0. If there exists
| u |-*»

an open interval containing [-a, a] on which the function w is 

continuous and if |y | is finite, then

lim sup |Ew (x) - w(x)| = 0 . 
n->™ Ixl <a

Proof: Since | w(u) | du E - | Y| and Ew (x) =f 1 1 n
the proof follows directly from Lemma 5.3. .

— k(— )w(x-u)du 
n n
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If we assume that the characteristic function ip is absolutely 

integrable, then by the standard inversion formula we may write:

, n ,x-X x
w (x) = -----£ Y k (----]

nan 8 - 1 S [ an '

2 ^ T  \  Ys | *(»)exp[-iu(-r S-)]du
n s=l ; ' n

_1
2tt e *UX \p(a u)<}> (u)du, n n

Lemma 6.3. Suppose k satisfies the conditions of Lemma 6.2 and

suppose (p is absolutely integrable. If there exists an open interval
2containing [-a, a] on which w is continuous and if E^Y is

finite, then for every e > 0 there exists a constant C > 0 such 

that

P { sup |w (x) - w(x)I > e} < C/na" 
f |x|<a "

for n sufficiently large.

Proof: From the discussion preceding the lemma and the fact that

|̂ ,(a u)|E |Y|du is finite we have

sup |w (x) - Ew (x) | 
x| <a

sup 
Ixl <a 2tt c 1UX ^(a^u)^^(u)du i E f e 1UX (̂â u)(f)̂ (u)du
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2 •
sup I 2^ e 1UX  ̂(anu) ( (u) - E^(u)}du|
x <a n

2tt | ipCâ u) | | 4>n (u) - E4>n (u)|du

Thus | sup | wn (x) - Ewn (x) | 2 £ j  |tp(a^u)||^(u) - (u) |du

Att-1

Air

| ̂ (anu) | | <f>n(u) - (u) | | ̂  (anv) I I (v) - E<}>n (v) |dudv

so that by the Schwartz inequality we have

E sup |w (̂x) - Ew (x)|
x <a

- ' i
I ̂ (anu) ! ! ̂ (anv) I E{|(}>n (u) - E(|>n (u) | | <j> (v) _ ” E({)̂ (v) | }dudv

Air"
I *(anu) I I I|.(anv) IE1 / 2 | ̂ (u) - E*n (u) |V/i£| *n(v) - (v) | ̂ dudv2U/2

^  |  H(anu)|E1/2|»n (u) - E4.n(u)|2du

n , iuXs 2
- EY e n sNow E| <J> (u) - E<f, (u) |2 = -~E| I [y e 

n n n s=l\ S

= E| Ye1^  - EYel u X |2 = ^E|Ye l u X |2 - | EYeiuXi 2

= “ (eY2 - |EYeluX|2j <_ ^EY2.



Thus we have shown

E sup |w (x) - Ew (x) | ̂ ~  — -- • ' n n — , 2 nx <a 4tt
ip(a^u) | du

1 EY
/ 2  2 Air nan

(| | ip(u) | duj 2 .

By Lemma 6.2, Tchebychev's inequality and the above inequality, 

we have for n sufficiently large

P{ sup |w (x) - w(x) | > e} <_ P{ sup |w (x) - Ew (x) | > e/2}
|x|<a n |x|<a n

< -̂r-E sup | w (x) - Ew (x) I 2 < — 'EY2 ( | i|;(u) | du) 2 .
“ e2 Ixl <a n n ~ r , J  c2 [J Ina e n

If we take C = -^EY2  ̂ | \p (u) | duj2 then the proof is complete

k(x) =

Let h be a bivariate probability density such that h and 
»
h(x,y)dy satisfy the conditions:

(i) J  yh(x,y)dy is bounded and continuous on <»).

(ii) lim |xk(x)| = 0 .
|x|-H°

(iii) sup|k'(x)| < «.
x

We tabulate here some simplified notation:
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n ,x-Xa
8n (x) = ST" J. k Where k(x) =n i=l ' n

h(x,y)dy

n ,x-X
Wn(x) " SI" 2 Yik( ~n i=l n '

"i1}(x)

yfn (x,y)dy
. 1

yfn(**y)dy

f (x,y)dyn
n

mn2)(x)
X  Y i k ( ?i=l
n ,x-X,

1  - I x
wn (x)
Rn (x)

g(x) = f(x,y)dy

w(x) = yf (x,y)dy

m(x) =
yf(x,y)dy h(x)
r g(x)'
f(x,y)dy

Theorem 6.4. If b^= o(a^), if there exists an open interval contain­

ing [-a, a] on which

(i) g is continuous and bounded away from zero

(ii) w is continuous 
2and if E^Y is finite, then corresponding to each e > 0 there

exist positive constants Ĉ , and such that
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P{ sup (x)
|x|<a n

C 1 2 Cm(x) | > €>_<— ' exp(-C2nan> + — -
n nan

for n sufficiently large (i«l,2 ).

Proof: Let Q be the set of rationals in [-a,a] and let e > 0 be 

given. Since J  yf^(x,y)dy and g^(x) are continuous functions of x 

for each sample point it follows for i=l,2 that

{ sup |m^\x) - m(x) | > c} = {|m^^(x) - m(x)| > e}
x <a x <a

| LJ { (x) - m(x) | > E,gn (x) > 0 } j\ l x l l a  n  /
I I  f LJ { |m(x) | > s,gn (x) = O H

\ lxlla /

m(x)| > e,gn (x) > 0 }

Now for fixed x, ^(x) and g^(x) are both random variables.

Hence sup |m^^(x) - m(x) | is a random variable (i=l,2).
x <a n

Let M1 = sup| yh(x,y)dy|, M = sup |m(x)| and 
J |x|<a

b = inf g(x). For g (x) > 0  it is seen that 
Ixl <a

|m^(x) - m(x) | = [m^Cx) - m(x) + b J n n n issl
(2) n

yh
x-X,

n
■,y) dy/nanRn(x)
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C91 V i_< |mn (x) - m(x) | + -  ---JJ)

g(x)
(xj

< s M ,-  g (X)

m ( x )  ( x "  i f e r )
g (x)x w (x)-w(x)

+ g(x)

m
/ g„(x)\ W (x)-w(x) 

(X) ( 1 - 7}w ~) + +

b 1-L  n ].
ang(x)

b M n 1
a b n

so that

P{ sup / (x) - m(x) | > e}
|x|<_a

'< P{ sup |m^ \x) - m(x) | > e, g^(x) > 0 for |x| <_a} 
|x|.ia

+ P{gn(x) = 0 for some x with |x|<a}

m(x) 1 -
g_(x)\ W (x)-w(x) 
g(x) I g(x)

b M n 1
a b n

> E,

gn(x) > 0 for x |<a>

+ P{g^(x) = 0 for some x with | x| <_a}

< P{ sup 2 
|x|<_a

g (x) w (x)-w(x) 
m(x) ( 1 - -g^-) + iTx— +

b M n 1
a b n

> £}

| x | <_a n
a(2iL
g_ (x)+ P{ sup > 2, g (x) > 0 for |x| <a}

+ P{gn (x) = 0 for some x with |x|^a).
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„<■„) S(x)-g (x) x
Now "--"v > 2 implies —-7—r > and b = o(a ) so that forg (x) g(x) 2 n n

n large the last member in the string of inequalities above is less

than or equal to

P{ sup 
I x| <a

m(x) 1
g (x) w (x)-w(x)n ) + _iL_____
g(x) ) g(x) > 7-} -H P{ sup 

4 |x|<a

g(x)-gn(x)
g(x)

So

P{ sup |m^\x) - m(x)| > e} 
| x| <_a

P{ supl x l l a
gn (x)x w (x)-w(x)

m ( x )  11 -  i f e r )  +  "  g w " > 7-} + P{ sun 
|x|<a

gn (x)-g(x)
g(x) > l >

< P{ sup M,
x <a

gn(x)-g(x)
g(x) > -5-} + P{ sup 

8 |x|<a
w^(x)-w(x)

g(x)

4- P{ sup 
I x I <a

gn (x)-g(x)
g(x)

£ P{ sup |g„(x) - g(x) I > •— — } + p{ sup |v7n (x) - w(x)| > — }
x <a x <a

+ P{ sup |gn (x)-g(x)I > y} 
|x|<.a

Hence the theorem follows by Lemmas 6.1 and 6.3.
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1 2Theorem 6.5. If exp(-Cna ) converges to zero for every C
an

then, under the conditions of Theorem 6.4, for every e > 0

lim P{ sup |m^^(x) - m(x) | > e} = 0 (i-1,2). 
n->oo |x I <a

1 2  9Proof: Observe that —j exp (-Cna ) -> 0 implies that na -* »
an

then apply Theorem 6.4.

If we now define

i n /X-X x

where I is the indicator function of [-c , c 1 with c n n n n
may write

l  ’. V V h r 1) v„<»>
n " n "x-X., = g^(x)

A  K x

m_(3) (x) =

> 0

and

00, we

(k satisfying conditions (ii) and (iii) on page 50).
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Lemma 6 .6 . If there exists an open interval containing [-a, ; 

which

(i) w is continuous

(ii) |y|f(x,y)dy is uniformly integrable

and if E^|y| is finite, then lim sup |Ev (x)-w(x)| = 0.
n-*» Ixl <a n

Proof: For any 6 > 0

' i  I
sup
x ~̂a iv iicn

~ k  (̂ — )̂ f (u, v) dudv | 
n an

^ sup | I I — k(~)f(x-u,v)dudv| 
I v I . J J n ar.x|<a |v |>c ' n ni i—  n

sup 
xl <a

| ~-k(“ )f (x-u,v)dvdu |
- Ml6 Mlcnn n

+ sup 
I x I <a— u > 6 v >c

— k(— )f (x-u,v)dvdu| 
an an

n

< sup 
IxI<a+ 6

r -
| -“ f (x,v)dv| + — sup |uk(u) | • E |y
v > c u | >_6 /an

] on

which approaches zero if we choose 6 sufficiently small and then let 

n tend to infinity. Since
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sup |Ev (x) - v(x)| £ sup |Ew (x) - w(x)| 
Ixl<a n Ixl<a n

+ sup v , ,x-u.k( )f(u,v)dudv|
xI<a | |̂  ̂ n an
"  iv l-Gn

the desired result now follows from Lemma 6.2.

Lemma 6.7. Under the condition of Lemma 6 .6 , for any e > 0 there 

exist constants and such that

Pf{ sup |v (x) - w(x)| > e} <_ — ™exp(-C na2/c2).
|x I <a n a n nn

Proof: Let M = sup|k’(x)| and M = sup|k(x)| and define
a2 x

6 (n) = — ~~ • ^  (note 6 (n) ■> 0). For simplicity assume is

an integer and partition [-a, a] into B^ intervals of length

6 (n). Denote these intervals by J J , . . ., J and select annJ. nZ nB n
x . from J . for i=l,2,...B . Thennj nj n

sup |v (x) - w(x)| = max sup |v (x) - w(x)|
x | <a n j =1 ,2 ,..B^ x eJnj n

< max sup I v (x) - v (x .) I + max |v (x .) - Ev (x .) 
- ; l = l , . . > B n X e J n . 1 "  n  ^  n  ^  n n ^

+ max | Ev (x .) - w(x .)| + max sup |w(x .) - w(x)j = l , . . B n  n  J  n j  j - i , 2 , . . B n  x e ;  n j

It follows by the uniform continuity of w on [-a, a]
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and by Lemma 6 . 6 that for n sufficiently large.

P{ sup | v (x) - w(x) I > e } < P{ max |v (x .) - Ev (x .) I > 7 -}. 
|x| <a n ~ n nJ n nj ' 41 i__ n

The conclusion is now obtained from Theorem 2 of Hoeffding in [7] with

16aM 2
C = ----- and C- =
1 E 2 32M2(1+Ef |Y|2)

Theorem 6 .8 . If there exists an open interval containing [-a, a] on 

which

(i) g (x) = f(x,y)dy is continuous and bounded away from zero

(ii) w(x) is continuous and 

integrablc

|y|f(x,y)dy is uniformly

and if E^|Y| is finite, then given e > 0 there exist positive 

constants and such that

Pf{ sup |m^^(x) - m(x)| > e} ^ ~"^exp(-C2na^/k^) 
lx lla n an n n

for n sufficiently large.

Proof: The fact sup m (x) - m(x)| is a random variable is
l%lla n

obtained as in the proof of Theorem 6.4. For g^(x) > 0 we have

✓ s / 8L(x)\ v (x) - w(x)
I » n  (x) - m(x) I - f n T x y ! m «  ( l  - g f r y )  +  g W — I •
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Proceeding as in Theorem 6.4 yields the theorem, in view of Lemmas 

6.1 and 6.7 and the domination of the error term in Lemma 6.7.

00 cn 2 2 
Theorem 6.9. If j —rexp(-Cna /c ) is finite for every C > 0 -------  u 2 L n nn=l an
then, under the conditions of Theorem 6 .8 ,

/o\
lim sup |m (x) - m(x)| = 0  
n-x» Ixl <a n

with probability one.

Proof: By Theorem 6.3 in conjunction with the Borel-Cantelli lemma.

(2) (3)Remark: Inspection of the estimates m (x) and m (x) revealsn n

that sup (x) | <_ max| Y J for i=2,3. If f were the density of a
x n j<n j

bivariate normal with non-zero correlation coefficient and

yf(x,y)dxdy = xf(x,y)dy = 0 , then the regression function m

would be of the form m^(x) = bx. Consequently,

sup (x) - m_(x)| = sup|m^\x) - bx| = 00 for all n. This showsx n x n
the impossibility of proving the result in Theorems 6.5 and 6.9 if the 

supremum were taken over the entire real line.

Estimation of the Point at which a Regression 

Function attains its Maximum 

A problem which frequently arises in practice is to estimate 

the point 0 at which a regression function attains its maximum 

value. We will now show our regression estimates can be used



to construct estimates of 0 .

Let 0 satisfy sup m(x) = m(0) and let us choose a kernel 
|x|<a

h such that for each sample point, m^"^ (x) is a continuous function

of x for i=l,2,3. Then there exist random variables 0 ^ \  i=l,2,3, 

mapping the sample space into [-a, a] such that

m (i)(e(l)) = sup m (i)(x). 
n n Ixl<a n

In the following theorem h and k satisfy conditions (i),

(ii) and (iii) on page 50 and k(x) > 0 for all real x. This added 

condition on k guarantees the continuity requirement on nV^ 

(i=l,2,3) above.

Theorem 6.10. Let m have a unique maximum on [-a, a] at 0. Then

(i) Under the conditions of Theorem 6.4, given e > 0 there

exist positive constants and such that for n

large

C C
p{|0^l) - 8 1 > c) £-|exp(-C2na^) + - ^  (1=1,2).

a nan n
(ii) Under the conditions of Theorem 6 .8 , given e > 0 there

exist positive constants and such that
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(iix) Under the condition of Theorem 6.5

lim = 0 in probability (i=l,2 ).ft-yro n

(iv) Under the conditions of Theorem 6.9,

(3)lim G = 0  with probability one.n->«> n

Proof: If b = inf {m(G) - m(t)}, then the continuity of m on 
te[-a,a]
|0-t|>E

[-a, a] and the uniqueness of 0 imply that b > 0 (for e suf­

ficiently small).

Now — 01 > e implies that t exists in [-a, a] with

| 0 — 1 1 > e and (t) - m^(G) 0. Therefore,

m^^(t) - m(t) + m(t) - m(0 ) 4- m(0) - m^^(0) >^0 so that

(t) - m(t) 4 m(0) - m^^(G) >_ m(G) - m(t) >_ b > 0. Thus we see that

P{ | G ̂  - G | > e) < P{ sup - m(x) | > %-}.
" . " |x|<a * - ' 2

The theorem now follows from Theorems 6.4, 6.5, 6 . 8 and 6.9.

Joint̂  Asymptotic Distribution qf_ the Estimated Repression 

Function at a Finite Number of Distinct _Pôin̂t_s 

In this section we shall study the estimated regression function
(2)m at two distinct points. The results obtained here remain valid n

for any finite number of distinct points.



62

Assume that (X^, Y^) (X^, ^2^* ' " ' arc independent bivariate 

random variables identically distributed as a bivariate random vari­

able (X$Y) whose distribution function F has density f, that 

{a^} is a sequence of positive numbers converging to zero and that k 

is an univariate probability density function. Let and be

distinct real numbers and let c = Ĉ1 *^l,c2 ’̂ 2  ̂ an arbitrary point 
4in R . We will use the superscript t to denote the transpose. For 

brevity we define for i=l,2 , . . ., n and s = 1 ,2 :

Uni(xs) " a H ' V 1  n v n

Uni(xs) = y=n[Uni(xs) " EUni(xs)]

Vni(xs) “ V n i ^ s J

Vni(xs) = * ^ [Vni(xs) " EVni<xs)I

Un (xs) = j. Unl(x8 )1=1

Vn (xs> = I. Vni(xs) i=l

Wni Vni^Xl^’ Uni(x2 ^’ Vni^X2 ^



63

g(x) = f(x,y)dy

w(x) = yf(x,y)dy

v(x) = y f(x,y)dy

A = I|k||

g(x1) w(x^) 0 0

w(x1) v(x^) 0 0

0 0 g(x2) w(x2)

0 0 w(x2) v(x2)

where k (u)du,

Let Z be fourvariate normal with mean vector 0 and covariance 

matrix A.

Lemma 6.11. If x is an arbitrary but fixed point for which g(x) > 0,
2

then g (x)v (x) =(= w (x) .

Proof: Assume that g(x)v(x) - w (x) = 0. Then

0 = = V[Y|X = x] (the variance of Y given X = x) ,
g: (X)

which means f(x,y) = 0 almost everywhere (y) and hence

e(x) = f(x,y)dy = 0 .

Lemma 6.12. Suppose the density k satisfies the conditions

(i) k(u) and |uk(u)[ are bounded

(ii) |u|k(u)du < 00
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3 3and suppose na^ -> c0. Let Ef (y ( be finite and let g', w* and

v 1 exist and be bounded If x^ =)= Xg and g(x^) > 0 for i=l,2,

then c • converges in distribution to c • 7^ for any

c = (c1, d1, c2 ,d2) in R̂ .

Proof: The following hold for s = 1,2 and r = 1,2 under the as­

sumption that s 4 r whenever s and r appear in the same expres­

sion:

(1 ) EUn?(xs) = g(xg)||k| | 2 + 0 (an).

(2 ) EVn^(xg) = v(xg)||k||^ + 0 (an).

( 3)  E t J n l ( x s ) v n l ( x s )  =  w ( x = ) |  l l c l  I ,  +  ° ( a n ) -

(4) EUni(xs)Uni(xr) = 0 (an)-

(5) EVni(x8 )V„i(str) " °(an)-

(6) EUni(xS)Vni(xr) = 0 (an)-

We will sketch the proofs of (1) and (4) to illustrate the method. To 

obtain (1 ), we see

EUni(xs) = an l k 2( - H B ( u ) d u "  ( |  r " k ( ^ ~ ) g ( u ) d u )a nn n n

= an
_1_ 2 I k (u)g(x - a u)du - \ 2k(u)g(x - a u)dua L n n  \  J n / _



Since gT and |yk(y)| are bounded and |u|k(u) 

follows that

| k(u){g(x - a^u) - g(x)}du| <_sup|g'(x)|a^

and

| k (u){g(x - a^u) - g (x) }du | _< sup | g' (x) | aj

Thus we have

EUni(xs) = g(xs)llk lI2 + °^an^’

As for (A), suppose x^ > x^ and let 6 = x,

6 = 6 /a . Thenn n

EUni(xl)Uni(x2 ) = an
r 1 /xi u\ /x2 ""u\

K " r h " 8(u)du + 0(an n ' nan n

k(u)k(6n + u)g(x^ - a^u)du + O(a^)

uI<6 /2 1 n
k(u)k(6n + u)g(x^ - a^u)du + O(a^)

k(u)k(6n + u)g(x1

65

is finite, it 

|k(u)du = 0 (â )

|k^(u)du = O(a^).

2 " X 1 and 

)

a u)du + 0 (a ) n n
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±  sup k (6 + u) • ,k(z)g(x - a z)dz
|u|<6 /2 1 i nI I  n

+ sup k(u)
lull6n / 2

k (6 + z)g(x -a z)dz + 0 (a )n i n  n

sup k(u) • 0 (1 ) + sup k(u) • I k(z)g(xQ - a z)dz + 0 (a )
|u|> 6 / 2 Iu|> 6 / 2 J 2 n ni i— n 1 n

88 2 sup k(u) • 0 (1 ) + 0 (a )
|u|l6n / 2

< —  sup |uk(u)| • 0 (1 ) + 0 (a ) 
' s„-6n<lu ll5ri/2 n

4a
— sup |v.k(u)| • 0 (1 ) + 0 (a )

|u|?6n/2

0 (a ) + 0 (a ) = 0 (a ) n n n

which was to be shown.

Now let = Var(c • Ẑ ) so that by (l)-(6 ) above, we have

n
°n = I [cs8<xs) + dsv(x8) + 2csdsw (xs)l +s=l

Put pn_̂ = E

pn = n'1/2Elc,Wnll3

c*U .ni
/a

n
and p = y p . so that " u ni1=1



1 8n 1 2̂\c\3 max I unl <xs) I 3» ElVni^xsM 3^ 
s—1 , 2

g
Since gf, w’, v' and k are bounded and E^|Y| is finite it 

follows by arguments similar to those above that

E|u ,(x ) | 3 . °(a -1/2) and E|V (xc) |3 = 0(a ~3/2) (s=l,2) so that iijl o %i Til s n

pn = 0 (an-3 /2n-1/2).

For c 4 0 we can deduce from Lemma 6 . 8 that A is positive 

definite whenever g(x^) > 0 and gCx^) > 0. Thus for c 4 0

o2 tlim n = cAc > 0
"  l|k2 n 2

since cAc*" is a quadratic form associated with the positive definite
p

matrix A. Hence it follows that lim —  = 0 whenever c 4 0«a 1n-x* n
An application of the Berry-Esseen Theorem on page 298 of [9] 

now completes the proof.

Lemma 6.13. Under the conditions of Lemma 6.12 Z converges in dis-— ■ ■ i ■ I- I- . — vV

tribution to Z (recall that Z is multivariate normal with mean 

vector zero and covariance matrix A).

Proof: Apply Lemma 6.12 together with Theorem (xi) on page 103 of
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Let us write

Z* - a 1 /2n- 1 / 2  n n

n

[V (xi) _ w(xi)]

I tUni(x2) ' 8(xo)]1=1
nI [Vni(x2 ) ” w(xo)]1=1

Lemma 6.14. Suppose uk(u)du = 0 , u k(u)du is finite and
5 (2) (2)na^ -> 0. If g and w exist and are bounded then, under the

*conditions of Lemma 6.13, converges in distribution to Z.

Proof: Let = (g(x^) - EUnl > w(x^) - EV^Cx^), gCxg) - EU*1 Cx2),

w(x2) - EVnl(x2))t. Since 

is bounded, it follows that

uk(u)du = 0 , u^k(u) is finite and g^^

lEUn l “ 8 (xi)l = I k(u){g(xi - a^u) - g(x^)}du|

2

1  sup|g^2 (̂x) I " u2 k(u)du = 0 (a2) (i-1 ,2 ).

Similarly |EV^^(x^) - w(x^)| = O(a^) so that = O(a^). Then

Z - Z = /aa B = 0 (/ 5) = o (1) since na“* -> 0. The desired resultn n n n \ na / nn
now follows from standard large sample theory and Lemma 6.13.



Theorem 6.15. Under the conditions of Lemma 6.14

n

mn2 >(xl)

mn2 )(x2 )

m(x^)

m(x2)

converges in distribution to Z where Z is bivariate normal

with mean vector zero and covariance matrix C given by

C =
i 4 )v[y|x = xi]

g(x2)■v [y |x = x2 ]

4 2Proof: Let the function h from R to R be defined so

h(y1 ,y2 ,y3 ,y4) = (h1 (y1 ,y2 ,y3 ,y/,) , h 2 (yi>y2,y3,y4)) ' 

where \(y^,y2 ,y3 »y4) = y ^ y V  and h2^yl,y2,y3,y4̂  = y4 ^ y 3 and
= (g(x1), w(x1), g(x2), w(x2)). Then
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-w(x1) 1

-w(x2)

g2 (x2)

and hence DAD = C. Let T = (T _,T _,T _,T ,)n nl n2 n3 n4

Tnl = I X  ^1=1

T„2 = i X1 =  1
n

Tn3 “ ^  Vni(x2)

TnA '  ^  j .  < i ( x 2 )  1=1

Let us now write

Z = ^  n n

Tnl - g(%l)

Tn2 - w(x1)

Tn3 - 8 (x2)

L a - w(x2)

1
g(x2)

where

We note that the proof of Theorem (11) on page 321 of [14] remains 

valid if /n is replace by r^ provided r^ tends to infinity.
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Thus it now follows from the above-mentioned theorem and

Lemma 6.14 that îiâ (h(T̂ ) - h(6 )) converges in distribution to Z
* twhere Z is N(0,DAD ). Since

h(Tn) - h(0 )

Tn2

Tnl

w(x1)
gC^)

II

>CM
- m(x1)

Tn4 w(x2)
- m(x2)

T„3 g(x2)

the proof is complete.
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