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RECONSTRUCTION OF UNKNOWN CHARACTERISTICS IN A THIRD-ORDER SYSTEM

K. Keesman and V. I. Maksimov

The article considers dynamic identification of unknown characteristics in a third-order system. A real-
time algorithm is proposed for the solution of the problem. The algorithm relies on constructs from
stable dynamical inversion theory, which combines methods of the theory of ill-posed problems and
positional control theory. In the proposed procedure, the reconstruction algorithm is represented as a
control algorithm for some artificial dynamical system – a model. The model control is adapted to current
observations so that its realization eventually “approximates” the unknown input.

1. Introduction

We consider the problem of reconstructing the unknown characteristics in a third-order system of nonlinear
differential equations describing processes in a bioreactor with refeeding. A computer algorithm is proposed for
the solution of this problem.

The problem considered in this article belongs to the class of inverse problems of control system dynamics and
in a more general context it fits into the framework of ill-posed problems [1, 2]. The theory of such problems has
been developed with sufficient detail, but only in a posterior setting — without requiring a dynamic reconstruction
algorithm [3]. The requirement of dynamism — a special feature of our approach — emerges in situations when
current input values are used to make real-time decisions.

The procedure described in this article follows the theory of stable dynamical inversion developed in [4–7].
The latter in turn combines the methods of the theory of ill-posed problems [1, 2] and positional control theory
[8]. The essence of this theory is that the reconstruction algorithm is represented as a control algorithm for some
auxiliary dynamical system — a model; the output of this algorithm in particular is a realization of the model
control and it is by definition a dynamic algorithm. Model control is adapted to the results of current observations
so that its realization eventually satisfies the conditions of some regularization principle; this ensures that the
algorithm is stable. The model control algorithm proposed below is based on a modification of the smoothing
functional principle, using an appropriate Lyapunov functional. Model control is constructed so as to ensure slow
increase of the functional.

2. Dynamical Model of a Bioreactor with Refeeding

The substantive example investigated in this article is derived from [9, 10], which focus on optimal experi-
mental design for bioreactor modeling. The present article may be regarded as a continuation of [9, 10].

Without loss of generality, we assume that the dissolved oxygen concentration in the refeed is equal to the
saturation level, i.e., it is not affected by the bacteria, which by assumption are absent from the refeed. The
consumption of the substrate by the bacteria in the reactor is aerobic and directly affects the dissolved oxygen
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concentration in the reactor. The following nonlinear dynamical model describes the biochemical processes in the
reactor [9–11]:

dCDO(t)

dt
= kLa(C

en
sat − CDO(t))−OUR(t) +

Fin(t)

V (t)
(Csat − CDO(t)),

dCX(t)

dt
= µ(CS(t))CX(t)− Fin(t)

V (t)
CX(t), (1)

dCS(t)

dt
= −µ(CS(t))

Y
CX(t) +

Fin(t)

V (t)
(CS,in(t)− CS(t)),

where

V (t) =

t∫
0

Fin(τ) dτ + V (t0),

OUR(t) =
(1− Y )

Y
µ(CS(t))CX(t),

µ(CS(t)) = µmax(t)
CS(t)

KS + CS(t)
, t ∈ T = [t0, ϑ].

Here and in what follows kLa is the aeration coefficient, V (t) is the reactor volume, Cen
sat is the dissolved

oxygen concentration at the saturation level, including a small (constant) correction for endogenous respiration of
the biomass, Csat is the (normal) dissolved oxygen concentration at the saturation level in the refeed, µmax(t)

is the maximum growth rate, KS is the semi-saturation constant, Y is the coefficient of biomass fluidity on the
substrate, OUR(t) is the rate of oxygen absorption by the biomass in the reactor, CDO(t) is the dissolved oxygen
concentration in the reactor, CX(t) is the biomass concentration, CS(t) is the biomass growth rate. Note that
in (1) the parameter µmax(t) is time-dependent. This parameter usually changes due to the adaptation of the
organisms, additional constraints on the substrate, or more generally due to kinetic modeling errors.

Note that the first equation in (1) describes the dissolved oxygen concentration in the reactor; the first term
in the right-hand side is the natural aeration, the second term is the absorption of oxygen by the aerobic biomass,
and the last term is the refeeding and dilution of the dissolved oxygen. The second equation in (1) describes the
biomass dynamics; here the first term in the right-hand side describes biomass growth, and the last term describes
dilution. The first term responsible for growth is also present — with a certain fluidity coefficient (Y ) — in the
third equation in (1), but here it characterizes the absorption component in the substrate balance.

In what follows we assume that data are available only for the dissolved oxygen and there is no information
about the biomass or the substrate. The limited information capacity is responsible for the fact that the recon-
struction of µmax(t) and the states CX(t), CS(t) is an ill-posed problem. In what follows we mainly focus on
simultaneous estimation of the parameter µmax(t), the biomass concentration CX(t), and the biomass growth
rate CS(t) using observations with errors of dissolved oxygen concentration CDO(t). We accordingly assume
that the parameters V (t0), Y, KS , CX(t0), CS(t0), Cen

sat, Csat, kLa and the functions Fin(t), CS,in(t)

either have been estimated a priori or are borrowed from the available literature.
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3. Statement of the Problem and Description of the Algorithm

The problem considered in this article can be described as follows. The unknown function (coefficient)
µmax(t) acts on the system (1) generating some (unknown) solution

C(t) = C(t;C0, µmax) = (CDO(t), CX(t), CS(t)),

where

C0 = (CDO(t0), CX(t0), CS(t0))

is the initial system state (assumed known). The time interval T is partitioned into subintervals [τi, τi+1), τi+1 =

τi + δ, δ > 0, i ∈ [0 : m], τ0 = t0, τm = ϑ. The coordinate CDO(τi) is observed with an error at discrete
(sufficiently frequent) time instants τi ; the observations produce the values ξhi = ξ(τi) ∈ R such that

|CDO(τi)− ξhi | ≤ h (2)

for all i = 1, . . . ,m. Here and in what follows, |x| stands for the absolute value of the number a. It is required
to design an algorithm that computes the functions v(t) = vh(t) and wh(t) =

{
wh1 (t), wh2 (t)

}
approximating

µmax(t) and CX(t), CS(t) respectively.
In what follows, we assume that the number K ∈ (0,+∞) is given such that the unknown functions µmax(t)

and OUR(t) are constrained as follows:

OUR(t), µmax(t) ∈ L∞(T ;R), |OUR(t)| ≤ K for almost all t ∈ T. (3)

We assume that the following condition holds.

Condition 1. b0 ≤ Fin(t) ≤ b1 for almost all t ∈ T, 0 ≤ b0 ≤ b1,

Y ∈ (0, 1), V (t) ≥ V0 > 0,

CS,in(t) ∈ C1(T ;R), Fin(t) ∈ L∞(T ;R),

CX(t) ≥ CX > 0, CS(t) ≥ CS > 0.

Here R is the set of all real numbers; C1(T ;R) is the space of continuously differentiable functions x(t) :

T → R with the norm

‖x(t)‖C1 = max

{
max
t∈T
|x(t)|,max

t∈T
|ẋ(t)|

}
;

L∞(T ;R) is the space of Lebesgue measurable functional x(t) : T → R with the norm

‖x(t)‖L∞ = vrai sup t ∈ T |x(t)|.

In what follows, the function V (t) is assumed known.
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We solve the problem by the method of auxiliary positionally controlled models developed in [4–7]. Following
this method, we first choose and fix the family of partitions

∆h = {τh,i}mh
i=0, τh,0 = t0, τh,mh

= ϑ,

τh,i+1 = τh,i + δ(h), mh = (ϑ− t0)δ−1(h)

(4)

of the time interval T with the diameters

δ(h) = δ(∆h), δ(h)→ 0 as h→ 0.

Here h is the observation error. We then introduce an auxiliary system M functioning synchronously with the
real system (1). Note that

(i)
Fin(t)

V (t)
=
V̇ (t)

V (t)
≈

ln

(
V (τi+1)

V (τi)

)
δ

;

(ii) Fin(τi) ≈
Vi − Vi−1

δ
.

Therefore, for M we take a discrete linear system of the form

wh0 (τi+1) = wh0 (τi) + δ{kLa(Cen
sat − ξhi )− ϕhi }+ ln(V (τi+1)V

−1(τi))(Csat − ξhi ),

wh1 (τi+1) = W (τi+1)CX(t0) + V −1(τi+1)δ

i∑
j=0

V (τj)ψ
h
j ,

wh2 (τi+1) = W (τi+1)CS(t0) + CS,in(τi+1)−W (τi+1)CS,in(t0)

− V −1(τi+1)

 i∑
j=0

(CS,in(τj+1)− CS,in(τj))V (τj) + δY −1
i∑

j=0

V (τj)ψ
h
j

 ,

(5)

with the initial condition

wh0 (t0) = ξh0 , wh1 (t0) = CX(t0), wh2 (t0) = CS(t0).

Here

ψhi =
Y ϕhi

(1− Y )
, ϕhi = ϕh(τi), W (τj) = V −1(τj)V (t0).

Thus, the input of model M is the control ϕh(·) and its output is the trajectory wh(·),

ϕh(t) = ϕhi , wh(t) =
{
wh0 (t), wh1 (t), wh2 (t)

}
= wh(τi), t ∈ [τi, τi+1),
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where the vectors wh(τi) are determined from the formulas (5) and the rule for the determination of ϕhi is given
below.

Let us proceed with the description of the algorithm. Prior to the instant t0 we fix the value h ∈ (0, 1), the
function

α = α(h) : (0, 1)→ R+ = {r ∈ R : r > 0},

the partition ∆ = ∆h (4) with the diameter δ = δ(∆h), and the model (5). We then set up a feedback control for
model M that evolves synchronously with the functioning of system (1). The algorithm starts at the time t0 and
is divided into mh − 1 identical steps. The following operations are performed during step i, which takes place
on the time interval δi = [τi, τi+1). First we find the model control

ϕh(t) = ϕhi , t ∈ δi, (6)

with the feedback
(
α(h) and K are auxiliary parameters

)

ϕhi = ϕhi (ξhi , w
h
0 (τi)) =

−siα
−1(h) if |si| ≤ α(h)K,

−K sign si otherwise

si = ξhi − wh0 (τi). Then we find the phase state wh(τi+1) of the model at time τi+1 from (5). After that the
function vh(·) approximating µmax(·) is obtained by the rule

vh(t) = vhi , t ∈ [τi, τi+1),

where

vhi = vhi (ξhi , ϕ
h
i , w

h(τi)) =
Y (KS + wh2 (τi))ϕ

h
i

(1− Y )wh1 (τi)wh2 (τi)
.

The algorithm stops at time ϑ.
The convergence of the algorithm is established by Theorem 1 (see below). We introduce the following

condition.

Condition 2. There are numbers w1 > 0 and w2 > 0 such that for all h ∈ (0, 1) and t ∈ T we have the
inequalities

wh1 (t) ≥ w1, wh2 (t) ≥ w2.

We thus have the following theorem.

Theorem 1. Assume that Conditions 1 and 2 hold, as well as the following matching conditions for the
algorithm parameters:

α(h)→ 0, (h+ δ(h))α−1(h)→ 0 as h→ 0. (7)
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Then we have the convergences

sup
t∈T
|wh1 (t)− CX(t)| → 0, sup

t∈T
|wh2 (t)− CS(t)| → 0,

ϑ∫
t0

|vh(τ)− µmax(τ)|2 dτ → 0 as h→ 0.

We see from this theorem that the function

vh(t) = vh(ξ(t), ϕh(t), wh(t))

may be treated as an “approximation” of the unknown variable coefficient µmax(t) for the corresponding h, and
the functions wh1 (t), wh2 (t) are approximations of CX(t) and CS(t), respectively.

4. Proof of Convergence of the Algorithm

Before proceeding to prove Theorem 1, we present some auxiliary bounds.
Let

c(0) = 2Fmax(CS,in(t0) + Cmax(ϑ− t0))

and

i(t) = κ((t− t0)/δ),

where κ(a) is the whole part of a. Define

a(t) =
d(lnV (t))

dt
.

Lemma 1. Let

|ĊS,in(t)| ≤ Cmax and 0 < Fin(t) ≤ Fmax

for almost all t ∈ T. Then we have the inequality

∣∣∣∣∣
t∫

t0

V (τ)a(τ)CS,in(τ) dτ −

[
CS,in(τi(t))V (τi(t))− CS,in(t0)V (t0)

−
i(t)−1∑
i=0

(CS,in(τi+1)− CS,in(τi))V (τi)

]∣∣∣∣∣ ≤ c(0)δ for all t ∈ T.
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Proof. From the inequality

|V (t)− V (t+ δ)| ≤
t+δ∫
t

|Fin(τ)| dτ ≤ Fmaxδ, t, t+ δ ∈ T,

we obtain the bound

∣∣∣∣∣∣
t∫

t0

ĊS,in(τ)(V (τ)− Vδ(τ)) dτ

∣∣∣∣∣∣ ≤ Fmax(t− t0)Cmaxδ, (8)

where Vδ(t) = V (τi) for t ∈ [τi, τi+1). Note that

t+δ∫
t

∣∣V (τ)a(τ)CS,in(τ)
∣∣ dτ ≤ Fmax(CS,in(t0) + Cmax(ϑ− t0))δ.

Therefore for t ∈ [τi, τi+1) we have

∣∣∣∣∣∣
τi∫
t0

V (τ)a(τ)CS,in(τ) dτ −
t∫

t0

V (τ)a(τ)CS,in(τ) dτ

∣∣∣∣∣∣ ≤ Fmax(CS,in(t0) + Cmax(ϑ− t0))δ. (9)

Integrating by parts, we obtain

τi∫
t0

V (τ)a(τ)CS,in(τ) dτ = V (τi)CS,in(τi)− V (t0)CS,in(t0)−
τi∫
t0

V (τ)ĊS,in(τ) dτ.

The sought inequality follows from (8), (9) and the preceding equality. Q.E.D.

Lemma 2. Assume that the conditions of Lemma 1 hold, V (t) ≥ V0 > 0, and

b̃(τ) = b̃j for τ ∈ [τj , τj+1), |b̃j | ≤ d for j ∈ [0 : mh − 1].

Then we have the inequality

∣∣∣∣∣∣V −1(t)
t∫

t0

V (τ)b̃(τ) dτ − V −1(τi(t))δ
i(t)∑
j=0

V (τj)b̃j

∣∣∣∣∣∣ ≤ c1δ for t ∈ T.

Lemma 2 is proved by simple algebraic manipulations.
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Introduce a system of ordinary differential equations of second order

Ċxψ(t) = ψ(t)− a(t)Cxψ(t), t ∈ T,

ĊSψ(t) = −ψ(t)

Y
+ a(t)CS,in(t)− a(t)CSψ(t)

(10)

with initial conditions

Cxψ(t0) = CX(t0), CSψ(t0) = CS(t0)

and function ψ(·) of the form

ψ(t) = ψhj = Y ϕhj /(1− Y ) for t ∈ [τj , τj+1).

Define the piecewise-constant functions

wh1 (t) = wh1 (τi), wh2 (t) = wh2 (τi) for t ∈ [τi, τi+1) ∩ T.

Lemma 3. Assume that the conditions of Lemmas 1 and 2 hold. Then we have the inequalities

∣∣Cxψ(t)− wh1 (t)
∣∣ ≤ c2δ, ∣∣CSψ(t)− wh2 (t)

∣∣ ≤ c3δ for t ∈ T.

Proof. Note that the equation

ẋ(t) = f(t)− a(t)x(t), x(t0) = x0, f(·) ∈ L2(T ;R),

has a solution, which can be obtained by the Cauchy formula

x(t) = V −1(t)V (t0)x0 + V −1(t)

t∫
t0

V (τ)f(τ) dτ.

Therefore, the solution of system (10) is obtained by the formulas

Cxψ(t) = V −1(t)V (t0)CX(t0) +

t∫
t0

V −1(t)V (τ)ψ(τ) dτ,

CSψ(t) = V −1(t)V (t0)CS(t0) +

t∫
t0

V −1(t)V (τ)(a(τ)CS,in(τ)− ψ(τ)Y −1) dτ.

The lemma follows from these two inequalities and Lemmas 1 and 2. Q.E.D.
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Lemma 4. Let Y ∈ (0, 1) and assume that the conditions of Lemma 3 hold. Then we have the inequalities

|CX(t)− wh1 (t)| ≤ c4

δ +

t∫
t0

|ϕh(τ)−OUR(τ)| dτ

 ,

|CS(t)− wh2 (t)| ≤ c5

δ +

t∫
t0

|ϕh(τ)−OUR(τ)| dτ

 for t ∈ T.

(11)

Proof. Let

µ1(t) = Cxψ(t)− CX(t), µ2(t) = CSψ(t)− CS(t).

The second and the third equations in system (1) may be rewritten as

dCX(t)

dt
=

Y

1− Y
OUR(t)− a(t)CX(t),

dCS(t)

dt
= − 1

1− Y
OUR(t) + a(t)(CS,in(t)− CS(t)).

The functions µ1(t) and µ2(t) are thus solutions of the equations

µ̇1(t) =
Y

1− Y
(ϕh(t)−OUR(t))− a(t)µ1(t),

µ̇2(t) = − 1

1− Y
(ϕh(t)−OUR(t))− a(t)µ2(t),

with initial conditions

µ1(t0) = µ2(t0) = 0.

Hence

µ1(t) =
Y

1− Y

t∫
t0

Φ(t, τ)(ϕh(τ)−OUR(τ))dτ,

µ2(t) = − 1

1− Y

t∫
t0

Φ(t, τ)(ϕh(τ)−OUR(τ))dτ,

where

Φ(t, τ) = V −1(t)V (τ).



RECONSTRUCTION OF UNKNOWN CHARACTERISTICS IN A THIRD-ORDER SYSTEM 261

In this case, we have the inequalities

|µ1(t)| ≤ c1

t∫
t0

|ϕh(τ)−OUR(τ)| dτ, (12)

|µ2(t)| ≤ c2

t∫
t0

|ϕh(τ)−OUR(τ)|dτ, t ∈ T. (13)

The lemma follows from (12), (13) and Lemma 3.

Lemma 5. Assume that the conditions of Lemma 4 hold and

CX(t) ≥ CX > 0, CS(t) ≥ CS > 0.

Then, if Condition 2 is satisfied, we can find h∗ > 0 such that for all h h ∈ (0, h∗) and all t ∈ [τi, τi+1),

i ∈ [0 : mh − 1] we have the inequality

∣∣vhi − µmax(t)
∣∣ ≤ c6

δ + |ϕhi −OUR(t)|+
t∫

t0

|ϕh(τ)−OUR(τ)| dτ

 . (14)

Proof. Applying Lemma 2 and Condition 2, we can find h1 and δ1 such that for all h ∈ (0, h1) and
δ = δ(h) ∈ (0, δ1) the following inequalities hold:

Cxψ(t) ≥ c
(1)
ψ > 0, CSψ(t) ≥ c(2)ψ > 0 for t ∈ T. (15)

Let

∆h
i,t ≡

∣∣∣∣∣ Y (KS + wh2 (τi))ϕ
h
i

(1− Y )wh1 (τi)wh2 (τi)
−
Y (KS + CSψ(t))OUR(t)

(1− Y )Cxψ(t)CSψ(t)

∣∣∣∣∣. (16)

By Condition 2, inequalities (15), and Lemma 3, we have the bounds

∆h
i,t ≤ c3

(
δ + |ϕhi −OUR(t)|

)
, t ∈ [τi, τi+1), (17)

uniformly in all i ∈ [0 : mh − 1] and h ∈ (0, h1). Furthermore, by (12), (13) we have the inequalities

∣∣∣∣ 1

CX(t)CS(t)
− 1

Cxψ(t)CSψ(t)

∣∣∣∣ ≤ c4(|µ1(t)|+ |µ2(t)|) ≤ c5
t∫

t0

|ϕh(τ)−OUR(τ)| dτ, (18)

∣∣∣ 1

CX(t)
− 1

Cxψ(t)

∣∣∣ ≤ c6 t∫
t0

|ϕh(τ)−OUR(τ)| dτ, (19)
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From (18), (19) we obtain

∆t ≡

∣∣∣∣∣KS + CSψ(t)

Cxψ(t)CSψ(t)
− KS + CS(t)

CX(t)CS(t)

∣∣∣∣∣ ≤ c7
t∫

t0

|ϕh(τ)−OUR(τ)| dτ. (20)

Moreover,

µmax(t) =
µ(CS(t))(KS + CS(t))

CS(t)
,

µ(CS(t)) =
Y ·OUR(t)

(1− Y )CX(t)
.

Thus,

µmax(t) =
Y (KS + CS(t))OUR(t)

(1− Y )CX(t)CS(t)
,

and

|vhi − µmax(t)| =

∣∣∣∣∣ Y (KS + wh2 (τi))ϕ
h
i

(1− Y )wh1 (τi)wh2 (τi)
− Y (KS + CS(t))OUR(t)

(1− Y )CX(t)CS(t)

∣∣∣∣∣.
Combining (17), (20) and applying the inequality

|vhi − µmax(t)| ≤ ∆h
i,t +

Y

1− Y
|OUR(t)|∆t, t ∈ [τi, τi+1), i ∈ [0 : mh − 1],

we obtain (14). Q.E.D.

Lemma 6. Assume that Conditions 1 and 2 hold and that ϕhj in system (5) are obtained from formulas (6).
Then we have the inequalities

|wh0 (τi)− CDO(τi)|2 ≤ C(0)(h+ δ + α), (21)

ϑ∫
t0

|ϕh(τ)|2 dτ ≤
ϑ∫

t0

|OUR(τ)|2 dτ + C(1)(h+ δ)α−1. (22)

Proof. To prove the lemma, we need a bound on the increments of

ε(t) = |w̃h0 (t)− CDO(t)|2 + α(h)

t∫
t0

{
|ϕh(τ)|2 − |OUR(τ)|2

}
dτ, t ∈ T.
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Here the function w̃h0 (t), t ∈ [τi, τi+1), i ∈ [0 : mh − 1] is defined by the rule

˙̃wh0 (t) = kLa(C
en
sat − ξhi )− ϕhi + a(t)(Csat − ξhi ), t ∈ [τi, τi+1),

˙̃wh0 (τi) = wh0 (τi).

Note that

lim
t→τi+1−0

w̃h0 (t) = wh0 (τi+1).

Let

µi = 2(w̃h0 (τi)− CDO(τi))

τi+1∫
τi

( ˙̃wh0 (t)− ĊDO(t)) dt.

It is easy to see that we have the inequality

ε(τi+1) ≤ ε(τi) + δ(h)

τi+1∫
τi

∣∣ ˙̃wh0 (τ)− ĊDO(τ)
∣∣2 dτ + µi + α(h)

τi+1∫
τi

{
|ϕhi |2 − |OUR(τ)|2

}
dτ. (23)

Consider the quantity µi in the right-hand side of (23). We have

µi = −2s∗i

τi+1∫
τi

{
kLa(CDO(τ)− ξhi ) + a(τ)(CDO(τ)− ξhi ) +OUR(τ)− ϕhi

}
dτ =

3∑
j=1

λji, (24)

where

λ1i = 2kLas
∗
i

τi+1∫
τi

(ξhi − CDO(τ)) dτ, λ2i = 2s∗i

τi+1∫
τi

a(τ)(ξhi − CDO(τ)) dτ,

λ3i = 2s∗i

τi+1∫
τi

(ϕhi −OUR(τ)) dτ, s∗i = CDO(τi)− wh0 (τi).

Therefore, from (23), (24) we obtain

ε(τi+1) ≤ ε(τi) +

3∑
j=1

λji + α(h)

τi+1∫
τi

{
|ϕhi |2 − |OUR(τ)|2

}
dτ + δLhi , (25)

where

Lhi =

τi+1∫
τi

∣∣∣kLa(ξhi − CDO(τ)) + a(τ)(ξhi − CDO(τ)) + ϕhi −OUR(τ)
∣∣∣2 dτ.
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Let us bound each term in the right-hand side of inequality (25). From (3) and Condition 1 we have

max

{
sup

t0≤t≤ϑ
|CDO(t)|, sup

t0≤t≤ϑ
|CX(t)|, sup

t0≤t≤ϑ
|CS(t)|

}
≤ d0 < +∞.

From this inequality and the inequality |ξhi − CDO(τi)| ≤ h we thus obtain

λ1i ≤ d1(h+ δ)δ, (26)

λ2i ≤ d2(h+ δ)δ, (27)

λ3i ≤ 2si

τi+1∫
τi

(ϕhi −OUR(τ)) dτ + d3hδ, si = ξhi − wh0 (τi), (28)

mh−1∑
i=0

Lhi ≤ d4. (29)

Here dj , j ∈ [0 : 4], are constants for which explicit expressions may be written. Note that

ϕhi = arg min
{

2siu+ α(h)u2 : −K ≤ u ≤ K
}
.

Then by (3), (6), and (28), we obtain the chain of inequalities

λ3i + α(h)

τi+1∫
τi

{|ϕhi |2 − |OUR(τ)|2} dτ

≤
τi+1∫
τi

{[
2siϕ

h
i + α(h)|ϕhi |2

]
−
[
2siOUR(τ) + α(h)|OUR(τ)|2

]}
dτ + d3hδ ≤ d3hδ. (30)

Using (25)–(28), we obtain (for all i ∈ [1 : mh]) )

ε(τi) ≤ d5(h+ δ). (31)

Inequalities (21), (22) follow from (31). Q.E.D.

Theorem 1.2.1 [5] can be restated in the following form in application to our case.

Theorem 2. Assume that Conditions 1 and 2 hold and also the inequality

sup
i∈[0:mh]

|wh0 (τi)− CDO(τi)| ≤ ν(h),
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ϑ∫
t0

|ϕh(τ)|2 dτ ≤
ϑ∫

t0

|OUR(τ)|2 dτ + ν1(h),

where ν(h)→ 0, ν1(h)→ 0+ as h→ 0 + . Then we have the convergence

ϕh(t)→ OUR(t) in L2(T ;R) as h→ 0,

i.e.,

ϑ∫
t0

|ϕh(τ)−OUR(τ)|2 dτ → 0 as h→ 0.

Lemmas 4–6 and Theorem 2 imply Theorem 1. We have thus established convergence of the proposed algo-
rithm.

5. Bound on the Rate of Convergence of the Algorithm

We now derive a bound on the rate of convergence of the algorithm.

Theorem 3. Assume that µmax(t) is a function of bounded variation.
Then we have the following bounds on the rate of convergence of the algorithm:

ϑ∫
t0

|vh(τ)− µmax(τ)|2 dτ ≤ C1λ(h, δ, α),

sup
t∈T
|wh1 (t)− CX(t)| ≤ C2λ

1/2(h, δ, α),

sup
t∈T
|wh2 (t)− CS(t)| ≤ C3λ

1/2(h, δ, α).

Here

λ(h, δ, α) = h+ δ + α+ (h+ δ)α−1, Cj (j = 1, 2, 3)

are some constants that may written out in explicit form.

Proof. It is easy to see that for all t ∈ δi = [τi, τi+1) we have the bounds∣∣ξhi − CDO(t)
∣∣ ≤ c1(h+ δ), (32)

∣∣CDO(t0)− wh0 (t0)
∣∣ ≤ h, (33)

|b(t)− b(τi)| ≤ c2δ,
∣∣CDO(t)− CDO(τi)

∣∣ ≤ c3δ, (34)
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where b(t) = lnV (t). Moreover,

∣∣∣∣∣∣
t∫

τi

a(τ)CDO(τ)dτ − (b(τi+1)− b(τi))ξhi

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
t∫

τi

a(τ)CDO(τi)dτ − (b(τi+1)− b(τi))ξhi

∣∣∣∣∣∣+

∣∣∣∣∣∣
t∫

τi

a(τ)(CDO(τ)− CDO(τi))dτ

∣∣∣∣∣∣
≤ c4δ2 +

∣∣(b(t)− b(τi))CDO(τi)− (b(τi+1)− b(τi))ξhi
∣∣

≤ c4δ2 + c5h+
∣∣b(t)(CDO(τi)− ξhi )

∣∣+
∣∣b(τi+1)− b(t)

∣∣|ξhi | ≤ c6(h+ δ). (35)

From inequality (21) we obtain

∣∣w̃h0 (t)− CDO(t)
∣∣ ≤ c7(h+ δ + α), t ∈ T. (36)

From (32)–(36) in turn we obtain the inequality

sup
t∈T

∣∣∣∣∣∣
t∫

t0

(ϕh(τ)−OUR(τ))dτ

∣∣∣∣∣∣ ≤ c8(h+ δ + α). (37)

Using (22) we obtain

ϑ∫
t0

∣∣ϕh(τ)−OUR(τ)
∣∣2 dτ =

ϑ∫
t0

|ϕh(τ)|2 dτ − 2

ϑ∫
t0

ϕh(τ)OUR(τ) dτ +

ϑ∫
t0

|OUR(τ)|2 dτ

≤ 2

ϑ∫
t0

(OUR(τ)− ϕh(τ))OUR(τ) dτ + c9(h+ δ)α−1. (38)

By the condition of the theorem, µmax(·) is a function of bounded variation. Thus, OUR(t) is also a function of
bounded variation.

From (37), (38) and Lemma 1.3.3. [13] we thus obtain

ϑ∫
t0

∣∣ϕh(τ)−OUR(τ)
∣∣2 dτ ≤ c10λ(h, δ, α). (39)

The assertion of the theorem follows from (39) and Lemmas 4, 5. Q.E.D.
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Fig. 1

Theorem 3 leads to the following corollary.

Corollary 1. Let δ(h) = h, α(h) = h1/2 and assume that µmax(t) is a function of bounded variation.
Then we have the following rate of convergence bounds for the algorithm:

ϑ∫
t0

∣∣vh(τ)− µmax(τ)
∣∣2 dτ ≤ c1h1/4,

sup
t∈T

∣∣wh1 (t)− CX(t)
∣∣ ≤ c2h1/8,

sup
t∈T

∣∣wh2 (t)− CS(t)
∣∣ ≤ c3h1/8.

Another corollary is valid for the case Fin(t) ≡ 0. Assume that the following condition holds instead of
Condition 1.
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Fig. 2

Condition 3.

F(t) = 0, Y ∈ (0, 1),

CX(t) ≥ CX > 0, CS(t) ≥ CS > 0.

Then the second and third equations of system (1) take the form

dCX(t)

dt
=

Y

1− Y
OUR(t),

dCS(t)

dt
= − 1

1− Y
OUR(t).

Therefore, system M may be taken in the following form:

wh0 (τi+1) = wh0 (τi) + δ
{
kLa(C

en
sat − ξhi )− ϕhi

}
,
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Fig. 3

wh1 (τi+1) = wh1 (τi) + δ
Y

1− Y
ϕhi , (40)

wh2 (τi+1) = wh2 (τi)− δ
1

1− Y
ϕhi .

The next assertion follows from the results given above.

Corollary 2. Assume that Conditions 2 and 3 hold, system M has the form (40), and the function ϕh(t) is
given by (6). Then the assertions of Theorems 1–3 and Corollary 1 are true.

6. Computer Simulation Results

The algorithm described above has been tested on a prototype example. System (1) was considered on the
time interval [0, 3]. The coefficient µmax(t) was taken equal to sin(t). We assumed that µmax(t) was unknown
and our objective was to reconstruct it. We also aimed to reconstruct the states CX(t) and CS(t) from finitely
many observations of the evolution of the dissolved oxygen concentration in the reactor CDO(t).

Figures 1–3 plot the simulation results. The following system parameters were used (see (1)):

KS = 0.1, Y = 0.5,
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CS,in = 0.2, V (t0) = 1.5,

Fin(t) = sin(t), Cen
sat = Csat = 0.5.

The algorithm parameters were taken as α = 0.001 and K = 2. The initial state of the system was set equal to 1,
i.e.,

CD0(t0) = CX(t0) = CS(t0) = 1.

System (1) was solved by Euler’s method with increment δ. The simulation results demonstrate mean-square
convergence of vh(t) to µmax(t) and uniform convergence of wh1 (t) to CX(t) and wh2 (t) to CS(t) for appro-
priate values of the parameters α, h, and δ.

Figure 1 corresponds to the case when h = 10−3 cos(50t), δ = 10−3; in Fig. 2, h = 10−4 cos(50t),

δ = 10−3; and Fig. 3, h = 0, δ = 10−4. In Figs. 1–3 the solid curve plots the coefficient µmax(t) and the states
CX(t), CS(t) ; the broken curve corresponds to the model control vh(t) and the auxiliary system coordinates
wh1 (t) and wh2 (t).
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