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Abstract
In this paper, we focus on the problem of pose estimation using measurements from an inertial measurement unit and
a rolling-shutter (RS) camera. The challenges posed by RS image capture are typically addressed by using approximate,
low-dimensional representations of the camera motion. However, when the motion contains significant accelerations (com-
mon in small-scale systems) these representations can lead to loss of accuracy. By contrast, we here describe a different
approach, which exploits the inertial measurements to avoid any assumptions on the nature of the trajectory. Instead of
parameterizing the trajectory, our approach parameterizes the errors in the trajectory estimates by a low-dimensional
model. A key advantage of this approach is that, by using prior knowledge about the estimation errors, it is possible
to obtain upper bounds on the modeling inaccuracies incurred by different choices of the parameterization’s dimension.
These bounds can provide guarantees for the performance of the method, and facilitate addressing the accuracy–efficiency
tradeoff. This RS formulation is used in an extended-Kalman-filter estimator for localization in unknown environments.
Our results demonstrate that the resulting algorithm outperforms prior work, in terms of accuracy and computational cost.
Moreover, we demonstrate that the algorithm makes it possible to use low-cost consumer devices (i.e. smartphones) for
high-precision navigation on multiple platforms.
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1. Introduction

In this paper we focus on the problem of motion estimation
by fusing the measurements from an inertial measurement
unit (IMU) and a rolling-shutter (RS) camera. In recent
years, a significant body of literature has focused on motion
estimation using cameras and inertial sensors, a task often
termed vision-aided inertial navigation (see, e.g., Jones
and Soatto, 2011; Kelly and Sukhatme, 2011; Kottas et al.,
2012; Weiss et al., 2012; Li and Mourikis, 2013b and ref-
erences therein). However, the overwhelming majority of
the algorithms described in prior work assume the use of a
global-shutter (GS) camera, i.e. a camera in which all the
pixels in an image are captured simultaneously. By contrast,
in an RS camera the image rows are captured sequentially,
each at a slightly different time instant. This can create sig-
nificant image distortions (see Figure 1), which must be
modeled in the estimation algorithm.

The use of RS sensors is desirable for a number of rea-
sons. First, the vast majority of low-cost cameras today
employ CMOS sensors with RS image capture. Methods
for high-precision pose estimation using RS cameras will
therefore facilitate the design of localization systems for
low-cost robots and MAVs. In addition to the applications in

the area of robotics, methods for visual–inertial localization
using RS cameras will allow tracking the position of con-
sumer devices (e.g. smartphones) with unprecedented accu-
racy, even in GPS-denied environments. This can enable the
development of localization aids for the visually impaired,
and lead to a new generation of augmented-reality and high-
precision location-based applications. We also point out
that a smartphone capable of real-time, high-precision pose
estimation can be mounted on a mobile robot to provide
an inexpensive and versatile localization solution (see Sec-
tion 5.2). Given the widespread availability of smartphones,
this can lower the barrier to entry in robotics research and
development.

In an RS camera, image rows are captured sequentially
over a time interval of non-zero duration called the image
readout time.1 Therefore, when the camera is moving, each
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Fig. 1. An example image with rolling-shutter distortion.

row of pixels is captured from a different camera pose.
An “exact” solution to the pose estimation problem would
require an estimator that includes in its state vector a sepa-
rate pose for each image row. Since this is computationally
intractable, existing solutions to RS-camera localization
employ parametric representations of the camera motion
during the readout time (e.g. constant-velocity models or
B-splines). This, however, creates an unfavorable trade-
off: low-dimensional representations result in efficient algo-
rithms, but also introduce modeling errors, which reduce
the accuracy of any estimator. On the other hand, high-
dimensional representations can model complex motions,
but at high computational cost, which may prevent real-time
estimation.

We here propose a novel method for using an RS camera
for motion estimation that avoids this tradeoff. To describe
the main idea of the method, we start by pointing out that
any estimator that employs linearization (e.g. the extended
Kalman filter (EKF), iterative-minimization methods) relies
on the computation of (a) measurement residuals, and (b)
linearized expressions showing the dependence of the resid-
uals on the estimation errors. The first step involves the
state estimates, while the second the state errors, which
may have different representations.2 Based on this obser-
vation, we here propose a method for processing RS mea-
surements that imposes no assumptions on the form of the
trajectory when computing the residuals, and, instead, uses
a parametric representation of the errors of the estimates in
linearization.

Specifically, for computing residuals we take advantage
of the IMU measurements, which allow us to obtain esti-
mates of the pose in the image-readout interval, given the
state estimate at one instant in this interval. This makes
it possible to model arbitrarily complex motions when
computing residuals, as long as they are within the IMU’s
sensing bandwidth. On the other hand, when performing
linearization, we represent the estimation errors during the

readout interval using a weighted sum of temporal basis
functions. By varying the dimension of the basis used, we
can control the computational complexity of the estimator.
The key advantage of the method is that, since the statistical
properties of the errors are known in advance, we can com-
pute upper bounds on the worst-case modeling inaccuracy,
and use them to guide the selection of the basis dimension.
We demonstrate that, in practice, a very low-dimensional
representation suffices, and thus the computational cost can
be kept low—almost identical to that needed for processing
measurements from a GS camera.

This novel method for utilizing the RS measurements is
employed for real-time visual–inertial localization in con-
junction with the EKF-based estimator of Li and Mourikis
(2012a). This is a hybrid estimator, which combines a
sliding-window formulation of the filter equations with
a feature-based one, to exploit the computational advan-
tages of both. By combining the computational efficiency
of the hybrid EKF with that of the proposed method for
using RS measurements, we obtain an estimator capable
of real-time operation even in resource-constrained sys-
tems. In our experiments, we have employed commer-
cially available smartphone devices, mounted on different
mobile platforms. The proposed estimator is capable of
running comfortably in real time on the low-power proces-
sors of these devices, while resulting in very small estima-
tion errors. These results demonstrate that high-precision
visual–inertial localization with RS cameras is possible, and
can serve as the basis for the design of low-cost localization
systems in robotics.

2. Related work

Most work on RS cameras has focused on the problem
of image rectification, for compensating the visual distor-
tions caused by the rolling shutter. These methods esti-
mate a parametric representation of the distortion from the
images, which is then used to generate a rectified video
stream (see, e.g., Liang et al., 2008; Forssen and Ringaby,
2010 and references therein). Gyroscope measurements
have also been employed for distortion compensation, since
the most visually significant distortions are caused by rota-
tional motion (Hanning et al., 2011; Karpenko et al., 2011;
Jia and Evans, 2012). In contrast to these methods, our
goal is not to undistort the images (which is primarily done
to create visually appealing videos), but rather to use the
recorded images for motion estimation.

One possible approach to this problem is to employ esti-
mates of the camera motion in order to “correct” the pro-
jections of the features in the images, and to subsequently
treat the measurements as if they were recorded by a GS
sensor. This approach is followed in Klein and Murray
(2009), which describes an implementation of the well-
known PTAM algorithm (Klein and Murray, 2007) using
an RS camera. The feature projections are corrected by
assuming that the camera moves at a constant velocity,
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Fig. 2. (Left) The rotational velocity (top) and acceleration (bottom) measurements recorded during a 1 s period in one of our exper-
iments. (Right) The largest modeling errors incurred in each readout interval when using the best-fit constant (red) and linear (blue)
representations of the signals.

estimated from image measurements in a separate least-
squares process. Similarly, image corrections are applied
in the structure-from-motion method of Hedborg et al.
(2011), in which only the rotational motion of the cam-
era is compensated for. In both cases, the “correction”
of the image features’ coordinates entails approximations,
which are impossible to avoid in practice: for completely
removing the RS effects, the points’ 3D coordinates as
well as the camera motion would have to be perfectly
known.

The approximations inherent in the approaches described
above are circumvented in methods that include a represen-
tation of the camera’s motion in the states to be estimated.
This makes it possible to explicitly model the motion in
the measurement equations, and thus no separate “correc-
tion” step is required. All such methods to date employ
low-dimensional parameterizations of the motion, for math-
ematical simplicity and to allow for efficient implemen-
tation. For example, in Ait-Aider et al. (2006), Ait-Aider
and Berry (2009), and Magerand and Bartoli (2010) a
constant-velocity model is used to enable the estimation of
an object’s motion. In Hedborg et al. (2012), an RS bundle-
adjustment method is presented, which uses a constant-
velocity model for the position and SLERP interpolation
for the orientation. As mentioned in Section 1, however,
these simple representations of the camera trajectory intro-
duce modeling inaccuracies, which can be significant if the
motion is not smooth.

To demonstrate this, in Figure 2 (left) we plot the rota-
tional velocity, ωm, and acceleration, am, measured by the
IMU on a Nexus 4 device during one of our experiments.
The plots show a 1 s long window of data, recorded while
the device was held by a person walking at normal pace.
In this time interval, 12 images were captured, each with a
readout time of 43.3 ms. From the plots of ωm and am, it
becomes clear that the device’s motion is changing rapidly,
and thus low-dimensional motion representations will
lead to significant inaccuracies. To quantify the modeling

inaccuracies, in Figure 2 (right) we plot the largest abso-
lute difference between the signals and their best-fit con-
stant and linear approximations in each readout interval.
Clearly, the approximations are quite poor, especially for
the rotational velocity. The modeling errors of the constant-
velocity model for ωm (employed, e.g., in Li et al. (2013))
reach 81.8 deg/s. Even if a linear approximation of ωm

were to be used, the modeling inaccuracies would reach
20.9 deg/s. We point out that, due to their small weight,
miniaturized systems such as hand-held devices or MAVs
typically exhibit highly dynamic motion profiles, like the
one seen in Figure 2. These systems are key application
areas for vision-aided inertial navigation, and thus methods
that use low-dimensional motion parameterizations can be
of limited utility.

An elegant approach to the problem of motion param-
eterization in vision-based localization is offered by the
continuous-time formulation originally proposed in Furgale
et al. (2012). This formulation has recently been employed
for pose estimation and RS camera calibration in Oth et al.
(2013), and for visual–inertial SLAM with RS cameras
in Lovegrove et al. (2013). A similar approach has also
been used in Bosse and Zlot (2009) and Bosse et al. (2012),
to model the trajectory for 2D laser-scanner based naviga-
tion. The key idea of the continuous-time formulation is
to use a weighted sum of temporal basis functions (TBF)
to model the motion. This approach offers the advantage
that, by increasing the number of basis functions, one
can model arbitrarily complex trajectories. Thus, highly
dynamic motion profiles can be accommodated, but this
comes at the cost of an increase in the number of states
that need to be estimated (see Section 3.1 for a quantitative
analysis). The increased state dimension is not a signifi-
cant obstacle if offline estimation is performed (which is
the case in the aforementioned approaches), but is unde-
sirable in real-time applications. Similar limitations exist
in the Gaussian-process-based representation of the state,
described in Tong et al. (2013).
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Table 1. List of notation used.

x̂ Estimate of the variable x
x̃ The error of the estimate x̂, defined as x̃ = x − x̂
ẋ The first-order time derivative of x
x(i) The ith-order time derivative of x
�c×� The skew-symmetric matrix corresponding to

the 3 × 1 vector c
X c The vector c expressed in the coordinate frame {X }
X pY Position of the origin of frame {Y } expressed in {X }
X
Y R The rotation matrix rotating vectors from

frame {Y } to {X }
X
Y q̄ The unit quaternion corresponding to the rotation X

Y R
0 The zero matrix
In The n × n identity matrix
⊗ Quaternion multiplication operator

We stress that, with the exception of the continuous-
time formulation of Lovegrove et al. (2013), all the RS
motion-estimation methods discussed above are vision-only
methods. To the best of our knowledge, the only work to
date that presents large-scale, real-time localization with an
RS camera and an IMU is that of Li et al. (2013). The
limitations of that work, however, stem from its use of a
constant-velocity model for the motion during the image
readout. This reduces accuracy when the system undergoes
significant accelerations, but also increases computational
requirements, as both the linear and rotational velocity at
the time of image capture must be included in the state vec-
tor. In the experimental results presented in Section 5, we
show that the novel formulation for using the RS measure-
ments presented here outperforms Li et al. (2013), both in
terms of accuracy and computational efficiency.

3. Rolling-shutter modeling

Our goal is to track the position and orientation of a mov-
ing platform equipped with an IMU and an RS camera.
While several estimation approaches can be employed for
this task, a common characteristic of almost all of them is
that they rely on linearization. This is, for example, the case
with EKF-based and iterative-minimization-based methods,
which form the overwhelming majority of existing algo-
rithms. In this section, we describe a method for process-
ing the measurements from the RS camera, which can be
employed in conjunction with any linearization-based algo-
rithm. Table 1 describes the notation used in the remainder
of the paper.

The defining characteristic of an RS camera is that it cap-
tures the rows of an image over an interval of duration tr
(the readout time). If the image has N rows, then the time
instants these rows are captured are given by:

tn = to + ntr
N

, n ∈
[
−N

2
,

N

2

]
(1)

where to is the midpoint of the image readout interval. Let
us consider a feature that is observed on the nth row of the

image. Its measurement is described by:

z =
[

zc

zr

]
= h

(
I
Gq̄( tn) , GpI ( tn) , xa

)+ n (2)

where zc and zr are the camera measurements along image
columns and rows, respectively; h is the measurement func-
tion (e.g. perspective projection); n is the measurement
noise, modeled as zero-mean Gaussian with covariance
matrix σ 2

imI2; GpI ( tn) is the position of the IMU frame, {I},
with respect to the global reference frame, {G}, at time tn;
I
Gq̄( tn) is the unit quaternion representing the IMU orienta-
tion with respect to {G} at tn; and xa includes all additional
constant quantities that affect the measurement and are
included in the estimator’s state vector. These may include,
for instance, the camera-to-IMU transformation, the fea-
ture position, or the camera intrinsics if these quantities are
being estimated online.

In practice, image features are detected in several dif-
ferent rows (different values of n) in each image. To pro-
cess these measurements, the direct solution would be to
include in the estimator one camera pose for each value
of n, which is computationally intractable. Thus, the chal-
lenge in designing a practical formulation for RS cameras
is to include in the estimator only a small number of states
per image, while keeping the model inaccuracies small.
As explained next, the method we present here requires
the IMU position, orientation, and potentially derivatives
of these, at only one time instant, namely to, to be in the
estimator’s state vector.

We begin by noting that, in any linearization-based esti-
mator, the processing of the measurement in (2) is based on
computing the associated residual, defined by:

r = z − h
(

I
G

ˆ̄q( tn) , Gp̂I ( tn) , x̂a

)
(3)

In this expression the measurement z is provided from the
feature tracker, the estimates x̂a are available in the estima-
tor’s state vector, and tn can be calculated from z, using (1)
with n = zr − N/2. Thus the only “missing” part in com-
puting the residual r in (3) is the estimate of the IMU pose
at time tn. In our approach, we compute this by utilizing
the IMU measurements. Specifically, we include in the state
vector the estimates of the IMU state at to, and compute
Gp̂I ( tn) and I

G
ˆ̄q( tn), n ∈ [−N/2, N/2], by integrating the

IMU measurements in the readout time interval (the method
used for IMU integration is described in Section 4.2).

In addition to computing the residual, linearization-based
estimators require a linear (linearized) expression relating
the residual in (3) to the errors of the state estimates. To
obtain such an expression, we begin by directly linearizing
the camera observation model in (2), which yields:

r ≈ Hθ θ̃ I ( tn) +Hp
Gp̃I ( tn) +Hax̃a + n (4)

where Hθ and Hp are the Jacobians of the measurement
function with respect to the IMU orientation and position
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at time tn, and Ha is the Jacobian with respect to xa. The
IMU orientation error, θ̃ I , is defined in (22). Since the state
at tn is not in the estimator’s state vector, we cannot directly
employ the expression in (4) to perform an update—what
is needed is an expression relating the residual to quanti-
ties at to, which do appear in the state. To obtain such an
expression, we start with the Taylor-series expansions:

Gp̃I ( tn) =
∞∑

i=0

( ntr)i

Nii!
Gp̃(i)

I ( to) (5)

θ̃ I ( tn) =
∞∑

i=0

( ntr)i

Nii!
θ̃

(i)

I ( to) (6)

The above expressions are exact, but are not practically
useful, as they contain an infinite number of terms, which
cannot be included in an estimator. We therefore truncate
the two series to a finite number of terms:

Gp̃I ( tn) ≈
lp∑

i=0

( ntr)i

Nii!
Gp̃(i)

I ( to) (7)

θ̃ I ( tn) ≈
lθ∑

i=0

( ntr)i

Nii!
θ̃

(i)
I ( to) (8)

where lp and lθ are the chosen truncation orders for the
position and orientation, respectively. Substitution in (4)
yields:

r ≈
lθ∑

i=0

( ntr)i Hθ

Nii!
θ̃

(i)
I ( to) +

lp∑
i=0

( ntr)i Hp

Nii!
Gp̃(i)

I ( to)

+ Hax̃a + n (9)

This equation expresses the residual as a function of the
errors in the first lθ derivatives of the orientation and the first
lp derivatives of the position errors. Therefore, if we include
these quantities in the state vector of the estimator, we can
perform an update based on the linearized expression in (9).
However, this will only be useful if lθ and lp are small.

Clearly, any choice of truncation order in (7) and (8) will
lead to an unmodeled error, and the lower the truncation
order, the more significant the error will be in general. The
key observation here is that, since we have prior knowledge
about the magnitude of the estimation errors, we can pre-
dict the worst-case unmodeled error incurred by our choice
of lθ and lp. To evaluate the importance of these unmodeled
errors, we analyze the impact that they have on the resid-
ual. If the residual term due to the unmodeled truncation
errors is small, compared to the measurement noise, this
would indicate that the loss of modeling accuracy would be
acceptable.

We start this analysis by re-writing (7) and (8) to illustrate
the physical interpretation of the first few terms on the right-
hand side of the series:

Gp̃I ( tn) = Gp̃I ( to) + ntr
N

GṽI ( to) + ( ntr)2

2N2
GãI ( to) +· · ·

(10)

θ̃ I ( tn) = θ̃ I ( to) + ntr
N

Gω̃( to)+· · · (11)

Here GṽI represents the error in the estimate of the IMU
velocity, GãI represents the error in the IMU acceleration,
and Gω̃ is the error in the rotational velocity expressed in
the global frame (see Appendix B for the derivation of this
term).

Let us first focus on the position errors. If we only keep
the position and velocity terms in the series (i.e. lp = 1),
then the truncation error in (10) is given by

�p = ( ntr)2

2N2

⎡
⎣GãIx ( τ1)

GãIy ( τ2)
GãIz ( τ3)

⎤
⎦ (12)

where τi ∈ [to, tn], i = 1, 2, 3. The unmodeled term in
the residual in (9), due to this truncation error, is given by
Hp�p. If the worst-case acceleration error in each direction
is εa, the 2-norm of the truncation error is bounded above

by ||�p||2 ≤ √
3 (ntr)2

2N2 εa, and thus the unmodeled term in
the residual satisfies:

δp( n) = ||Hp�p||2
≤ ||Hp||2||�p||2
≤

√
3 Hpu

( ntr)2

2N2
εa

where Hpu is an upper bound on ||Hp||2. By choosing n =
±N/2 we can compute the upper bound on the magnitude
of the unmodeled residuals in the entire image (all n), as:

δ̄p =
√

3

8
Hpu t2

r εa (13)

Turning to the representation of the orientation errors, if
we only maintain a single term in the series (i.e. lθ =
0), we similarly derive the following upper bound for the
unmodeled residual term:

δθ ( n) ≤
√

3Hθu

|n|tr
N

εω (14)

where Hθu is an upper bound on ||Hθ ||2, and εω is the upper
bound on the rotational velocity errors. In turn, the upper
bound over all rows is given by:

δ̄θ =
√

3

2
Hθu trεω (15)

We have therefore shown that if (a) we include in the
state vector of the estimator the IMU position, orientation,
and velocity at to, (b) compute the measurement residual as
shown in (3), and (c) base the estimator’s update equations
on the linearized expression:

r ≈ Hθ θ̃ I ( to) + Hp
Gp̃I ( to) + ntr

N
Hp

GṽI ( to) +Hax̃a + n

(16)
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we are guaranteed that the residual terms due to unmodeled
errors will be upper bounded by δ̄θ + δ̄p. The value of this
bound will depend on the characteristics of the sensors used,
but in any case it can be evaluated to determine whether this
choice of truncation orders would be acceptable.

For example, for the sensors on the LG Nexus 4 smart-
phone used in our experiments (see Table 3), the standard
deviation of the noise in the acceleration measurements
is approximately 0.04 m/s2. Using a conservative value of
εa = 1 m/s2 (to also account for errors in the estimates of
the accelerometer bias and in roll and pitch), a readout time
of tr = 43.3 ms, and assuming a camera with a focal length
of 500 pixels and 60 deg field of view observing features at
a depth of 2 m, we obtain δ̄p = 0.12 pixels. Similarly, using
εω = 1 deg/s, we obtain δ̄θ = 0.44 pixels (see Appendix
A for the details of the derivations). We therefore see that,
for our system, the residual terms due to unmodeled errors
when using (16) are guaranteed to be below 0.56 pixels.
This (conservative) value is smaller than the standard devi-
ation of the measurement noise, and likely in the same
order as other sources of unmodeled residual terms (e.g.
camera-model inaccuracies and the non-linearity of the
measurement function).

The above discussion shows that, for a system with sen-
sor characteristics similar to the ones described above, the
choice of lp = 1, lθ = 0 leads to approximation errors that
are guaranteed to be small. If for a given system this choice
is not sufficient, more terms can be kept in the two series to
achieve a more precise modeling of the error. On the other
hand, we can be even more aggressive, by choosing lp = 0,
i.e. keeping only the camera pose in the estimator state vec-
tor, and not computing Jacobians of the error with respect
to the velocity. In that case, the upper bound of the residual
due to unmodeled position errors becomes:

δ′
p( n) ≤

√
3Hpu

|n|tr
N

εv (17)

where εv is the worst-case velocity error. Using a conserva-
tive value of εv = 20 cm/s (larger than what we typically
observe), we obtain δ̄′

p = 2.2 pixels.
If these unmodeled effects were materialized, the estima-

tor’s accuracy would likely be reduced. However, we have
experimentally found that the performance loss by choos-
ing lp = 0 is minimal (see Section 5.1), indicating that
the computed bound is a conservative one. Moreover, as
shown in the results of Section 5.1, including additional
terms for the orientation error does not lead to a substan-
tially improved performance. Therefore, in our implemen-
tations, we have favored two sets of choices: lp = 1, lθ = 0,
due to the theoretical guarantee of small unmodeled errors,
and lp = 0, lθ = 0, due to its lower computational cost, as
discussed next.

3.1. Discussion
It is interesting to examine the computational cost of the
proposed method for processing the RS measurements, as

compared to the case where a GS camera is used. The key
observation here is that, if the states with respect to which
Jacobians are evaluated are already part of the state, then
no additional states need to be included in the estimator’s
state vector, to allow processing the RS measurements. In
this case, the computational overhead from the use of an
RS camera, compared to a GS one, will be negligible.3

To examine the effect of specific choices of lp and lθ , we
first note that all high-precision vision-aided inertial navi-
gation methods maintain a state vector containing at a min-
imum the current IMU position, orientation, velocity, and
biases (Mourikis et al., 2009; Jones and Soatto, 2011; Kelly
and Sukhatme, 2011; Kottas et al., 2012; Weiss et al., 2012;
Li and Mourikis, 2013b). Therefore, if the measurement
Jacobians are computed with respect to the current IMU
state (e.g. as in EKF-SLAM), choosing lp ≤ 1 and lθ = 0
will require no new states to be added, and no significant
overhead.

On the other hand, in several types of methods, Jaco-
bians are also computed with respect to “old” states (e.g.
in sliding-window methods or batch offline minimization).
When a GS camera is used, these old states often only need
to contain the position and orientation, while other quan-
tities can be marginalized out. Therefore, if the proposed
RS model is used, and we select lp ≥ 1, lθ ≥ 1, addi-
tional states will have to be maintained in the estimator,
leading to increased computational requirements. However,
if lp = lθ = 0 is chosen, once again no additional states
would have to be introduced, and the cost of processing the
RS measurements would be practically identical to that of a
GS camera (see also Section 5.1).

We next discuss the relationship of our approach to the
TBF formulation of Bosse and Zlot (2009), Furgale et al.
(2012), Lovegrove et al. (2013), and Oth et al. (2013).
First, we point out that the expressions in (7) and (8) effec-
tively describe a representation of the errors in terms of
the temporal basis functions fi( τ ) = τ i, i = 1, . . . , lp/θ

in the time interval [−tr/2, tr/2]. This is similar to the
TBF formulation, with the difference that in our case the
errors, rather than the states are approximated by a low-
dimensional parameterization. This difference has two key
consequences. First, as we saw, it is possible to use knowl-
edge of the error properties to compute bounds on the
effects of the unmodeled errors. Second, the errors are, to
a large extent, independent of the actual trajectory, which
makes the approach applicable in cases where the motion
contains significant accelerations. By contrast, in the TBF
formulation the necessary number of basis functions is cru-
cially dependent on the nature of the trajectory. In “smooth”
trajectories, one can use a relatively small number of func-
tions, leading to low computational cost (see, e.g., Oth
et al. (2013)). However, with fast motion dynamics, the
proposed error-parameterization approach requires a lower
dimension of the state vector.

To demonstrate this with a concrete example, let us focus
on the acceleration signal shown in Figure 2 (left). In Oth
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et al. (2013) and Lovegrove et al. (2013), fourth-order
B-splines are used as the basis functions, due to their finite
support and analytical derivatives. This, in turn, means that
the acceleration is modeled by a linear function between
the time instants consecutive knots are placed. If we place
one knot every 43.3 ms (e.g. at the start and end of each
image readout), we would be modeling the acceleration as
a linear function during each image readout. The bottom
plot in Figure 2 (right) shows the largest errors between am

and the best-fit linear model during each readout time. The
worst-case error is 1.03 m/s2, which is one order of mag-
nitude larger than the standard deviation of the accelerom-
eter measurement noise (see Table 3). Therefore, placing
knots every 43.3 ms would lead to unacceptably large
unmodeled terms in the accelerometer residual. To reduce
the error terms to the same order of magnitude as the
noise, knots would have to be placed every approximately
15 ms, or approximately three poses per image. Therefore,
in this example (which involves motion dynamics common
in small-scale systems) the proposed error-parameterization
approach would lead to a significantly faster algorithm, due
to the smaller dimension of the state vector.

4. Motion estimation with an IMU and a
rolling-shutter camera

Our interest is in motion estimation in unknown, uninstru-
mented environments, and therefore we assume that the
camera observes naturally occurring visual features, whose
positions are not known a priori. These measurements are
processed by an EKF-based method, whose formulation is
based on Li and Mourikis (2012a). This is a hybrid estima-
tor that combines a sliding-window filter formulation with
a feature-based one, to minimize the computational cost
of EKF updates. In what follows, we briefly describe the
estimator, but since the EKF algorithm is not the main con-
tribution of this work, we refer the reader to Li and Mourikis
(2012a) for more details.

4.1. EKF state vector

The hybrid estimator proposed in Li and Mourikis (2012a)
maintains a state vector comprising the current IMU state,
a sliding window of states, as well as a number of feature
points. In addition to these quantities, we here include in the
state vector the spatial and temporal calibration parameters
between the camera and IMU. First, we include in the esti-
mated state vector the spatial transformation between the
IMU frame and the camera frame, described by the unit
quaternion C

I q̄ and the translation vector CpI . This transfor-
mation is known to be observable under general motion, and
including it in the estimator removes the need for an offline
calibration procedure. Second, we include in the state vector
the time offset, td , between the timestamps of the cam-
era and the IMU. Time-offsets between different sensors’
reported timestamps exist in most systems (e.g. due to

delays in the sensors’ data paths), but they can be espe-
cially significant in the low-cost systems we are interested
in. Performing online temporal calibration makes it possi-
ble to account for the uncertainty in the sensor timestamps,
and compensate for the time offset, in a simple way (Li and
Mourikis, 2013a).

Therefore, the EKF’s state vector is defined as

x( t) = [
xT

E( t) πT
IC td xT

I1
· · · xT

Im
fT
1 · · · fT

st

]T
(18)

where xE( t) is the current (“evolving”) IMU state at time
t, the camera-to-IMU transformation is given by π IC =
[C
I q̄T CpT

I ]T, xIi , i = 1, . . . , m are the IMU states corre-
sponding to the time instants when the last m images were
recorded, and fj, j = 1, . . . , st are feature points, represented
by an inverse-depth parameterization (Montiel et al., 2006).
As explained in Section 3, each of the IMU states xIi com-
prises the camera pose, and potentially its derivatives, at the
middle of the image readout period.

In the hybrid EKF, when an IMU measurement is
received, it is used to propagate the evolving state and
covariance. On the other hand, when a new image is
received, the sliding window of states is augmented. The
images are processed to extract and match point features,
and these are processed in one of two ways: if a feature’s
track is lost after m or fewer images, it is used to pro-
vide constraints involving the poses of the sliding window.
On the other hand, if a feature is still being tracked after
m frames, it is initialized in the state vector and any sub-
sequent observations of it are used for updates as in the
EKF-SLAM paradigm. At the end of the update, features
that are no longer visible and old sliding-window states with
no active feature tracks are removed.

In what follows, we describe each of these steps in more
detail.

4.2. EKF propagation

Following standard practice, we define the evolving IMU
state as the 16 × 1 vector:

xE = [
I
Gq̄T GpT

I
GvT

I bT
g bT

a

]T
(19)

where bg and ba are the IMU’s gyroscope and accelerometer
biases, modeled as random walk processes:

ḃg = nwg, ḃa = nwa (20)

In the above equations, nwg and nwa represent Gaussian
noise vectors with autocorrelation functions σ 2

wgI3δ( t1 − t2)
and σ 2

waI3δ( t1 − t2), respectively. Moreover, the error-state
vector for the IMU state is defined as:

x̃E =
[
θ̃

T
I

Gp̃T
I

GṽT
I b̃T

g b̃T
a

]T
(21)

where for the position, velocity, and bias states the standard
additive error definition has been used (e.g. GvI = Gv̂I +
GṽI ). On the other hand, for the orientation errors we use
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a minimal three-dimensional representation, defined by the
equations (Li and Mourikis, 2013b):

I
Gq̄ ≈ I

G
ˆ̄q ⊗

[
1
2 θ̃ I

1

]
(22)

In the EKF, the IMU measurements are used to propagate
the evolving state estimates as described in Li and Mourikis
(2013b). Specifically, the gyroscope and accelerometer
measurements are modeled respectively by the equations:

ωm( t) = Iω( t) + bg( t) + nr( t) (23)

am( t) = I
GR( t)

(
Ga( t) −Gg

)+ ba( t) + na( t) (24)

where Iω is the IMU’s rotational velocity, Gg is the grav-
itational acceleration, and nr and na are zero-mean white
Gaussian noise processes with standard deviations σr and
σa on each sensing axis, respectively. The IMU orientation
is propagated from time instant tk to tk+1 by numerically
integrating the differential equation:

I
G

˙̄̂q( t) = 1

2
�
(
ωm( t) −b̂g( tk)

)
I
G

ˆ̄q( t)

in the interval t ∈ [tk , tk+1], assuming that ωm( t) is changing
linearly between the samples received from the IMU at tk
and tk+1. In the above, the matrix 	( ·) is defined as:

	( ω) =
[�ω×� ω

ωT 0

]

The velocity and position estimates are propagated by:

Gv̂k+1 = Gv̂k + G
I R̂( tk) ŝk + Gg�t (25)

Gp̂k+1 = Gp̂k + Gv̂k�t + G
I R̂( tk) ŷk + 1

2
Gg�t2 (26)

where �t = tk+1 − tk , and

ŝk =
∫ tk+1

tk

Ik
I R̂( τ )

(
am( τ ) −b̂a( tk)

)
dτ (27)

ŷk =
∫ tk+1

tk

∫ s

tk

Ik
I R̂( τ )

(
am( τ ) −b̂a( tk)

)
dτds (28)

The above integrals are computed using Simpson inte-
gration, assuming a linearly changing am in the interval
[tk , tk+1]. Besides the IMU position, velocity, and orien-
tation, all other state estimates remain unchanged during
propagation. We point out that, in addition to EKF propa-
gation, the above equations are employed for propagating
the state within each readout-time interval for using the RS
measurements, as described in Section 3.

When EKF propagation is performed, in addition to the
state estimate, the state covariance matrix is also propa-
gated, as follows:

P( tk+1) = �( tk+1, tk) P( tk) �( tk+1, tk)T + Qd

where P is the state covariance matrix, Qd is the covariance
matrix of the process noise, and �( tk+1, tk) is the error-state
transition matrix, given by:

�( tk+1, tk) =
[
�I ( tk+1, tk) 0

0 I

]
(29)

with �I ( tk+1, tk) being the 15 × 15 error-state transition
matrix for the IMU state, derived in Li and Mourikis
(2013b).

4.3. State augmentation

When a new image is received, a new state must be added
to the filter state vector. Let us consider the case where an
image with timestamp t is received. We here assume that,
by, convention, the image timestamps correspond to the
midpoint of the image readout. However, recall that a time
offset exists between the camera and IMU timestamps. Due
to this offset, if an image with timestamp t is received, the
midpoint of the image readout interval was actually at time
t + td . Therefore, when a new image is received, the state is
augmented with an estimate of the IMU state at t + td (Li
and Mourikis, 2013a). If a truncation order lp = 1 is used,
this state will comprise the IMU position, orientation, and
velocity, while if lp = 0, only the position and orienta-
tion are included in the state. In what follows, we present
the state augmentation (and update equations) for the more
general case of lp = 1.

When the image is received, we propagate the EKF state
up to t + t̂d , at which point we augment the state with the
estimate x̂Im = [I

G
ˆ̄qT( t+t̂d) Gp̂T

I ( t+t̂d) Gv̂T
I ( t+t̂d) ]T. More-

over, the EKF covariance matrix is augmented to include the
covariance matrix of the new state, and its correlation to all
other states in the system. For this computation, an expres-
sion relating the errors in the new state to the errors of the
EKF state vector is needed. This is given by:

x̃Im = [
I9 09×12 Jt 0

]
x̃( t+ t̂d)

where Jt is the Jacobian with respect to the time offset
td . This Jacobian, which expresses the uncertainty in the
precise time instant the image was recorded, can be com-
puted by direct differentiation of the orientation, position,
and velocity, as:

Jt =

⎡
⎢⎢⎣

G
I R̂( t+ t̂d)

(
Iωm( t+ t̂d) −b̂g( t+ t̂d)

)
Gv̂I ( t+ t̂d)

G
I R̂( t+ t̂d)

(
am( t+ t̂d) −b̂a( t+ t̂d)

)
+ Gg

⎤
⎥⎥⎦ (30)

4.4. EKF update

Once state augmentation is performed, the image is pro-
cessed to extract and match features. These feature mea-
surements are processed in one of two different ways,
depending on their track lengths. Specifically, the major-
ity of features that we detect in the images can only
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be tracked for a small number of frames. Those fea-
tures whose tracks are complete in m or fewer frames
are processed without being included in the EKF state
vector, by use of the multi-state-constraint Kalman filter
(MSCKF) approach (Mourikis and Roumeliotis, 2007; Li
and Mourikis, 2013b). On the other hand, features that are
still actively being tracked after m images, are included in
the EKF state vector, and their measurements are processed
as in EKF-SLAM methods.

We briefly describe the two approaches, starting with the
MSCKF. Let us consider the case where feature fi has been
observed in 
 images, and has just been lost from track-
ing (e.g. it went out of the field of view). At this time, the
MSCKF uses all the measurements of the feature. First,
the measurements are used to compute an estimate of the
feature state, via least-squares triangulation. This estimate
is used, along with the estimates from the EKF’s sliding
window, to compute the residuals:

rij = zij − h( x̂Ij , π̂ IC , f̂i) (31)

where the index j ranges over all states from which the fea-
ture was observed. The above residual computation utilizes
the state estimate x̂Ij , as well as the IMU measurements in
the readout time interval of the corresponding image, as
described in Section 3. Linearizing the above residual, we
obtain:

rij ≈ Hθ ij θ̃ Ij + Hpij
Gp̃Ij + nijtrHpij

N
GṽIj + HICij π̃ IC

+ Hfij f̃i + nij (32)

= Hijx̃ + Hfij f̃i + nij (33)

In the above equations, HICij and Hfij are the Jacobians of
the measurement function with respect to the camera-IMU
extrinsics and feature position, respectively, nij is the mea-
surement noise, and nij is the image row on which fi is
observed in image j. Since the feature is not included in
the MSCKF state vector, we proceed to marginalize it out.
For this purpose, we first form the vector containing the 


residuals from all the feature’s measurements:

ri ≈ Hix̃ + Hfi f̃i + ni (34)

where ri and ni are 2
 × 1 vectors formed by stacking the
vectors rij and nij, respectively, and Hi and Hfi are the cor-
responding Jacobian matrices formed by stacking Hij and
Hfij , respectively. Subsequently, a matrix V, whose columns
form a basis of the left nullspace of Hfi , is used to multiply
both sides of (34), leading to:

ro
i = VTri = VTHix̃ + VTni = Ho

i x̃ + no
i (35)

The above residual expresses the information that the obser-
vations of feature fi provide for the EKF state vector. Prior
to using the residual for an update, a Mahalanobis-distance
test is performed, by comparing the quantity

γi = ro
i

(
Ho

i PHo T
i + σ 2

imI
)−1

ro
i

to the 95th percentile of the χ2 distribution with 2
 − 3
degrees of freedom. Features whose γi values exceed this
threshold are considered outliers and discarded from further
processing.

The process described above is repeated for all the fea-
tures whose tracks were completed in the latest image. In
addition to these features, the hybrid filter processes the
measurements of all features observed in the most recent
image that are part of the EKF state vector. For this pur-
pose, the measurement residuals are computed similarly
to (31), with the difference that the feature position estimate
is obtained from the EKF state vector, rather than from a
minimization process. Moreover, the Jacobians needed for
using these features in the EKF are computed as in (32). All
the residuals from both types of features are employed for
an EKF update, as described in Li and Mourikis (2012a).
Additionally, to improve the estimation accuracy and con-
sistency, we employ the first-estimate-Jacobian approach to
ensure that the observability properties of the linearized
system match that of the actual system. Specifically, all
the position and velocity components in the state transition
matrices and measurement Jacobian matrices are evaluated
using their first estimates, as explained in Li and Mourikis
(2013b).

5. Experiments

In this section we present the results from Monte-Carlo sim-
ulations and real-world experiments, which demonstrate the
performance of the proposed approach for processing RS
measurements.

5.1. Simulations

To obtain a realistic simulation environment, we generate
the ground-truth trajectory and sensor measurements in
the simulator based on a real-world dataset, collected by
a Nexus 4 mobile device. The device is equipped with
an RS camera capturing images at 11 Hz with a readout
time of 43.3 ms, and an Invensense MPU-6050 IMU,
which provides inertial measurements at 200 Hz. The noise
characteristics and additional details for the sensors can
be found in Table 3, below. During the data collection, the
device was hand-held by a person walking at normal pace,
for a duration of 4.23 min. The total distance traveled was
approximately 227 m.

To generate the ground truth trajectory for the simu-
lations, we first processed the dataset with the proposed
algorithm, to obtain estimates for the IMU state, x̂E. In the
ground-truth trajectory, the IMU poses (position and orien-
tation) at the time instants at which images are available,
τj, j = 1, . . . , n1, are identical to the computed estimates
x̂E( τj). To obtain the complete ground truth, we must addi-
tionally determine the IMU states for all the time instants
ti, i = 1, . . . , n2, at which the IMU is sampled, as well
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Fig. 3. Simulation results: The RMSE of the IMU orientation,
position, and velocity over 50 Monte-Carlo simulation trials for
different RS models. Because the performance of the four error-
state models is very similar, the lines are hard to distinguish in the
plot. For clarity, the numerical values of the average RMSE are
provided in Table 2.

as the rotational velocity and linear acceleration at these
time instants (these are needed for generating IMU mea-
surements in the simulator). To this end we formulate an
optimization problem, to determine the acceleration and
rotational velocity signals which will (a) guarantee that the
IMU pose at the time instants τj is identical to the esti-
mates x̂E( τj), and (b) minimize the difference between the
ground-truth acceleration and rotational velocity and the
corresponding estimates obtained from the actual dataset
(see (37) and (38)).

To describe this minimization problem, let us denote the
vector of ground-truth quantities we seek to determine at
time ti as

x

M ( ti) =

⎡
⎢⎢⎢⎢⎣

I
Gq̄
( ti)
Gp


I ( ti)
Gv


I ( ti)
Ga


I ( ti)
Iω
( ti)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣ x


s ( ti)
Ga


I ( ti)
Iω
( ti)

⎤
⎦

where x

s ( ti) = [I

Gq̄
( ti)T Gp

I ( ti)T Gv


I ( ti)T ]T. Moreover,
we denote by φ the IMU-state propagation function, com-
puted by numerical integration assuming linearly changing
acceleration and rotational velocity in each IMU sample
interval.

The ground truth is obtained by formulating a min-
imization problem for each interval between two con-
secutive image timestamps, τj−1 and τj. Specifically, we

obtain x

M ( ti) , ti ∈ ( τj−1, τj] by solving the constrained-

minimization problem:

min
∑

ti∈(τj−1,τj]

||Iω
( ti) −I ω̂( ti) ||22 + ||Ga

I ( ti) −GâI ( ti) ||22

s. t. x

s ( ti) = φ( x


s ( ti−1) , Ga

I ( ti−1, ti) , Iω
( ti−1, ti))

Gp

I ( τj) = Gp̂I ( τj) , I

Gq̄
( τj) = I
G

ˆ̄q( τj)
(36)

where I ω̂ and GâI are the rotational velocity and linear
acceleration computed using the EKF estimates and the
IMU measurements in the real dataset:

I ω̂( ti) = ωm( ti) − b̂g( ti) (37)

GâI ( ti) = I
GR̂T( ti)

(
am( ti) −b̂a( ti)

)
+ Gg (38)

The above problem is solved sequentially for each inter-
val ( τj−1.τj]. The resulting ground truth is self-consistent
(in the sense that integrating the ground-truth accelera-
tion yields the ground truth velocity, integrating the veloc-
ity yields position, and so on), and closely matches the
estimates obtained in the actual dataset.

The ground-truth trajectory constructed as described
above is used in all Monte-Carlo trials. In each trial, differ-
ent independently sampled realizations for the IMU biases
and measurement noise, the feature positions, and image
measurement noise, are used. Specifically, in each trial IMU
biases are generated by integrating white-noise processes
as shown in (20), and IMU measurements are subsequently
computed via (23) and (24). The noise vectors used in each
timestep in (20), (23), and (24) are independently sampled
from Gaussian distributions with characteristics identical
to those of the MPU-6050 IMU. In each simulated image,
we generate new features, whose number and feature-track
length distribution are identical to the corresponding actual
image. The 3D position of new features is randomly drawn
in each trial. Specifically, the depth of each feature is cho-
sen equal to the estimated depth of the corresponding actual
feature, while the location of its image projection is ran-
domly sampled from a uniform distribution. Finally, each
image measurement is corrupted by independently sampled
Gaussian noise.

It is worth pointing out that for generating the measure-
ments of the RS camera in the simulator, an iterative process
is necessary. This is due to the fact that the exact time
instant at which a feature is observed depends on the row
on which it is projected (see (2)), and, for general motion,
it cannot be computed analytically. Therefore, in our imple-
mentation we initially compute the projection of the feature
using (2) (without noise), and assuming tn = to. Subse-
quently, we update tn using (1) with n = zr − N/2, and
re-compute the projection using the new estimate of tn.
This process is repeated until the estimate for tn converges.
Finally, measurement noise is added by sampling from a
zero-mean Gaussian pdf with covariance matrix σ 2

imI2.
We here compare the performance of our proposed

approach to the processing of RS measurements, with four
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different options for the modeling of the errors during
the readout time, obtained by choosing lp = {0, 1} and
lθ = {0, 1}. We additionally evaluate the performance of
the constant-velocity approach of Li et al. (2013), and of an
approach that treats the camera as if it has a global shutter.
To collect statistics for these six approaches, we carried out
50 Monte-Carlo simulation trials. Moreover, in order to iso-
late the effects of the RS model used, in each simulation trial
all the approaches use exactly the same initial state estimate
and covariance matrix (the filter initialization presented in
Section 5.2), the same estimator structure (the hybrid filter
presented in Section 4), and process exactly the same IMU
and feature measurements.

Figure 3 shows the root mean squared errors (RMSE)
(averaged over the 50 Monte-Carlo trials) in the estimates
of the IMU orientation, position, and velocity computed by
the six approaches. In Table 2 we also provide the aver-
age RMSE and the average normalized estimation error
squared (NEES) for the IMU motion state (position, orien-
tation, and velocity), averaged over all 50 trials, and over the
last 25 seconds of motion.4 Examining the NEES gives an
insight into the magnitude of the unmodeled errors. Specif-
ically, if significant unmodeled errors exist, the covariance
matrix reported by the EKF will be smaller than the covari-
ance matrix of the actual errors (i.e. the estimator will
be inconsistent (Bar-Shalom et al., 2001)), and the NEES
will increase. In an ideal, consistent estimator, the expected
value of the NEES is equal to the dimension of the error
state for which the NEES is computed, i.e. 9 in our case.
Thus, by examining the deviation of the average NEES
from this value, we can evaluate the significance of the
unmodeled errors.

Several observations can be made based on the results
of Figure 3 and Table 2. First, we clearly observe that the
approach that assumes a GS camera model has very poor
performance, with errors that are one order of magnitude
larger than all other methods. By assuming a GS camera,
the motion of the camera during the readout time is nei-
ther modeled nor compensated for, which inevitably causes
unmodeled errors and degrades the estimation accuracy.
The existence of large unmodeled errors is also reflected in
the average NEES value, which is substantially higher than
that of all other methods.

From these results we can also see that the constant-
velocity models used in Li et al. (2013) result in signifi-
cantly larger errors compared to the four models that are
based on the proposed approach. Specifically, the position
and orientation errors are approximately double, while the
velocity errors are approximately 50% larger. As discussed
in Section 2, this is due to the fact that the motion in this
experiment is characterized by significant variations, espe-
cially in the rotational velocity. These variations, which are
to be expected in low-mass systems such as the one used
here, cause the constant-velocity assumption to be severely
violated, and lead to the introduction of non-negligible
unmodeled errors. These errors also lead to an increase in
the average NEES.

Turning to the four different error parameterizations that
are based on the approach proposed here, we see that they
all perform similarly in terms of accuracy. As expected, the
choice lp = 1, lθ = 1 outperforms the lower-order models,
but only by a small margin. Moreover, we see that using a
higher-order model leads to a lower NEES, as the unmod-
eled errors become smaller. The average NEES of the four
different approaches is somewhat higher than the theoreti-
cally expected value of 9. This outcome is to be anticipated,
due not only to the approximations in the RS modeling, but
also to the non-linear nature of the estimation problem. It
is important to point out, however, that due to the use of
the first-estimates-Jacobian approach of Li and Mourikis
(2013b), all four methods’ inconsistency is kept low.

Even though the accuracy and consistency of the four
models is comparable, the computational cost incurred by
their use is significantly different. Increasing the order of
the error-model results in an increase in the dimension of
the error-state vector, and therefore in a higher computa-
tional cost. The last row in Table 2 shows the average CPU
time needed per update in each of the cases tested, mea-
sured on an Intel Core i3 2.13 GHz processor. These times
show that, even though the accuracy difference between the
most accurate error model (lp = lθ = 1) and the least
accurate one (lp = lθ = 0) is less than 10%, the latter
is more than 2.5 times faster. In fact, the computational
cost of the method with lp = lθ = 0 is practically identi-
cal to the cost of using a GS model, and 2.5 times faster
than the model of Li et al. (2013). Since our main interest
is in resource-constrained systems, where CPU capabilities
are limited and preservation of battery life is critical, our
model of choice in the real-world experiments presented in
the following section is lp = lθ = 0. If additional precision
were required, based on the results of Table 2 and the theo-
retical results of Section 3, we would select the model with
lp = 1, lθ = 0.

5.2. Real world experiments

We now present results from real-world experiments,
conducted on three commercially available smartphone
devices, namely a Samsung Galaxy SII, a Samsung Galaxy
SIII, and an LG Nexus 4. While the proposed approach
is applicable with any RS camera and IMU, the use
with smartphones is of particular interest. These devices
are small, inexpensive, widely available, and offer multi-
ple sensing, processing, and communication capabilities.
Therefore, they can serve as the basis for low-cost local-
ization systems for diverse applications, which will be easy
to disseminate to a large number of users with uniform
hardware. The characteristics of the devices used in our
experiments are shown in Table 3. The noise characteris-
tics of the IMU have been computed via offline calibration,
by collecting datasets while keeping the devices stationary.

We here present results from using the smartphones to
track (a) a car driving on city streets, (b) a mobile robot
in an outdoor setting, and (c) a person walking. In all
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Table 2. Simulation results: RMSE and NEES for different approaches.

GS method Li et al. 2013 Proposed method

Position error model N/A N/A lp = 0 lp = 1 lp = 0 lp = 1
Orientation error model N/A N/A lθ = 0 lθ = 0 lθ = 1 lθ = 1
Position RMSE (m) 5.403 0.806 0.471 0.447 0.447 0.427
Orientation RMSE (deg) 15.12 1.34 0.735 0.693 0.723 0.695
Velocity RMSE (m/s) 0.302 0.077 0.053 0.052 0.052 0.052
IMU state NEES 571.2 19.78 11.05 10.64 10.56 10.44
Time per update (ms) 0.85 2.17 0.87 1.49 1.50 2.24

Table 3. Sensor characteristics of the mobile devices used in the experiments.

Device LG Nexus 4 Galaxy SIII Galaxy SII

Gyroscope rate (Hz) 200 200 106
Accelerometer rate (Hz) 200 100 93
σr ( ◦/s) 2.4 · 10−1 2.6 · 10−1 2.9 · 10−1

σa ( m/s2) 4.0 · 10−2 5.6 · 10−2 5.8 · 10−2

σwg ( ◦/
√

s3) 1.6 · 10−3 3.2 · 10−3 3.4 · 10−3

σwa ( m/
√

s5) 7.0 · 10−5 1.4 · 10−4 1.5 · 10−4

tr (ms) 43.3 15.9 32.0
Frame rate (Hz) 11 20 15
Resolution (pixels) 432 × 576 480 × 640 480 × 640
σim (pixels) 0.75 0.75 0.75

Fig. 4. Car experiment: Device setup.

Fig. 5. Car experiment: Sample images.

cases, we demonstrate that the proposed approach results
in high-precision estimates, and is able to do so in real
time, running on the processor of the device. Videos show-
ing the images recorded by the camera in these experi-
ments, as well as the trajectory estimates, can be found
at www.ee.ucr.edu/∼mli/RollingShutterVIO.

5.2.1. Real-world experiment I: Car localization. In this
experiment, a Samsung Galaxy SIII mobile phone and a
Xsens MGT-i unit (for GPS ground-truth data collection)
was mounted on top of a car driving on the streets of River-
side, CA. Figure 4 shows the setup of the devices. The total

distance driven is approximately 11 km, covered in 21 min.
Sample images from the experiment are shown in Figure 5.
During this experiment the sensor data were saved to disk,
and later processed offline, to allow the comparison of the
alternative methods. Image features are extracted by an
optimized Shi–Tomasi feature extractor (Li and Mourikis,
2012b), and matched using normalized cross-correlation
(NCC). A 17 × 17 image template is used for NCC, with
a minimum matching threshold of 0.8.

For initializing the estimator, we require that during the
first 1 s of the experiments the device is kept approximately
stationary. This makes it possible to use a zero estimate
for the initial velocity, and use the average accelerome-
ter measurements during this time interval to estimate the
initial roll and pitch. Since the estimates computed in this
way may be somewhat inaccurate, we use conservative val-
ues for the initial standard deviations of the estimates, e.g.
0.1 m/s in each direction for the velocity (to account for any
small motions that may take place), and 2◦/s for roll and
pitch. The estimates for the yaw and the position are initial-
ized to zero, with zero covariance (i.e. we estimate motion
with respect to the initial state). Moreover, for all remaining
variables the estimates from the last successful experiment
are used, with standard deviations of 0.5◦/s for the gyro-
scope biases, 0.1 m/s2 for the accelerometer biases, 1◦ for
the camera-to-IMU rotation, 3 mm for the camera-to-IMU
translation, and 4 msec for td .

Figure 6 shows the trajectory estimate obtained by (a)
the proposed method, (b) the method of Li et al. (2013),
and (c) a GPS system, which is treated as the ground truth.
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Fig. 6. Car experiment: Trajectory estimates by the proposed
approach and the approach of Li et al. (2013), compared to ground
truth.
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Fig. 7. Car experiment: Estimation errors for the two approaches
compared.

The estimated trajectories are manually aligned to the GPS
ground truth, and plotted on a map of the area where the
experiment took place. Moreover, Figure 7 shows the posi-
tion errors of the two approaches, as well as the reported
uncertainty envelop for the proposed approach. This enve-
lope corresponds to ±3 standard deviations, computed as
the square roots of the corresponding diagonal elements of
the EKF’s state covariance matrix. Here we only plot the
position errors in the horizontal plane, as the accuracy of
the ground truth in the vertical direction is not sufficiently
high. From these results it becomes clear that the proposed
method outperforms that of Li et al. (2013) by a wide mar-
gin. It produces more accurate estimates (the largest posi-
tion error throughout the experiment is approximately 63 m,
compared to 123 m for Li et al. (2013)), and the estimation
errors agree with the estimator’s reported uncertainty.

5.2.2. Real-world experiment II: Mobile robot localization.
In this experiment, a ground robot moved in a closed-loop
trajectory on the campus of the University of California,
Riverside (UCR). For this experiment the Nexus 4 device
was used, and the robot covered approximately 720 m in
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Fig. 8. Mobile robot experiment: 3D trajectory estimate. The
green dot corresponds to the start, while the blue dot to the end
of the trajectory.
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Fig. 9. Mobile robot experiment: Trajectory estimate on a satel-
lite map. The red/yellow dashed line corresponds to the proposed
approach, the blue/white solid line to the approach of Li et al.
(2013).

about 11.7 min. Similarly to the previous experiment, the
data was stored for offline processing.

Figure 8 shows the 3D-plot of the trajectory estimate
computed by the proposed approach. This plot shows the
significant elevation difference in the trajectory, and moti-
vates the use of a visual–inertial localization method, as
opposed to one based on 2D odometry. Since the robot was
moving under trees and close to buildings, the GPS sys-
tem was unable to report reliable ground truth. However, the
robot started and ended at the same position, which allows
us to calculate the final error of the trajectory estimate. For
the proposed approach, the final position error along the
three axes is [5.33 1.15 0.2] m (0.73% of the traveled dis-
tance), while the corresponding 3σ reported by the filter are
[6.44 4.67 0.21] m. For the approach of Li et al. (2013),
the final position error is [−16.49 8.76 0.41] m.

Figure 9 shows the trajectory estimates of the two
methods, overlaid on a satellite image of the area. Close
inspection of this figure reveals that the result of Li et al.
(2013) is incorrect, while the proposed method generates
an estimate that closely follows the actual path of the robot.
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Fig. 10. A sample image from the indoor experiment, showing
significant rolling-shutter distortion.
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Fig. 11. Indoor personal-localization experiment: 3D trajectory
estimate. The green dot corresponds to the start, while the blue
dot to the end of the trajectory.

It is worth noting that the superior performance of the
proposed method (both in this and the previous experiment)
is due to two main factors: the use of a more accurate RS
model, but also the use of the hybrid EKF estimator, as
opposed to the “pure” MSCKF method employed in Li
et al. (2013). This hybrid estimator makes it possible to
better use features that are tracked for long periods, and
thus reduces the rate of error accumulation.

5.2.3. Real-world experiment III: Indoor personal localiza-
tion. In the previous experiments, the data was stored for
offline processing, to facilitate comparison with the method
of Li et al. (2013). We now report the results from a “live”
estimation experiment, conducted using the visual and iner-
tial measurements on the Nexus 4 device. In this experi-
ment, the device was held by a person walking indoors,
on three floors of the UCR Science Library building. In
Figure 10 a sample image from this experiment is shown.
The total distance covered was approximately 523 m, and
the duration of the experiment was 8.7 min. The data from
the phone’s camera and IMU were processed on-line on the
device’s processor, and the average time needed per EKF

update was 13.6 ms, comfortably within the requirements
for real-time operation.

Figure 11 shows the trajectory estimate computed in real-
time on the phone. Similarly to the two previous exper-
iments, the trajectory starts and ends at the same point,
which allows us to calculate the final position error. This
error was [−0.80 − 0.07 − 0.17] m, which only cor-
responds to approximately 0.16% of the trajectory length.
Moreover, Figure 12 shows the orientation and position
uncertainty (3σ ) reported by the hybrid EKF during this
experiment. As expected, the orientation uncertainty about
the x and y axes (roll and pitch) remains small throughout
the trajectory, since the direction of gravity is observable
in vision-aided inertial navigation (Jones and Soatto, 2011;
Kelly and Sukhatme, 2011; Martinelli, 2012). On the other
hand, the uncertainty in yaw and in the position gradually
increases over time, since these quantities are unobservable
and no loop-closure information is used. It is important to
note that in this indoor environment the rate of uncertainty
increase is substantially smaller than what was observed in
the previous outdoor experiments (cf. Figure 7). This is due
to the smaller average feature depth, which results in larger
relative baseline for the camera observations, and thus more
information about the camera’s motion.

5.2.4. Comparison on the datasets of Li et al. (2013).
Finally, we report the results of our new method on the
two datasets used in the experimental validation of Li et al.
(2013). In these experiments a Samsung Galaxy SII device
was hand-held, while a person walked in outdoor areas of
the UCR campus and surrounding areas. The first dataset
involves an approximately 900 m, 11 min long trajectory,
while the second one a 610 m, 8 min long trajectory. Apply-
ing the proposed method on these two datasets yields a
reduction of the final position error in both cases. Specif-
ically, in the first dataset the final position error is reduced
from 5.30 m to 3.22 m, while in the second one the error
is reduced from 4.85 m to 2.31 m. To visualize the differ-
ence in the resulting estimates, in Figure 13, we plot the
results of the two methods in the second dataset, as well
as the approximate ground-truth, overlaid manually on the
image based on the locations of the walkable paths. We can
observe that the method described here leads to an improve-
ment in accuracy, especially visible in the final part of the
trajectory.

6. Conclusion

In this paper, we have presented a new method for com-
bining measurements from a rolling-shutter camera and an
IMU for motion estimation. The key idea in this approach
is the use of the inertial measurements to model the camera
motion during each image readout period. This removes the
need for low-dimensional motion parameterizations, which
can lead to loss of accuracy when the camera undergoes
significant accelerations. Instead of a parameterizing the
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Fig. 13. Comparison with a dataset used in Li et al. (2013): Tra-
jectory estimates on a satellite map. The red/yellow dashed line
corresponds to the proposed approach, the blue/white line to the
approach presented by Li et al. (2013), and the black solid line to
the approximate ground truth.

trajectory, our approach parameterizes of the errors in the
trajectory estimates, when performing linearization. Using
prior knowledge of the error characteristics, we can com-
pute bounds on the unmodeled errors incurred by the rep-
resentation, and address the tradeoff between the modeling
accuracy and the computational cost in a principled man-
ner. Our results demonstrate that the proposed approach
achieves lower estimation errors than prior methods, and
that its computational cost can be made almost identical
to the cost of methods designed for global-shutter cam-
eras. Moreover, we show that, coupled with a computa-
tionally efficient EKF estimator, the proposed formulation
for the RS measurements makes it possible to use low-
cost consumer devices, to achieve high-performance 3D
localization on a multitude of mobile platforms.
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Notes

1. Note that alternative terms have been used to describe this
time interval (e.g. shutter roll-on time (Lumenera Corpora-
tion, 2005) and line delay (Oth et al., 2013)) We here adopt
the terminology defined in Ringaby and Forssén (2012).

2. For instance, this fact is commonly exploited in 3D-
orientation estimation, where the estimates may be expressed
in terms of a 3 × 3 rotation matrix or a 4 × 1 unit quater-
nion, while for the errors one typically uses a minimal,
three-element representation.

3. A small increase will occur, due to the IMU propagation
needed to compute the estimates Gp̂I ( tn) and I

G
ˆ̄q( tn), n =

−N/2, . . . , N/2. However, this cost is negligible, compared to
the cost of matrix operations in the estimator.

4. Since no loop-closure information is available, the uncertainty
of the position and the yaw gradually increases over time.
We here plot the statistics for the last 25 s, to evaluate the
estimators’ final accuracy and consistency.
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Appendix A: Upper bounds on the unmodeled
residuals

In this section, we show how the upper bounds on the
unmodeled residual terms can be computed. We start by
presenting the camera measurement model and calculat-
ing the measurement Jacobian matrices. Specifically, the
camera measurement model (2) can be written as

z =
[

cu + au u
cv + av v

]
+ n,

[
u
v

]
= 1

Czf

[
Cxf
Cyf

]
(39)

Cpf ( tn) =
⎡
⎣Cxf

Cyf
Czf

⎤
⎦ = C

I R I
GR( tn)

(
Gpf − GpI ( tn)

)+ CpI

(40)

where Cpf is the position of the feature expressed in the
camera frame, ( au, av) represent the camera focal length
measured in horizontal and vertical pixels, and ( cu, cv) is
the principal point. (We here ignore the radial/tangential
distortion parameters to simplify the theoretical analysis,
however, these parameters are explicitly modeled in our
estimator.) By computing the partial derivatives of the mea-
surement function h with respect to the IMU’s position and
orientation, we obtain the Jacobian matrices Hp and Hθ ,
respectively:

Hp = A J C
I R I

GR̂( tn) (41)

Hθ = A J C
I R I

GR̂( tn) �Gpf − Gp̂I ( tn)×� (42)

where

A =
[

au 0
0 av

]
, J = 1

Cẑf

⎡
⎣1 0 −Cx̂f

C ẑf

0 1 −
Cŷf
C ẑf

⎤
⎦ (43)

To simplify the derivations, we here assume that the pixel
aspect ratio is equal to one (a valid assumption for most
cameras), i.e. au = av. With this simplification, the 2-norm
of the position Jacobian matrix becomes:

||Hp||2 = ||A J C
I R I

GR̂( tn) ||2 (44)

= au||J||2 = au

√
λmax( JTJ) (45)

where we used the fact that unitary matrices (e.g. rota-
tion matrices) preserve the 2-norm, and λmax( JTJ) repre-
sents the largest eigenvalue of the matrix JTJ. This can be
computed analytically as:

λmax( JTJ) = 1
Cẑ4

f

(
Cx̂2

f + Cŷ2
f + Cẑ2

f

)
(46)

Substituting (46) into (45) and denoting

φ = atan

(
Cx̂2

f + Cŷ2
f

Cẑ2
f

)
(47)

we obtain:

||Hp||2 = au

Cẑf

√
1 + tan2( φ) (48)

Turning to ||Hθ ||2, we note that in practice, the distance
between the IMU and the camera is typically much smaller
than the distance between the features and the camera (e.g.
in the devices used in our experiments, the IMU and cam-
era are approximately 4 cm apart, while feature depths are
typically in the order of meters). Therefore, to simplify the
calculations, we use the approximation Cp̂f − CpI ≈ Cp̂f ,
leading to:

||Hθ ||2 ≈ au||J �Cp̂f ×� I
GR̂T( tn) C

I RT||2 (49)

= au||J�Cp̂f ×�||2 (50)

= au

Cẑ2
f

(
Cx̂2

f + Cŷ2
f + Cẑ2

f

)
(51)

= au

(
1 + tan2( φ)

)
(52)

Note that the angle φ defined in (47) is the angle between
the camera optical axis and the optical ray passing through
the feature. Therefore, φ is upper bounded by one half the
angular field-of-view, F of the camera. As a result, we can
obtain upper bounds for the 2-norms of the Jacobians as
follows:

||Hp||2 ≤ Hpu = au

Cẑf

√
1 + tan2

(
F

2

)

||Hθ ||2 ≤ Hθu = au

(
1 + tan2

(
F

2

))

Using au = 500, F = 60◦, and Cẑf = 2, and substitut-
ing the above values into (13), (15), and (17), we obtain
the worst-case bounds for the unmodeled residuals given in
Section 3.

Appendix B: Time derivative of orientation
error

In this section, we derive the time derivative of the ori-

entation error term ˙̃
θ I . By converting the quaternion-

multiplication expression (22) into the rotation-matrix
form, we obtain:

I
GR = I

GR̂
(

I − �θ̃ I×�
)

(53)

Taking the time derivative on both sides of the above
equation leads to:

I
GṘ = I

G
˙̂R
(

I − �θ̃ I×�
)

− I
GR̂� ˙̃

θ I×� (54)
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The derivative of the rotation matrix, I
GṘ, can be written as:

I
GṘ = −�Iω×�I

GR (55)

Substituting (55) into (54), we thus obtain:

�Iω×�I
GR = �I ω̂×�I

GR̂
(

I − �θ̃ I×�
)

+ I
GR̂� ˙̃

θ I×� (56)

which can be re-formulated by substituting I
GR using (53):

� ˙̃
θ I×� = �I

GR̂T I ω̃×� − �I
GR̂T I ω̃×��θ̃ I×� (57)

By ignoring the quadratic error term �I
GR̂T I ω̃×��θ̃ I×�, we

obtain the following expression for ˙̃
θ I :

˙̃
θ I ≈ I

GR̂T I ω̃ = Gω̃ (58)
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