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Abstract. Timely forecasts of the onset or possible evolution

of droughts are an important contribution to mitigate their

manifold negative effects. In this paper we therefore analyse

and compare the performance of the first month of the prob-

abilistic extended range forecast and of the seasonal fore-

cast from the European Centre for Medium-range Weather

Forecasts (ECMWF) in predicting droughts over the Euro-

pean continent. The Standardized Precipitation Index (SPI-

1) is used to quantify the onset or likely evolution of ongoing

droughts for the next month.

It can be shown that on average the extended range fore-

cast has greater skill than the seasonal forecast, whilst both

outperform climatology. No significant spatial or temporal

patterns can be observed, but the scores are improved when

focussing on large-scale droughts. In a second step we then

analyse several different methods to convert the probabilis-

tic forecasts of SPI into a Boolean drought warning. It can

be demonstrated that methodologies which convert low per-

centiles of the forecasted SPI cumulative distribution func-

tion into warnings are superior in comparison with alterna-

tives such as the mean or the median of the ensemble. The

paper demonstrates that up to 40 % of droughts are correctly

forecasted one month in advance. Nevertheless, during false

alarms or misses, we did not find significant differences in

the distribution of the ensemble members that would allow

for a quantitative assessment of the uncertainty.

1 Introduction

Droughts can impact many human activities and environ-

mental processes including agriculture, water resource man-

agement, inland water transport, energy production and

freshwater ecology (Fraser et al., 2013). They often spread

over vast geographical regions and last for many months or

even years (Lloyd-Hughes and Saunders, 2002). The spatial

extent and manifold impacts make them one of the costliest

natural disasters (Below et al., 2007). Given this situation,

continuous monitoring as well as forecasting of the onset

or likely evolution of an ongoing drought over the next few

weeks are important to trigger actions for mitigating negative

impacts in the mentioned fields. To do so, decision makers

and end users require simple and robust forecast indicators

which are capable of informing about the onset, possible du-

ration and end of drought conditions.

Droughts can be classified in several categories (Wilhite

and Glantz, 1985): (i) meteorological drought, which is de-

fined as a rainfall deficit over a certain space and period of

time; (ii) agricultural or soil moisture drought, which de-

scribes the propagation of precipitation deficits to soil mois-

ture deficits resulting in plant water stress; and (iii) finally

hydrological drought, which is associated with the effects of

precipitation deficits on surface and subsurface water sup-

plies. In this study we focus on meteorological droughts us-

ing monthly precipitation forecasts from the European Cen-

tre for Medium-range Weather Forecasts (ECMWF) ensem-

ble systems. This timescale is considered a challenge be-

cause it is located between the medium-range forecasting,

which is strongly related to initial conditions, and the sea-
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sonal timescale, mainly driven by oceanic variabilities (Vi-

tart, 2014). The goal is to test the possibilities to provide de-

cision makers with a forecast of the onset or likely evolution

of a drought during the next month.

It has been demonstrated that droughts can be forecasted

using stochastic or neural networks (Kim and Valdés, 2003;

Mishra et al., 2007). While Mishra and Desai (2005) demon-

strated that these forecasts can provide “reasonably good

agreement for forecasting with 1 to 2 months lead times”,

they do not quantify the improvement of these methods with

respect to using probabilistic forecasts of the precipitation

fields. Forecasts of droughts can also be produced using de-

terministic numerical weather prediction models. Such fore-

casts are highly uncertain due to the chaotic nature of the

atmosphere, which is particularly strong on a sub-seasonal

timescale (Stockdale et al., 1998; Vitart, 2014). Therefore,

ensemble prediction systems have been developed that fore-

cast multiple scenarios of future weather. Probabilistic fore-

casts become particularly important for assessing the risks

associated with high-impact and rare weather events such

as tropical cyclones or droughts (Hamill et al., 2012; Dutra

et al., 2013, 2014) as well as for identifying uncertainties in

the forecasts (Buizza et al., 2005).

Forecasts on the sub-seasonal timescale and seasonal fore-

casts from dynamical models have considerably evolved over

recent years and demonstrate potential usefulness to pre-

dict large-scale features and teleconnections (Barnston et al.,

2012; Arribas et al., 2011). The latter can be used in statis-

tical downscaling methods using weather types. Eshel et al.

(2000), for example, used the North Atlantic sea level pres-

sure precursors to forecast drought over the eastern Mediter-

ranean. However, while their forecasts are statistically signif-

icant for several months’ lead time, this region represents a

relatively small part of Europe known to be one of the most

sensitive to weather types. In general, the published literature

indicates that the skill of the precipitation fields produced by

numerical weather predictions over Europe is low (Richard-

son et al., 2013; Weisheimer and Palmer, 2014; Singleton,

2012) even though there are considerable spatial variations.

However, these analyses tend to be performed from the point

of view of weather forecasting and do not incorporate spe-

cific properties that are relevant for drought forecasting such

as persistence.

Drought forecasts can be based on different lead times,

ranging from a few weeks to several months and the accu-

racy of any forecast will decrease with increasing lead times.

Nevertheless, so far, there is no reference study providing

a general assessment of meteorological drought forecasting

over Europe. Such a study is necessary to provide a base for

researchers that develop new forecast methods. It is also nec-

essary for decision makers and end users to assess the uncer-

tainties of the warning provided by forecast services.

The ECMWF provides two different types of forecasts for

this time range: an extended range forecast, with lead times

up to 32 days which is issued twice a week, and a seasonal

forecast, with lead times of up to 12 months issued once a

month. The extended range forecast incorporates more recent

model developments and is usually of higher resolution (Vi-

tart et al., 2008). The seasonal forecasting system is based on

an older model cycle (Molteni et al., 2011), among other sig-

nificant differences. Analysing the potential of both products

requires understanding the property and skill differences be-

tween the two systems for the particular application. For the

case of droughts such an analysis needs to include both the

numerical forecasting skill and the possibilities for binary de-

cisions to issue drought warnings. In particular, the latter is

challenging if such decisions are based on probabilistic fore-

casts.

The objectives of this paper are to analyse the possibilities

for issuing 30-day forecasts of drought conditions based on

ensemble prediction systems and the Standardized Precipita-

tion Index (SPI, McKee et al., 1993). The latter is a normal-

ized quantification of the precipitation anomalies (Vicente-

Serrano, 2006; Dutra et al., 2013) and is considered a good

indicator for analysing meteorological droughts over differ-

ent timescales (WMO, 2012). Considering the difficulties in

predicting drought, in this study, we focus on the evolution

of the precipitation for the next month, calculating the rain-

fall anomaly for the same time period (SPI-1). This product,

which provides the trend of precipitation for the next month

in relation to the climatology, could be combined with rou-

tine drought monitoring to create more robust and useful in-

formation for stakeholders. To do so, the extended range and

seasonal forecasting systems are compared directly but also

within the setting of a decision-making framework. Multi-

ple scores as well as multiple methodologies which allow

the transformation of probabilistic forecasts into binary de-

cisions are developed and tested.

Underlying issues are the following: what is the pre-

dictability of a drought based on the SPI for a 1-month rain-

fall accumulation period (SPI-1), what is the most useful

model between the Seasonal (SEAS) and the monthly EN-

Semble system (ENS) for forecasting 30-day cumulative pre-

cipitation, and what are the spatial and temporal variabilities

of the model’s ability? Adapted skill scores provide infor-

mation about the ability of the probabilistic models to ac-

curately forecast such kinds of extreme events. The paper is

organized as follows: the tools and methods used will be de-

tailed in Sect. 2 and the results will be discussed in Sect. 3.

Final conclusions are drawn in Sect. 4.

2 Data and methods

2.1 Precipitation

2.1.1 Observations

In this study, the combined gridded precipitation data set

from the ENSEMBLES project and ECA & D (Haylock
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et al., 2008; Van den Besselaar et al., 2011, E-OBS Version 5)

was used which is available from 1950 onwards and is con-

tinuously updated. The spatial resolution of the data set is

0.25◦ by 0.25◦, which was up-scaled by averaging the cumu-

lative precipitation to a 1◦ by 1◦ grid as this analysis focuses

on large-scale droughts.

Validation of the original data sets has been performed by

Pereira et al. (2013) and Sunyer et al. (2013), who found that

data sets from ECA & D show higher values for extreme pre-

cipitation, and E-OBS tends to over-smooth the data. This

can generate some problems when analysing intense precipi-

tation events but appears of secondary importance in drought

analysis. Daily precipitation values have been aggregated to

monthly values to provide comparison with monthly fore-

casts. To be consistent with the data provided by the ensem-

bles from ECMWF, a common period of the hindcast that

covers the period from 1992 to 2013 is used to calculate the

precipitation anomalies.

2.1.2 Forecasts

Two sets of coupled ensemble forecasting systems are pro-

vided by ECMWF to forecast 1 month ahead: an extended

range monthly forecast and a seasonal forecast.

The ECMWF monthly (32-day) extended range ensem-

ble forecasting system (ENS hereafter; Vitart, 2004) has

been routinely issued twice a week since October 2011. This

model is the latest version of the ECMWF Integrated Fore-

casting System. For lead times up to day 10 the model is not

coupled to the ocean and has a resolution of∼ 32 km (T639).

It is forced by persistent sea-surface temperature anomalies.

Beyond a lead time of 10 days the resolution of the model

is coarser (T319, 64 km); however, it is coupled to an ocean

model. The vertical resolution remains unchanged during the

entire simulation at 62 vertical levels. ECMWF provides a

back statistic (hindcasts) for ENS, which is a five-member

ensemble starting on the same day and month as each Thurs-

day’s real-time forecast for each of the past 20 years. For a

more detailed description see Vitart (2014).

The second ECMWF ensemble system used in this study is

the seasonal forecast called System 4 (Molteni et al., 2011;

SEAS hereafter), which is launched once a month (on the

first day of the month). It has lead times up to 13 months and

a resolution of T255 (80 km). This model is the 2011 ver-

sion of the Integrated Forecast System, with 91 vertical lev-

els. SEAS provides a back statistic, which is a 15/51 member

ensemble (number depends on month) identical to SEAS for

every month from 1980 onwards. In this study, only the first

forecast month is used.

SEAS and ENS are composed of 50 members, which are

generated by perturbing initial conditions and physical ten-

dency (Molteni et al., 1996; Weisheimer et al., 2014) and one

unperturbed member. Both data sets were re-gridded to a 1

square degree resolution using a mass conservative interpo-

lation. The two systems will be compared over their hindcast

Table 1. ENS and SEAS configurations for the hindcast and the

forecast periods.

Periods Evaluation period ENS SEAS

Hindcasts Nov 1992 to Oct 2012 5 members 15/51 members

Forecasts 1 Nov 2012 to 31 Oct 2013 51 members 51 members

periods as well as over a forecast period as can be seen in

Table 1. This allows for a larger sample size and enables a

more significant comparison.

However, despite this technique being robust and fre-

quently used, it also has a few disadvantages: the ensem-

ble size of the reforecasts is only five members instead of 51

members for the real-time forecasts. Ensemble size can have

an impact on skill scores, which needs to be corrected for.

Weigel et al. (2008) faced the same issue when they scored

the ECMWF reforecasts produced in 2006 and used a correc-

tion of the probabilistic skill score which takes into account

the ensemble size.

2.2 Drought detection

In this study the Standardized Precipitation Index (SPI) is

used to detect droughts. It was developed by McKee et al.

(1993) and is currently used in many scientific studies or op-

erational systems (Guttman, 1999; Khan et al., 2008; Du-

tra et al., 2013, 2014). SPI has the advantage that it pro-

vides easily understandable information about the precipita-

tion anomaly. In addition it is also very flexible, allowing cal-

culations aggregated over different spatial scales (from sta-

tion data to large-scale area) as well as temporal domains

(from 10-day to several months’ cumulative precipitation –

Mishra and Desai, 2006; Cacciamani et al., 2007).

This study focuses on the monthly timescale and therefore

the SPI was calculated using monthly accumulated precipita-

tion (SPI-1). The SPI is usually computed by fitting a prob-

ability density function (often a Gamma distribution) to the

data (Lloyd-Hughes and Saunders, 2002; Edossa et al., 2010;

Dutra et al., 2013; Guy Merlin and Kamga, 2014). Through

the application of an inverse normal (Gaussian) function,

data are transformed into normal space with a mean equal

to 0 and a standard deviation (SD) equal to 1. It is important

that the hypothesis that the data can be approximated by a

Gamma distribution is tested to ensure that all conclusions

are valid. The Gamma function cannot be fitted when only

a low number of data points (events) or very low data val-

ues (precipitation) exist because numerical convergence of

the optimization process cannot be achieved. Therefore, the

SPI methodology cannot be applied in very arid regions.

The SPI value can be broken down into different classes

(WMO, 2012): normal conditions from −1 to 1; moderate

drought with SPI <−1; severe droughts with SPI <−1.5;

and extreme drought for SPI <−2. The time series of the

analysed forecasts in this paper are too short to justify any
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Table 2. List of the 10 methods used to provide a Boolean index for

drought forecasting using an ensemble system.

Name Definition

13th percentile (Q13) Member located at the 13 % of the CDF

23th percentile (Q23) Member located at the 23 % of the CDF

Median (MED) Member located at the 50 % of the CDF

77th percentile (Q77) Member located at the 77 % of the CDF

88th percentile (Q88) Member located at the 88 % of the CDF

Large spread (SpL) Sum of the extreme members (Q13+Q88)

Low spread (Spl) Sum of the members (Q23+Q78)

Dry spread (SpD) Sum of the dry members (Q13+Q23)

Flood spread (SpF) Sum of the wet members (Q77+Q88)

Mean Ensemble mean

focus on an SPI lower than −2 (last 2.3 % of the distribu-

tion). Therefore, this study focuses on moderate and severe

droughts only. One strong advantage of this method is that

it produces an unbiased product with a homogeneous rank

histogram (Talagrand diagram) of the observed precipitation

onto the forecasted precipitation (not shown).

2.3 Deriving a decision from probabilistic forecasts

One of the main objectives of this work is to provide deci-

sion makers and end users with a simple and robust Boolean

index to forecast a drought based on a probabilistic forecast-

ing system. Several methods to select the Boolean solution

are tested and are compared with a deterministic model (de-

fined here as the unperturbed member of the ensemble). Also,

a comparison against a climatological forecast will be per-

formed. Methods to derive this index are given in Table 2 and

can be categorized into three types: individual, where the in-

dex is based on an individual member or percentile; partially

integrative, where the sum of particular individual members

or percentiles are used; and integrative which is represented

by the ensemble mean. The individual types should be seen

as providing complementary information giving information

about the intensity of the SPI-1, but also the distribution of

the members.

The individual types have been subdivided into five classes

representing dry members (Q13, Q23), wet ones (Q77, Q88)

or the median. The extreme members of the distribution are

not used to avoid outliers generally associated with ensemble

systems (Lavaysse et al., 2013). For each method, a threshold

was defined. A SPI lower than −1 or −1.5 will select 16 and

6.7 % respectively of the normalized series. Therefore, to be

coherent, the thresholds have been defined to select the same

number of events.

2.4 Evaluation scores

A plethora of scores to evaluate probabilistic forecasts exist

(Nurmi, 2003) and in this study we have chosen scores which

are suitable for drought forecasting.

The relative operating characteristic (ROC) score was pro-

posed by Mason (1982) and plots the false alarm rate against

the hit rate. The objective of that score is to calculate the abil-

ity of the forecast to discriminate between events and non-

events. This score is not bias sensitive to the forecast and can

be considered as a measure of potential usefulness because it

is conditioned by the observations (i.e. given that a drought

occurred, what was the corresponding forecast?). The area

under the ROC curve can be calculated and ranges between

0 and 1. Higher numbers indicate a better forecast.

The reliability diagram, which is conditioned on the fore-

casts, is a good complementary score to the ROC because it

assesses the average agreement between the forecast values

and the observed values. In a reliability diagram the forecast

probability is plotted against the observed relative frequency

(Nurmi, 2003). A perfect score is associated with the 1 : 1

line, the climatology score (i.e. no resolution) corresponds

to the mean observed frequency (i.e. observed relative fre-

quency of y = 0.159 for SPI <−1).

The accuracy of the probability forecasts is assessed using

the Brier score (Brier, 1950):

BSf =

r∑
k=1

m∑
j=1

(pf(j,k)− Io(j,k))2, (1)

where pt is the probability that was forecast, Io the obser-

vation of the event (1 or 0 if it does happen or not), r the

number of classes (here 2) and m is the number of forecast-

ing instances. A skill score can be derived by comparing the

Brier score to climatology.

BSS= 1−BSf /BSc. (2)

The Brier skill score ranges from −inf to 1. The higher the

score the more skilful is the forecast and any negative val-

ues indicate that the climatological forecast outperforms the

probabilistic forecast. The scores above are complemented

by the correlation of the ensemble mean and the root mean

square error of the ensemble mean as those are frequently

used in the evaluation of seasonal forecasts.

Several scores exist which deal with the contingency ta-

ble and where the forecasted and observed solutions are

Booleans. In this paper, we have used five of them. The prob-

ability of detection (POD, perfect= 1) is the ratio of the total

number of observed events that have been forecasted.

POD=
hits

hits + misses
. (3)

The false alarm rate (FAR, perfect= 0) is the fraction of the

forecasted events which actually did not occur.

FAR=
false alarms

hits + falsealarms
. (4)

The extreme dependency score (EDS, see Eq. 5) is an infor-

mative assessment of skill in deterministic forecasts of rare
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events that can converge to different values for different fore-

casting systems and furthermore it does not explicitly depend

upon the bias of the forecasting system. (Ferro and Stephen-

son, 2011).

EDS=
2log( hits+misses

total
)

log( hits
total

)
− 1. (5)

The percent correct (PC, perfect= 1) is the ratio of good

forecasting events in relation to the total number of events.

PC=
hits+ correct negative

total
. (6)

Finally, the Gilbert score balances POD and PC cases (Jol-

liffe and Stephenson, 2003; Hogan et al., 2010) and measures

the fraction of observed and/or forecasted events that were

correctly predicted, and adjusted for hits associated with ran-

dom chance.

GSS=
hits− hitsrandom

hits+misses+ falsealarms− hitsrandom

. (7)

3 Results

3.1 Evaluation of the SPI calculation

The sensitive part of the SPI calculation is the fitting of a

theoretical distribution to the empirical distribution. In this

study, the Gamma distribution is fitted to the probability den-

sity function of monthly precipitation. It is therefore neces-

sary to set a threshold at which a minimum cumulative pre-

cipitation can be considered as significant.

Different thresholds were tested (0, 1, 5, 10 and 20 mm,

not shown) and it was decided that only monthly precip-

itations larger than 10 mm are considered significant. This

threshold allows the retention of a large number of events

and the discarding of events or regions with non-significant

monthly accumulated rainfall. As outlined in the methodol-

ogy, fitting a Gamma distribution to precipitation data relies

on an adequate sample size (adequate with respect to the vari-

ability of the data). The Gamma distribution was fitted to

the distribution if a grid point possesses at least 66 % of val-

ues significantly larger than 0 (i.e. larger than 10 mm). That

ensures a minimum number of events to fit the distribution.

These thresholds allow for the removal of arid areas, where

the fitting of the Gamma distribution resulted in biased values

due to the low spread and low sampling of the time series.

The performance of the fitting procedure and of the under-

lying assumptions can be analysed by investigating the re-

sulting SPI-1 distribution. This was done by calculating the

integral of the differences between the fitted Gamma distri-

bution and the empirical distribution. Zero values are con-

sidered as perfect values (no bias of the SPI-1 calculated),

whereas positive or negative values indicate bias and there-

fore question the validity of the fitting procedure. In Fig. 1

Figure 1. Bias of the SPI-1 calculated between the fitted Gamma

distribution and the observed monthly cumulative precipitation (see

text for more details). Regions in white are considered as too dry

to fit this distribution. Regions where the bias becomes significantly

different to 0 (non-hatched areas) could generate bias in the SPI

calculation.

the bias of the Gamma distribution over the entire globe is

shown. It can be seen that the Gamma distribution is well

adapted for most of Europe (see also Stagge et al. (2015)).

Nevertheless, the low precipitation amounts over the

southern part of Spain can create some bias in the fitting.

This is especially true during the summer season and there-

fore the assumptions for fitting the Gamma distribution are

not valid for the entire year. This analysis shows that it will

be necessary to adapt the method in particular over dry ar-

eas, for example, by focusing the study only during the rainy

seasons.

3.2 Validation during the hindcast period

This evaluation is based on the hindcast period (see Table 1)

of ENS and SEAS. It allows a long-term evaluation using the

same version of the model. The correlation and root mean

square error of the ensemble means are displayed in Fig. 2.

The mean correlation (0.32) and the mean RMSE (1.02) for

ENS is better than that for SEAS (0.05 and 1.45 respectively,

not shown). Neither the correlation nor the RMSE are signif-

icantly different from zero suggesting that a mean monthly

forecast has no skill. In addition, the spatial variability is low,

meaning that there is no significant spatial difference in the

ability of the model to predict the SPI-1, on average. Note

that the correlation of the SPI-1 is comparable to the anomaly

correlation coefficient (ACC) that removes the seasonal cy-

cle. Indeed, the SPI-1 is the anomaly of a monthly precipita-

tion in relation to the climatology of that specific month. So

this correlation coefficient is much more robust but also less

likely significant.

The SPI-1 values of individual ensemble members and ob-

servations were analysed in bins to assess whether these re-

sults are also valid for extreme events. Here, the individual
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Figure 2. (a) Correlation of the forecasted (using the mean of the ensemble) and observed SPI-1
during the hindcast period (from November 1992 to November 2012). (b) same but for the RMSE.
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served SPI-1 (colour bars) over Europe using the hindcast period in

relation to the theoretical distribution. Results are standardized by

the theoretical normal distribution of events.

ability (for each member independently) was assessed by de-

composing the SPI-1 forecasted and observed over Europe

during the hindcast period in 10 classes (from SPI-1 lower

than −2 to SPI-1 larger than +2, at intervals of 0.5). The

frequency in each bin naturally follows the Gamma distribu-

tion which generates a large number of cases centred around

0. This distribution was normalized by computing the ratio

between the empirical distribution and the theoretical distri-

bution. The result is shown in Fig. 3. The figure shows that

the more a drought is forecasted, the more it is observed (red

bars). In addition it has to be noted that the distribution is

highly non-symmetric. This indicates that the forecasts of

extreme dry events are more accurate than the forecasts of

extreme wet events. This result could be explained by the

usually large spatial and temporal scales of drought events

that are better predictable by a global model even 1 month

ahead.

3.3 Validation during the forecast period

The analysis of the forecast period from November 2012 to

November 2013 largely confirms earlier findings in this pa-

per of the forecasts over a significantly longer temporal pe-

riod, but allows for a more detailed investigation of the dis-

tributions due to the larger ensemble number (see Table 1).

Figure 4a compares the behaviour of the ENS members

during observed extreme wet and dry events. In both cases,

the normal distributions of the ranked ensemble members are

quite similar. The only difference is the shift towards nega-

tive values of forecasted SPI when a drought is observed (red

line) in comparison with when wet events are observed (blue

line). Nevertheless, the SD (indicated by the barlines) high-

lights that there is no significant difference (significance level

of 0.9) between the two events. It is interesting to observe

that the value of the ensemble mean increases with the in-

crease of the observed SPI-1 (black line in Fig. 4b), whereas

the spread of the ensemble (defined as the SD) shows little

sensitivity (yellow line in Fig. 4b). It can be concluded that

only the ensemble mean displays a significant difference be-

tween wet and dry anomalies, whilst there is no such relation

in the SD. In SEAS, the same trends are observed but the dif-

ference between the two conditional distributions is reduced

(Fig. 4c and d). This indicates that ENS has a stronger reso-

lution than SEAS, and therefore a greater ability to discrimi-

nate events with different frequency distributions.

These results are confirmed by analysing the ROC curve.

Over the European continent, the ROC curves show an im-

provement in relation to the no-skill curve (1 : 1 in Fig. 5).

The ROC area is slightly better for ENS than for SEAS (+0.4

and +0.2 for SPI-1 <−1 and SPI-1 <−1.5, respectively).

Both ENS and SEAS present a positive but low reliabil-

ity for detection of SPI-1 <−1 (Fig. 6). Indeed, the observed

relative frequencies increase with the increase in the fore-

cast probabilities. The distribution of cases per percentage

(not shown) indicates more events with a large percentage

of members associated with a drought in ENS rather than

SEAS. This result indicates the better consistency between

the members in ENS to forecast an extreme rainfall deficit

than in a case of SEAS. Using ENS, several events are fore-

casted with more than 93 % of members associated with a

drought forecasting, whereas using SEAS, the maximum is
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Figure 4. (a) Mean SPI-1 forecasted of ranked members using ENS during observed drought or
floods (SPI-1 < -1.5 and SPI-1 > 1.5 respectively). (b) Ensemble mean and standard deviation of
the SPI-1 forecasted using ENS following the associated observed SPI-1. (c) and (d) as (a) and (b)
but using SEAS.
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Figure 4. (a) Mean SPI-1 forecasted of ranked members using ENS during observed drought or floods (SPI-1 <−1.5 and SPI-1 > 1.5

respectively). (b) Ensemble mean and SD of the SPI-1 forecasted using ENS following the associated observed SPI-1. (c) and (d) are the

same panels as (a) and (b) but using SEAS.
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Figure 5. ROC curve using ENS and SEAS (red and black lines respectively) for the period from
November 2012 to November 2013 over Europe to detect a drought defined as an SPI lower than -1
(a) or lower than -1.5 (b). The ROC area values for the different spatial resolutions are indicated.
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Figure 5. ROC curve using ENS and SEAS (red and black lines respectively) for the period from November 2012 to November 2013 over

Europe to detect a drought defined as an SPI lower than −1 (a) or lower than −1.5 (b). The ROC area values for the different spatial

resolutions are indicated.

81 %. The ENS and SEAS systems are better than climatol-

ogy, achieving values of 0.14 and 0.12 respectively. But, here

the difference between ENS and SEAS is not significant.

3.4 Sensitivity to drought scales

All analysis so far has been performed on a scale of 1◦ by

1◦; however, the sensitivity to different resolutions needs to

be analysed, because the impacts of large-scale droughts will

be stronger. Figure 5 shows SPI-1 values smoothed to 3 and

5 square degrees, using a simple upscaling method based on

the average of the values. The resolution of about 1 square

degree has been kept to compare the impact of the resolution

in the native grid. The results show a slight improvement of

the ROC area with a coarser resolution (broken and dotted
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Figure 6. Reliability diagrams for drought detection defined as a SPI-1 lower than -1 using ENS
(top panels) and SEAS (bottom panels) in the period from November 2012 to November 2013. The
spatial resolution is one square degree (left panels) and 5 square degrees (right panels).
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Figure 6. Reliability diagrams for drought detection defined as a SPI-1 lower than −1 using ENS (top panels) and SEAS (bottom panels)

in the period from November 2012 to November 2013. The spatial resolution is 1 square degree (left panels) and 5 square degrees (right

panels).
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Figure 7. ROC anomaly (in %) in relation to the mean value of the ROC over the domain (equal to
0.67) for the period from November 2012 to November 2013 with drought defined as an SPI-1 < -1
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Figure 7. ROC anomaly (in %) in relation to the mean value of the

ROC over the domain (equal to 0.67) for the period from Novem-

ber 2012 to November 2013 with drought defined as an SPI-1 <−1.

lines in Fig. 5). The smoothed signal favours the large-scale

signatures that are better represented in models than small-

scale structures of droughts. The effect of spatial upscaling

can also be seen in the ROC results as a little positive im-

pact of SEAS for the largest forecast probabilities (Fig. 6d).

However, as mentioned previously, the number of events in

these cases is low. The effect has been quantified using the

BSS (see Eq. 2), which goes up to 0.17 and 0.14 respectively

for the 5 ◦ smoothed signal.

3.5 Spatial and seasonal variabilities

3.5.1 Spatial variability

The analysis so far has ignored the spatial and seasonal scale.

Figure 7 shows the ROC anomaly for the forecast period,

which is the ROC area for each grid cell in relation to the av-

erage (0.67 for ENS). The anomaly is preferred to the raw

value to highlight regions where the ROC is improved or

reduced. A maximum variability of 20 % can be observed.

For the hindcast period (not shown), this variability is much

lower at ∼ 6 %. There is a difference in spatial patterns be-

tween the two periods, suggesting that the spatial patterns are

not significant and are mainly driven by the extreme cases

encountered during the period.

3.5.2 Seasonal variability

A seasonal decomposition is used to highlight the tempo-

ral variabilities. ROC scores and curves were independently

calculated for the autumn (September to November), winter
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Figure 8. Seasonal decomposition of the ROC curves for drought forecasting (with the 5 square
degree smoothing) using ENS (left) and SEAS (right) over Europe for the period from November
2012 to November 2013 with drought defined as an SPI-1 < -1
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Figure 8. Seasonal decomposition of the ROC curves for drought forecasting (with the 5 square degree smoothing) using ENS (a) and SEAS

(b) over Europe for the period from November 2012 to November 2013 with drought defined as an SPI-1 <−1.

(December to February), spring (March to May) and sum-

mer (June to August) seasons and are displayed in Fig. 8 (for

SPI-1 <−1).

The four ROC areas are very similar, and the four distribu-

tions are identical for ENS, meaning that the skill to forecast

droughts is identical throughout the year. In contrast, SEAS

shows some differences between the seasons, with a small

improvement in the forecast during the autumn season. Iden-

tical interpretations can be derived for the SPI-1 <−1.5 and

are therefore not shown.

3.6 Index performance

Figure 9 shows the POD (see Eq. 3) and the FAR (see Eq. 4)

for ENS and SEAS. POD indicates that, on average, one in

three drought events over Europe is correctly forecasted 1

month in advance. This is significantly better than the cli-

matology (16 %) and better than the deterministic forecast

(around 25 %, green line in Fig. 9).

The importance of the drought duration has also been

tested. The scores were calculated independently for a

drought onset (first SPI-1 lower than thresholds), persistence

(consecutive SPI-1 lower than the threshold), or end of the

drought (first SPI-1 above the threshold). First, the duration

of a large majority of SPI-1 lower than −1 (more than 80 %)

is 1 month (isolated values, dry spell). The scores display a

slight increase of the score for the persistent droughts (con-

dition unchanged); for the median the POD score increases

from 0.33 to 0.36. But the difference is not significant ac-

cording to the t test.

The highest POD is achieved by using the 13 percentile

(7th member of the ranked ensemble distribution), and the

product using the Q13 and Q23 (noted SpD). The mean of

the ensemble (last point on the right of each panel), which is

used widely, is not the best method for detecting droughts.

The POD values of the wettest members of the ranked dis-

tribution (noted Q77 and Q88 in Fig. 9) give the worst results

of all methods, meaning that there is a low consistency be-

tween the extreme dry and wet members. The FAR displays

a low variability between the methods, but every single one

is better than the deterministic solution (red lines). It is also

worth noting that, using the ENS, the driest members are as-

sociated with a decrease of FAR in relation to the dry mem-

bers. This can be explained by the previous scores, which

show a larger consistency between the members. However, it

could also be due to a technical effect, since the number of

events selected is constant, these scores could be dependent

on each other.

The highest EDS (see Eq. 5) is achieved for the driest

members (Q13 and Q23, Fig. 10), whereas the wettest mem-

bers (Q77 and Q88) have the lowest scores. The score of the

ensemble mean is better than that of the median. Even if the

POD and FAR differences are partially statistically signifi-

cant, the improvement of the EDS for the driest members is

significant for all differences larger than 0.04.

ENS and SEAS are reliable (see Fig. 6) and hence a poten-

tial method for drought forecasting could be simply based on

the percentage of ensembles predicting a drought. In total,

10 different percentage thresholds were selected. Figure 11

shows that the percentage correct is increasing with the in-

crease in the percentage used for both models (black points

in Fig. 11a and c) which is in agreement with the positive

reliability. This means that with more members forecasting

a drought, the chance to observe one is increased. However,

with an increasing threshold, the number of misses also in-

creases (provided by the POD value, red points in Fig. 11a

and c). For example, if the threshold to determine a drought is

defined with the 10 % of members associated with a drought

forecasting, around 80 % of droughts that occurred were cor-

rectly detected (red points), but more than 50 % of those

forecasted are associated with false alarms. Contrarily, if the

threshold of detection is defined with a percentage larger than

70 %, the percentage correct is about 85 %, but the POD is

close to 3 %. Based on this result, the user can tune the per-

centage depending on an acceptable false alarm ration and

misses.

The maximum Gilbert score (Fig. 11b and d, see Eq. 7) is

achieved for a threshold of 30 % for ENS and 40 % for SEAS.
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Figure 9. Probability of detection (POD, in green) and False alarm ratio (FAR, in red, per- fect=0)
for different methods used to detect drought (x-axis), using ENS (left panel) and SEAS (right panel).
Lines indicate the scores of the deterministic model (unperturbed member of the ensemble).
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Figure 9. Probability of detection (POD, in green, perfect= 1) and false alarm ratio (FAR, in red, perfect= 0) for different methods used

to detect drought (x axis), using ENS (a) and SEAS (b). Lines indicate the scores of the deterministic model (unperturbed member of the

ensemble).
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Figure 10. Extreme Dependency Score (EDS) for the 10 methods used to forecast a drought (x-axis,
see table 1 for more details) using the ENS (left) and SEAS (right) ensemble system. Black lines
indicate the score of the unperturbed member.
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Figure 10. Extreme dependency score (EDS) for the 10 methods used to forecast a drought (x axis, see Table 1 for more details) using the

ENS (a) and SEAS (b) ensemble systems. Black lines indicate the score of the unperturbed member.

In that case, 40 % of droughts observed are forecasted and

75 % of forecasts are hits. The number of missed events be-

comes too high with a larger percentage threshold, whereas

for lower percentage thresholds the errors are associated with

false alarms.

3.7 Assessing the uncertainties of the forecasts

Several previous studies (He et al., 2009; Palmer, 2000;

Georgakakos et al., 2004; Doblas-Reyes et al., 2009) have

shown that probabilistic simulations can provide additional

information to assess the uncertainties of the simulation.

The idea here is to estimate the quality of the forecast,

based on a specific behaviour of the simulation. So the char-

acteristics of the ensemble in the four different cases of the

contingency table have been analysed. This table has been

built using the threshold of SPI-1 <−1 to detect a drought

and the forecast method is based on the median of the mem-

bers. The mean SPI-1 of the 51 ranked members for the four

cases is illustrated in Fig. 12. During correct negative events

(i.e. events without droughts forecasted or observed), where

more than 70 % of the events are located, a normal distribu-

tion is observed, with a mean slightly larger than 0. During

the missed cases, the median is very close to 0 and the distri-

bution of the ranked members is very close to the ensemble

mean.

In addition, the spread of the members is displayed (barb

lines) and shows the increase of the spread for extreme mem-

bers. The fact that the two distributions become undistin-

guishable means that the response of the model is no dif-

ferent to a normal distribution and it is not significant to find

a specific behaviour of the model to assess the missed events.

Finally, the distributions of the members during hits and

false alarms are compared. In that case, there is no signifi-

cant difference. The average and the distribution of the mean

SPI-1 of the ensemble are quite similar. These results are
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Figure 11. (a) POD (red) and percentage correct (black) using different percentage of members to
forecast a drought event using ENS. (b) Gilbert score (see text for more details) following the per-
centage used to forecast a drought using ENS. Lines indicate the score of the deterministic model
(unperturbed member). (c) and (d) same as (a) and (b) using SEAS.
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Figure 11. (a) POD (red) and percentage correct (black) using different percentage of members to forecast a drought event using ENS.

(b) Gilbert score (see text for more details) following the percentage used to forecast a drought using ENS. Lines indicate the score of the

deterministic model (unperturbed member). (c) and (d) are the same panels as (a) and (b) using SEAS.DisussionPaper|DisussionPaper|DisussionPaper|DisussionPaper|
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Boolean drought detection methods.
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Figure 12. Mean SPI-1 and SD of the ranked members follow-

ing the four conditions in the contingency table (see Table 2 and

text for more details): hits (green), false alarm (red), misses (blue)

and correct negative (black line), using ENS. Vertical lines indicate

the spread of the members used for the Boolean drought detection

methods.

in agreement with Table 3, which quantifies the ensemble

spread for each case in the contingency table. Based on these

results, it appears impossible to evaluate the uncertainties of

the ensemble simulation associated with a Boolean decision.

4 Discussion

Most drought studies use SPI with 3 to 6 months or even

longer accumulation periods for drought monitoring and

characterization. To forecast droughts over such long-term

periods a very accurate and reliable atmospheric model is

required. Since it is well known that the current reliability

of precipitation forecasts decreases drastically after the first

month, the benefit of using a lead time of 2 months or more

is, however, not obvious (Dutra et al., 2013).

This paper, therefore, looks as a first step at the possibil-

ities of providing a reliable 1-month forecast over the Euro-

pean continent. This information, in combination with moni-

toring data such as satellite or in situ measurements that pro-

vide an accurate characterization of ongoing drought condi-

tions (e.g. during the last 2 months), can provide the best esti-

mate of near future conditions. However, such a combination

of monitoring and forecasting data will also not allow one to

look more than 1 month ahead and an amalgamation of both
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Table 3. Contingency table (in percentage) obtained using the me-

dian of ENS to forecast a drought. The definition of the drought ob-

served is an SPI-1 lower than −1 and a drought is forecasted when

the ensemble median is lower than the 16th percentile. The second

values of each case indicate the ensemble spread and its SD is given

in brackets.

Drought Observed

Yes No

Drought Yes 4.4 %/2.31 (0.4) 10.7 %/2.37 (0.4)

Forecasted No 10.4 %/1.99 (0.4) 74.5 %/1.88 (0.3)

information types would bias the testing of the forecast skill,

which is the intention of this paper. Several meteorological

services or agencies, such as the Bureau of Meteorology in

Australia or the United States National Drought Mitigation

Center, provide relevant monitoring data as well as a 1-month

outlook. For the case of Europe, the European Drought Ob-

servatory (EDO) at the Joint Research Centre of the Euro-

pean Commission provides relevant monitoring data, but up

to now has lacked a forecast beyond 7 days.

A 1-month forecast with a good reliability is considered to

be a very valuable product for decision makers as it provides

information on the probability of occurrence of a dry spell

(in case of ongoing normal conditions) and of the probable

persistence or end of a drought (in case of an ongoing precip-

itation deficit). Before providing such information, it is how-

ever necessary to assess the quality of the forecasts, which

was the first aim of this study. The second objective was to

define the most robust (Boolean) method to activate alert lev-

els for the end users of the forecast information. Both steps

are essential in an operational early warning environment.

5 Conclusions

This study provides the first assessment of the predictabil-

ity of meteorological droughts over Europe and of the ability

to issue an early warning of such droughts with a 1-month

lead time. The analysis is based on the 1-month forecast of

the SPI-1 from the precipitation outputs provided by two

ECMWF ensemble systems. In a first step the ability to fore-

cast SPI-1 from the ensemble outputs was tested, showing

that

– the reliability of the ensemble is better than the clima-

tology,

– the spatial variability of the scores can reach up to 20 %

over Europe and the seasonal variability is not signifi-

cant, and

– ensemble models are better at forecasting large-scale

droughts.

In a second step the ability to provide a robust Boolean in-

dex for drought forecasting was analysed. The best method

is defined by using a threshold of 30 % of ensemble mem-

bers associated with a drought. In that case, slightly more

than 40 % of the droughts observed are forecasted correctly

1 month ahead, with only 25 % of false alarms. This is signif-

icantly better than using the climatology (16 %) or the deter-

ministic models (around 25 %). Finally, this study has shown

that there is no possibility of providing uncertainties associ-

ated with the Boolean index.

By providing the first assessment of meteorological

drought forecasting in Europe, this work will be particu-

larly useful by as a benchmark comparison for future stud-

ies using, for example, statistical weather prediction meth-

ods based on atmospheric predictors, which are better repre-

sented in the seasonal models. As a follow-up of the analysis

presented in this paper work, we will assess the advantages

of predicting droughts by analysing specific weather types

that are related to the occurrence and persistence of droughts

in Europe (Kingston et al., 2015). It could further be useful

to investigate the use of moving windows of 10 day cumula-

tive precipitation to detail the temporal behaviour of the fore-

casted SPI-1. As the forecast skills are better for short lead

times, an SPI-1 lower than −1, explained by a strong de-

crease in precipitation at the beginning of the period, should

be more reliable.
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