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Abstract

A match-stick graph is a plane geometric graph in which every edge has length 1 and no two
edges cross each other. It was conjectured that no 5-regular match-stick graph exists. In this
paper we prove this conjecture.

1 Introduction

One of the possibly best known problems in combinatorial geometry asks how often the same
distance can occur among n points in the plane, see e. g. [1]. Via scaling we can assume that the
most frequent distance has length 1. Given any set P of points in the plane, we can define the so
called unit-distance graph in the plane, connecting two elements of P by an edge if their distance
is one. If we additionally require that the edges are non-crossing, then we obtain another class of
geometrical and combinatorial objects:

Definition 1. A match-stick graph is a plane geometric graph in which every edge has length 1
and no two edges cross. (See for example the Harborth Graph in Figure 1.)

Figure 1: The Harborth Graph
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We call a match-stick graph r-regular if every vertex has degree r. In [4] the authors consider
r-regular match-stick graphs with the minimum number m(r) of vertices. Obviously we have
m(0) = 1, m(1) = 2, and m(2) = 3, corresponding to a single vertex, a single edge, and a triangle,
respectively.

The determination of m(3) is an entertaining amusement. For degree r = 4 the exact determi-
nation of m(4) is unsettled so far. The smallest known example is the so called Harborth graph,
see e. g. [3], yielding m(4) ≤ 52 (see Figure 1).

Due to the Eulerian polyhedron formula every finite planar graph contains a vertex of degree
at most five so that we have m(r) = ∞ for r ≥ 6. For r = 5 it was open whether m(5) is finite,
although it was conjectured (or believed) by several people that a finite 5-regular match-stick graph
does not exist. In this paper we prove this conjecture.

We would like to mention the recent proof of the Higuchi conjecture [2] – a result of similar
flavor where related techniques are applied.

2 5-regular match-stick graphs

Theorem 1. No finite 5-regular match-stick graph does exist.

Proof. Suppose to the contrary that there is such a graph M which we consider also as a planar
map. Without loss of generality we assume that this graph is connected and denote by V the
number of its vertices, by E the number of its edges, and by F the number of faces in the planar
map M . By Euler’s formula we have V −E + F = 2. For every k ≥ 3 we denote by fk the number
of faces in M with precisely k edges.

We observe that 2E =
∑

kfk = 5V and F =
∑

fk. Therefore,

−6 = −3V + E + 2E − 3F = −3V +
5

2
V +

∑

kfk − 3
∑

fk = −
1

2
V +

∑

(k − 3)fk. (1)

We begin by giving a charge of −1

2
to each vertex and by giving a charge of k − 3 to each face

in M with precisely k edges. By (1) the total charge of all the vertices and faces is negative. We
will reach a contradiction by redistributing the charge in such a way that eventually every vertex
and every face will have a non-negative charge.

We redistribute the charge in the following very simple way. Consider a face T of M and a
vertex x of T . Let α denote measure of the internal angle of T at x. Only if α > π

3
we take a

charge of min
(

1

2
, 3

2π
α − 1

2

)

from T and move it to x (see Figure 2).

We now show that after the redistribution of charges every vertex and every face have a non-
negative charge. Consider a vertex x. Let ℓ denote the number of internal angles at x that are
greater than π

3
. As the degree of x equals to 5 we must have ℓ > 0. If due to one of these ℓ angles

we transfered a charge of 1

2
to x, then the charge at x is non-negative. Otherwise, note the the

sum of these ℓ angles is at least 2π − (5 − ℓ)π

3
= π

3
(ℓ + 1). Hence the total charge transfered to x

due to these angles is at least 3

2π

π

3
(ℓ + 1) − ℓ

2
= 1

2
. Here again we conclude that the charge at x is

non-negative.

Consider now a face T in M with k ≥ 3 edges. Assume first that T is a bounded face. The
initial charge of T is k − 3 ≥ 0. Therefore, if the charge at T becomes negative this implies that
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Figure 2: The distribution of a charge from a face T to its vertex x.

one of the internal angles of T is greater than π

3
. In particular T cannot be a triangle and thus

k ≥ 4. If k = 4, then T is a rhombus. If only two internal angles of T are greater than π

3
, then at

most a total charge of 1 was deduced from the initial charge of T , leaving its charge non-negative.
If all internal angles of T are greater than π

3
, then the total charge deduced from T is at most

3

2π
· 2π −

4

2
= 1, leaving the charge at T non-negative.

If k = 5 and the charge of T is negative after we redistribute the charges, then each of the
internal angles of T must be greater than π

3
and as the sum of the internal angles of T is equal

to 3π, the charge deduced from T amounts to at most 3

2π
· 3π −

5

2
= 2, leaving the charge at T

non-negative.

Finally if k ≥ 6, then the charge deuced from T is at most k

2
leaving a charge of at least

k − 3 − k

2
≥ 0.

It is left to consider the unbounded face S of M . If the number of edges of S is at least 6, we
are done as in the case of a bounded face. The cases where the unbounded face consist of at most
5 edges can be easily excluded. Another way to settle this issue is to observe that if S consists of
at most 5 edges, then the total charge deduced from S is at most 5

2
leaving the charge of S at least

−
5

2
(and in fact at least −

3

2
). We still obtain a contradiction as the sum of all charges should be

equal to −6 while only the unbounded face may remain with a negative charge that is not smaller
than −

5

2
.

3 Concluding remarks

It is interesting to note that Theorem 1 is not true if we consider it on the sphere. A match-stick
graph drawn on a sphere is a drawing of the vertices as points on the sphere and edges as great
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arcs connecting corresponding points, with the property that the lengths of all connecting arcs are
equal and no two arcs cross. The example of the icosahedron shows that 5-regular match-stick
graph may exist on a sphere (see Figure 3).

Figure 3: Icosahedron on a sphere (figure taken from www.grandunification.com).
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