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ABSTRACT

In this paper, we introduce the fourth fundamental forms for hypersurfaces in Hn+1 and space-like hyper-
surfaces in Sn+11 , and discuss the conformality of the normal Gauss map of the hypersurfaces in Hn+1 and
Sn+11 . Particularly, we discuss the surfaces with conformal normal Gauss map in H3 and S31 , and prove a
duality property. We give aWeierstrass representation formula for space-like surfaces in S31 with conformal
normal Gauss map. We also state the similar results for time-like surfaces in S31 . Some examples of surfaces
in S31 with conformal normal Gauss map are given and a fully nonlinear equation of Monge-Ampère type
for the graphs in S31 with conformal normal Gauss map is derived.

Key words: fourth fundamental form, conformal normal Gauss map, generalized Gauss map, duality

property, de Sitter Gauss map, Monge-Ampère equation.

1 INTRODUCTION

It is well known that the classical Gauss map has played an important role in the study of the surface theory

in R3 and has been generalized to the submanifold of arbitrary dimension and codimension immersed into
the space forms with constant sectional curvature (see Osserman 1980).

Particularly, for the n-dimensional submanifold x : M → V in space V with constant sectional cur-
vature, Obata (Obata 1968) introduced the generalized Gauss map which assigns each point p of M to

the totally geodesic n-subspace of V tangent to x(M) at x(p). He defined the third fundamental form of
the submanifold in constant curvature space as the pullback of the metric of the set of all totally geodesic

n-subspaces in V under the generalized Gauss map. He derived a relationship among the Ricci tensor of
the immersed submanifold and the first, the second and the third fundamental forms of the immersion.

Meanwhile, Lawson (Lawson 1970) discussed the generalized Gauss map of the immersed surfaces in S3,
and prove a duality property between the minimal surfaces in S3 and their generalized Gauss map images.

Epstein (Epstein 1986) and Bryant (Bryant 1987) defined the hyperbolic Gauss map for surfaces in H 3,
and Bryant (Bryant 1987) obtained a Weierstrass representation formula for constant mean curvature one
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4 SHUGUO SHI

surfaces with conformal hyperbolic Gauss map. Using the Weierstrass representation formula, Bryant also

studied the properties of constant mean curvature one surfaces. Using the hyperbolic Gauss map, Gálvez

and Martínez and Milán (Gálvez et al. 2000) studied the flat surfaces in H 3 with conformal hyperbolic
Gauss map with respect to the second conformal structure on surfaces (see (Klotz 1963) for the definition),

and obtained a Weierstrass representation formula for such surfaces.

Kokubu (Kokubu 1997) considered the n-dimensional hyperbolic space Hn as a Lie group G with a
left-invariant metric, and defined the normal Gauss map of the surfaces which assigns each point of the

surface to the tangent plane left translated to the Lie algebra of G. He also gave aWeierstrass representation
formula for minimal surfaces in Hn . On the other hand, Gálvez and Martínez (Gálvez and Martínez 2000)
studied the properties of the Gauss map of a surface� immersed into the Euclidean 3-space R3 by using the
second conformal structure on surface, and obtained a Weierstrass representation formula for surfaces with

prescribed Gauss map. Motivated by their work, the author (Shi 2004) gave a Weierstrass representation

formula for surfaces with prescribed normal Gauss map and Gauss curvature in H 3 by using the second
conformal structure on surfaces. From this, the surfaces whose normal Gaussmaps are conformal have been

found, and the translational surfaces with conformal normal Gauss map locally are given. In (Shi 2006), the

author classified locally the ruled surfaces with conformal normal Gauss map within the Euclidean ruled

surfaces, and studied some global properties of the ruled surfaces and translational surfaces with conformal

normal Gauss map.

Aiyama and Akutagawa (Aiyama and Akutagawa 2000) defined the normal Gauss map for space-like

surfaces in the de Sitter 3-space S31 , and gave a Weierstrass representation formula for space-like surfaces
in S31 with prescribed mean curvature and normal Gauss map.

The purpose of this paper is to study the conformality of the normal Gauss map for hypersurfaces in

Hn+1 and space-like hypersurfaces in Sn+11 , and to prove a duality property between the surfaces in H 3 and
the space-like surfaces in S31 with conformal normalGaussmap. The rest of this paper is organized as follows.
In the second section, we describe the generalized definition of the normal Gauss map for hypersurfaces

in Hn+1 and space-like hypersurfaces in Sn+11 (cf. Kokubu 1997, Aiyama and Akutagawa 2000). The

third section introduces the fourth fundamental forms for hypersurfaces in Hn+1 and Sn+11 , and obtains a

relation among the first, the second, the third and the fourth fundamental forms of the hypersurfaces. As an

application, we discuss the conformality of the normal Gauss map for hypersurfaces in Hn+1 and space-like
hypersurfaces in Sn+11 . By means of the generalized Gauss map of the surfaces in H 3 and S31 , the fourth
one proves a duality property between the surfaces in H 3 and the space-like surfaces in S31 with conformal
normal Gauss map. The fifth one gives a Weierstrass representation formula for space-like surfaces in S31
with conformal normal Gauss map, and the sixth one derives the fully nonlinear equation ofMonge-Ampère

type for space-like graphs in S31 with conformal normal Gauss map and classifies locally the translational
surfaces and the Euclidean ruled surfaces in S31 with conformal normal Gauss map. In the last section, we
state the similar results for time-like surfaces in S31 with conformal normal Gauss map.

2 PRELIMINARIES

Take upper half-space models of hyperbolic space Hn+1(−1) and de Sitter space Sn+11 (1)

Rn+1+ = {(
x1, x2, . . . , xn+1

) ∈ Rn+1|xn+1 > 0
}

An Acad Bras Cienc (2008) 80 (1)



THE HYPERSURFACES WITH CONFORMAL NORMAL GAUSS MAP IN Hn+1 AND Sn+11 5

with respectively Riemannian metric

ds2 = 1

x2n+1

(
dx21 + dx22 + · · · + dx2n+1

)
and Lorentz metric

ds2 = 1

x2n+1

(
dx21 + dx22 + · · · + dx2n − dx2n+1

)
(see Aiyama and Akutagawa 2000 or section 4).

Let M be a n-dimensional Riemannian manifold and x : Mn → Hn+1 (resp. x : Mn → Sn+11 ) be

an immersed hypersurface (resp. space-like hypersurface) with local coordinates u1, u2, . . . , un . In this
paper,we agree with the following ranges of indices: 1 ≤ i, j, k, . . . ≤ n and 1 ≤ A, B,C, . . . ≤ n + 1.
The first and the second fundamental forms are given, respectively, by I = gi jduidu j and II = hi j duidu j .
The unit normal vector (resp. time-like unit normal vector) of x(M) is

N = xn+1η1
∂

∂x1
+ xn+1η2 ∂

∂x2
+ · · · + xn+1ηn+1 ∂

∂xn+1
,

where η21 + η22 + · · · + η2n+1 = 1 (resp. η21 + η22 + · · · + η2n − η2n+1 = −1).
We have the Weingarten formula

∂ηA

∂uk
= 1

xn+1

(
ηn+1

∂xA
∂uk

− g jlhkl ∂xA
∂u j

) (
resp.

∂ηA

∂uk
= 1

xn+1

(
ηn+1

∂xA
∂uk

+ g jlhkl ∂xA
∂u j

))
.

Identitying Hn+1 and Sn+11 with Lie group (Kokubu 1997)

G =







1 0 · · · 0 log xn+1
0 xn+1 · · · 0 x1
...

...
. . .

...
...

0 0 · · · xn+1 xn
0 0 · · · 0 1




: (x1, x2, . . . , xn+1) ∈ Rn+1+



,

the multiplication is defined as matrix multiplication and the identity is e = (0, 0, . . . , 0, 1). The Rieman-

nian metric of Hn+1 and the Lorentz metric of Sn+11 are left-invariant, and

X̃1 = xn+1
∂

∂x1
, X̃2 = xn+1

∂

∂x2
, . . . , X̃n+1 = xn+1

∂

∂xn+1
are the left-invariant unit orthonormal vector fields. Now, the unit normal vector (resp. time-like unit
normal vector) field of x(M) can be written as N = η1 X̃1 + η2 X̃2 + · · · + ηn+1 X̃n+1. Left translating N to
Te(Rn+1+ ), we obtain

Ñ : M → Sn(1) ⊂ Te
(
Rn+1+

) (
resp. Ñ : M → Hn(−1) ⊂ Te

(
Rn+1+

))
,

Ñ = Lx−1∗(N ) = η1
∂

∂x1
(e)+ η2

∂

∂x2
(e)+ · · · + ηn+1

∂

∂xn+1
(e).

Call Ñ the normal Gauss map of the immersed hypersurface x : M → Hn+1 (resp. space-like hypersurface
x : M → Sn+11 ) (Kokubu 1997, Aiyama and Akutagawa 2000).

An Acad Bras Cienc (2008) 80 (1)



6 SHUGUO SHI

3 THE FOURTH FUNDAMENTAL FORM

DEFINITION. Let M be a n-dimensional Riemannian manifold. Call IV = 〈d Ñ , d Ñ 〉 the fourth funda-
mental form of the immersed hypersurface x : M → Hn+1 (resp. space-like hypersurface x : M → Sn+11 ),

where the scalar product 〈·, ·〉 is induced by the Euclidean metric of Rn+1 (resp. the Lorentz-Minkowski
metric of Ln+1).

THEOREM 3.1. Let M be a n-dimensional Riemannian manifold with Ricci tensor Ric. Let x : M → Hn+1

(resp. x : M → Sn+11 ) be an immersed hypersurface (resp. space-like hypersurface) with mean curvature
H = 1

n tr(II). Then

IV = η2n+1I− 2ηn+1II+ III (3.1)(
resp. IV = η2n+1I+ 2ηn+1II+ III

)
, (3.2)

where III = nH II − (n − 1)I − Ric (resp. III = nH II − (n − 1)I + Ric) is Obata’s third fundamental
form of x(M) (see Obata 1968).

PROOF. At first we prove the Theorem for Hn+1. Choose the normal coordinates u1, u2, . . . , un near
p ∈ M . By the Weingarten formula, we get

IV = 〈 d Ñ , d Ñ 〉 = ∂ηA

∂ui
∂ηA

∂u j
duidu j

= 1

x2n+1

(
ηn+1

∂xA
∂ui

− hik ∂xA
∂uk

)(
ηn+1

∂xA
∂u j

− h jl ∂xA
∂ul

)
duidu j

= (
η2n+1δi j − 2ηn+1hi j + hikh jk

)
duidu j .

(3.3)

III = hikh jkduidu j is the third fundamental form (Obata 1968) and by the Gauss equation, III = nH II−
(n − 1)I− Ric. (3.1) is proved.

Next, similar to the above proof, for Sn+11 , we have

IV = (
η2n+1δi j + 2ηn+1hi j + hikh jk

)
duidu j . (3.4)

Similar to the proof of (3.1), we can prove (3.2).

Next, we consider the applications of these formulas (3.1)–(3.4). In the following of this paper, that

the normal Gauss map is conformal means that the fourth fundamental form is proportional to the second

fundamental form, i.e. IV = ρII for some smooth function ρ on M (Shi 2004, 2006).

THEOREM 3.2. Let M be a n-dimensional Riemannian manifold and x : M → Hn+1 (resp. x : M →
Sn+11 ) be an immersed hypersurface (resp. space-like hypersurface) without umbilics. Then the normal
Gauss map of x(M) is conformal if and only if at each point of M , there exists exactly two distinct
principal curvatures and the sectional curvature R(X ∧ Y ) = −1 + η2n+1 (resp. R(X ∧ Y ) = 1 − η2n+1),
where the vectors X and Y belong to different principal direction spaces.

An Acad Bras Cienc (2008) 80 (1)



THE HYPERSURFACES WITH CONFORMAL NORMAL GAUSS MAP IN Hn+1 AND Sn+11 7

PROOF. The case of Hn+1. For any point p ∈ M , let {e1, e2, . . . , en} be a local frame field so that (hi j ) is
diagonalized at this point, i.e. hi j (p) = λiδi j . By IV = ρII and (3.3), we get, for i = 1, 2, . . . , n, that

η2n+1 − 2ηn+1λi + λ2i = ρλi , (3.5)

i.e.

λ2i − (ρ + 2ηn+1)λi + η2n+1 = 0. (3.6)

Because x(M) has no umbilics, the equation (3.6) with respect to λi has exactly two distinct solutions λ
and µ and λµ = η2n+1. By the Gauss equation, one may prove R(X ∧ Y ) = −1+ λµ = −1+ η2n+1.

Conversely, choose the local tangent frame {e1, e2, . . . , en} and the dual frame {ω1, ω2, . . . , ωn} near
p, such that hi j = 0, i 	= j and h11 = h22 = · · · = hrr = λ 	= µ = hr+1r+1 = · · · = hnn at p.
Then η2n+1 = λµ. By (3.3),

IV = (
η2n+1 − 2ηn+1λ+ λ2

)(
ω21 + · · · + ω2r

)
+ (

η2n+1 − 2ηn+1µ+ µ2
)(
ω2r+1 + · · · + ω2n

)
= (

µ− 2ηn+1 + λ
)
λ

(
ω21 + · · · + ω2r

)
+ (

λ− 2ηn+1 + µ
)
µ

(
ω2r+1 + · · · + ω2n

)
= (

λ− 2ηn+1 + µ
)
II.

The sufficiency has been proved for Hn+1. Similarly, we can prove Theorem 3.2 for Sn+11 .

REMARK. By (3.5), we know that the normal Gauss map of all totally umbilical hypersurfaces except

totally geodesic hyperspheres in Hn+1 are conformal. Similarly, for space-like hypersurfaces in Sn+11 , since

ηn+1 	= 0, the normal Gauss maps of all totally umbilical space-like hypersurfaces except totally geodesic

space-like hypersurfaces are conformal.

For H 3 and S31 , by Theorem 3.2, we immediately get

THEOREM 3.3. Let M be a 2-dimensional Riemannian manifold and x : M → H 3 (resp. x : M → S31 )
be an immersed surface (resp. space-like surface) without umbilics. Then the normal Gauss map of x(M)
is conformal if and only if the Gauss curvature K = −1+ η23 (resp. K = 1− η23).

REMARK. In (Shi 2004, 2006), we assume that the second fundamental form is positive definite and

induces the conformal structure on the surfaces in H 3. Here, the assumption with respect to the positive
definite second fundamental form is dropped.

THEOREM 3.4. Let M be a n-dimensional Einstein manifold and x : M → Hn+1 (resp. x : M → Sn+11 ) be
an immersed hypersurface (resp. space-like hypersurface) with non-degenerate second fundamental form
and without umbilics. If the normal Gauss map of x(M) is conformal map, i.e. IV = ρII, then n = 2 and
ρ = 2(H − η3) (resp. ρ = 2(H + η3)).

An Acad Bras Cienc (2008) 80 (1)



8 SHUGUO SHI

PROOF. We only prove the Theorem for Hn+1. M is an Einstein manifold, so Ric = S
n
I , where S is

the scalar curvature of M . (3.1) becomes(
η2n+1 − (n − 1)− S

n

)
I+ (nH − 2ηn+1 − ρ)II = 0.

Because x(M) has no umbilics, we have

nH = 2ηn+1 + ρ.

By Theorem 3.2 and its proof, we assume that λ1 = · · · = λr = λ 	= µ = λr+1 = · · · = λn , then

rλ+ (n − r)µ = 2ηn+1 + ρ.

By (3.6),

λ+ µ = 2ηn+1 + ρ.

So (r − 1)λ + (n − r − 1)µ = 0. By Theorem 3.2, λ and µ have same signature. So r = 1 and n = 2.

Hence ρ = 2H − 2η3.

4 A DUALITY FOR THE SURFACES IN H3 AND S31 WITH CONFORMAL NORMAL GAUSS MAPS

Let L4 be theMinkowski 4-space with canonical coordinates X0, X1, X2, X3 and Lorentz-Minkowski scalar
product −X20 + X21 + X22 + X23. The Minkowski model of H 3 is given by

H 3 = {(
X0, X1, X2, X3

)∣∣ − X20 + X21 + X22 + X23 = −1, X0 > 0
}

and is identified with the upper half-space model R3+ of H 3 by

(
x1, x2, x3

) =
(

X1
X0 − X3

,
X2

X0 − X3
,

1

X0 − X3

)
.

Accordingly, the space-like normal vector of the surface in the Minkowski model of H 3 is

N = N0
∂

∂X0
+ N1

∂

∂X1
+ N2

∂

∂X2
+ N3

∂

∂X3
,

where

N0 = X1
X0 − X3

η1 + X2
X0 − X3

η2 + 1− X0
(
X0 − X3

)
X0 − X3

η3,

N1 = η1 − X1η3, N2 = η2 − X2η3,

N3 = X1
X0 − X3

η1 + X2
X0 − X3

η2 + 1− X3
(
X0 − X3

)
X0 − X3

η3.

We get

η3 = N0 − N3
X3 − X0

. (4.1)

An Acad Bras Cienc (2008) 80 (1)



THE HYPERSURFACES WITH CONFORMAL NORMAL GAUSS MAP IN Hn+1 AND Sn+11 9

The Minkowski model of the de Sitter 3-space is defined as

S31 = {(
X0, X1, X2, X3

)∣∣ − X20 + X21 + X22 + X23 = 1
} 
 S2 × R

and can be divided into three components as follows (cf. Aiyama and Akutagawa 2000),

S− = {
X ∈ S31 | X0 − X3 < 0

} 
 R3,

S0 = {
X ∈ S31 | X0 − X3 = 0

} 
 S1 × R,

S+ = {
X ∈ S31 | X0 − X3 > 0

} 
 R3.

Identify S− and S+ with upper half-space model R3+ of the de Sitter 3-space by (cf. Aiyama and Akutagawa
2000) (

x1, x2, x3
) =

(
X1

|X0 − X3| ,
X2

|X0 − X3| ,
1

|X0 − X3|
)
.

For space-like surface X : M → S31 , let U− = X−1(S−) and U+ = X−1(S+), then U− ∪ U+ is the open
dense subset of M . On U− ∪U+, the time-like unit normal vector is

N = N0
∂

∂X0
+ N1

∂

∂X1
+ N2

∂

∂X2
+ N3

∂

∂X3
,

where

N0 = X1
X0 − X3

η1 + X2
X0 − X3

η2 − 1+ X0
(
X0 − X3

)
X0 − X3

η3,

N1 = η1 − X1η3, N2 = η2 − X2η3,

N3 = X1
X0 − X3

η1 + X2
X0 − X3

η2 − 1+ X3
(
X0 − X3

)
X0 − X3

η3.

We get

η3 = N0 − N3
X3 − X0

. (4.2)

REMARK. In (Aiyama and Akutagawa 2000), the normal Gauss map of the space-like surface X : M →
S31 is defined globally on M . Because of the density of U− and U+ in M , in this paper, we may consider
that the normal Gauss map of the space-like surface X : M → S31 is defined on U− and U+.

Let X : M → H 3 (resp. X : M → S31 ) be an immersed surface (resp. space-like surface). Parallel
translating the space-like (resp. time-like) unit normal vector N to the origin of L4, one gets the map
N : M → S31 (resp. N : M → H 3) which is usually called generalized Gauss map of X : M → H 3 (resp.
X : M → S31 ). The generalized Gauss map image can be considered as the surface in S

3
1 (resp. H 3).

THEOREM 4.1. (Kokubu 2005, Prop. 3.5). (1) Let X : M → H 3 be a 2-dimensional immersed surface.
Then its generalized Gauss map N : M → S31 is a branched space-like immersion into S

3
1 with branch

points where K = −1. And, when K 	= −1, the curvature of N : M → S31 is K ∗ = K
K + 1 and the volume

element is dVN = |K + 1|dVX .

An Acad Bras Cienc (2008) 80 (1)
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(2) Let X : M → S31 be a 2-dimensional space-like immersed surface. Then its generalized Gauss map
N : M → H 3 is a branched immersion into H 3 with branch points where K = 1. And, when K 	= 1, the

curvature of N : M → H 3 is K ∗ = K
1− K

and the volume element is dVN = |1− K |dVX .

PROOF. In the context of this paper, we prove (2). For any p ∈ M , let {e0, e1, e2, e3} be the orthonormal
frame near p, such that e3 = X, e0 = N . Let {ω0, ω1, ω2, ω3} be the dual frame. The connection 1-forms
is ωβα , α, β = 0, 1, 2, 3. The coefficients of the second fundamental form of X : M → S31 is given by ω

0
i =

hi jω j , hi j = h ji , i, j = 1, 2. The induced metric of N : M → H 3 is ds2∗ = 〈dN , dN 〉 = hikh jkωiω j .
Choose the local tangent frame {e1, e2} near p, such that hi j = λiδi j . Then ds2∗ = λ21(ω1)

2 + λ22(ω2)
2.

So, when λ1λ2 	= 0, i.e. K 	= 1, N (M) is an immersed surface into H 3. Its space-like unit normal vector
is X and the second fundamental form is II = −〈dX, dN 〉 = −λ1(ω1)2− λ2(ω2)2. By the Gauss equation,
K ∗ = −1+ 1

λ1λ2
= K
1− K

.

By Theorem 3.3, (4.1), (4.2) and Theorem 4.1, we get the following duality.

THEOREM 4.2. Let M be a connected 2-dimensional manifold. Let X : M → H 3 be an immersed surface
with K 	= −1 and without umbilics and let N : M → S31 be a space-like surface with K 	= 1 and without
umbilics. Suppose that N : M → S31 is the generalized Gauss map of X : M → H 3 and vice versa. Then,
the normal Gauss map of X : M → H 3 is conformal if and only if one of N : M → S31 is conformal.

And, at this time, dVN =
(
N0 − N3
X3 − X0

)2
dVX .

REMARK. Like (Lawson 1970) for minimal surfaces in S3, we call the generalized Gauss map N : M → S31
the polar variety of the immersed surface X : M → H 3 with conformal normal Gauss map and vice versa.

5 WEIERSTRASS REPRESENTATION FORMULA

In this section, we give a Weierstrass representation formula for space-like surfaces in S31 with conformal
normal Gaussmap. At first, we describe the normal Gaussmap and the de Sitter Gaussmap of the space-like

surfaces in S31 . Take upper half-space model R3+ of S
3
1 .

The normal Gauss map of the space-like surface x : M → S31 is given by

Ñ = η1
∂

∂x1
(e) + η2

∂

∂x2
(e) + η3

∂

∂x3
(e) : M → H 2(−1) ⊂ L3.

By means of the stereographic projection from the north pole (0, 0, 1) of H 2(−1) to the (x1, x2)-plane
identified with C , we get

gS = η1 + iη2
1− η3

: M → C ∪ {∞}\{|z| = 1},
which is also called the normal Gauss map of the space-like surface x : M → S31 · Ñ can be written as

Ñ =
(

− 2Re(g
S)

|gS|2 − 1 , − 2 Im(g
S)

|gS|2 − 1 ,
1+ |gS|2
|gS|2 − 1

)
.

Next, we describe the definition of the de Sitter Gauss map for space-like surfaces in S31 (in (Lee
2005), it is still called hyperbolic Gauss map), which is the analogue of Epstein and Bryant’s hyperbolic

An Acad Bras Cienc (2008) 80 (1)



THE HYPERSURFACES WITH CONFORMAL NORMAL GAUSS MAP IN Hn+1 AND Sn+11 11

Gauss map for surfaces in H 3 (Epstein 1986, Bryant 1987, Shi 2004). The time-like geodesic is either
the Euclidean equilateral half-hyperbola consisting of two branches which is orthonormal to the coordinate

plane {(x1, x2, 0)|(x1, x2) ∈ R2} or the Euclidean straight line which is orthonormal to the above coordinate
plane. For the space-like surface x = (x1, x2, x3) : M → S31 , at each point x ∈ M , the oriented time-like
geodesic in S31 passing through x with time-like tangent vector N meets {(x1, x2, 0)|(x1, x2) ∈ R2} ∪ {∞}
at two points. Since the geodesic is oriented, we may speak of one of the two points as the initial point and

the other one as the final point. Call the final point the image of the de Sitter Gauss map for x(M) at the
point x . Denote the de Sitter Gauss map by GS . On the coordinate plane {(x1, x2, 0)|(x1, x2) ∈ R2}, we
introduce the natural complex coordinate z = x1 + i x2. Using the Euclidean geometry, as similar as done
in the Theorem 5.1 of (Shi 2004), we get

GS = x1 + i x2 + x3gS. (5.1)

Let x = (x1, x2, x3) : M → H 3 be an immersed surface with unit normal vector

N = x3η1
∂

∂x1
+ x3η2

∂

∂x2
+ x3η3

∂

∂x3
.

By the duality given in section 4, the generalized Gauss map of x : M → H 3 is given, when η3 > 0, by

N =
(
η1

η3
x3 − x1, η2

η3
x3 − x2, x3

η3

)
: M → S31 , (5.2)

and when η3 < 0, by

N =
(
x1 − η1

η3
x3, x2 − η2

η3
x3, − x3

η3

)
: M → S31 (5.3)

and in the Minkowski model of the de Sitter 3-space, their time-like unit normal vector is X : M → H 3.
Again by the duality given in section 4, a straightforward computation shows us that the normal Gauss map

of N : M → S31 is given by

Ñ = η1

η3

∂

∂x1
(e) + η2

η3

∂

∂x2
(e) + 1

η3

∂

∂x3
(e) : M → H 2(−1).

So,

gS =
η1
η3

+ i η2
η3

1− 1
η3

= η1 + iη2
η3 − 1 = −gH , (5.4)

where gH : M → C ∪ {∞} is exactly the normal Gauss map of x : M → H 3 (Kokubu 1997, Shi 2004,
2006). From this, we also prove the Theorem 4.2.

By (5.1)–(5.4) and the Theorem 5.1 of (Shi 2004), we get that when η3 > 0, i.e. |gS| > 1,
GS = −GH , (5.5)

and when η3 < 0, i.e. |gS| < 1,

GS = GH , (5.6)
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where GH is exactly the hyperbolic Gauss map of x : M → H 3 (Epstein 1986, Bryant 1987, Shi 2004).
In the following, we write respectively gS and GS as g and G.
By (5.2)–(5.6) and the Weierstrass representation for surfaces in H 3 with conformal normal Gauss

map (Shi 2004), we get the Weierstrass representation formula for space-like surfaces in S31 with conformal
normal Gauss map.

THEOREM 5.1. Let M be a simply connected Riemann surface. Given the map G : M → C ∪ {∞} and the
nonconstant conformal map g : M → C ∪ {∞}\{|z| = 1}.

(1) When the holomorphic map g : M → C ∪ {∞}\{|z| = 1} satisfies |g| > 1 and
Gz
gz
> 0, (5.7)

|g|2|Gz̄| > |Gz|, (5.8)

Gzz̄ + ḡz̄
(|g|4 − 1)ḡ Gz − |g|2ḡgz

|g|4 − 1Gz̄ = 0, (5.9)

put

x1 = Re

{
G − 1+ |g|2

ḡgz
Gz

}
, (5.10)

x2 = Im

{
G − 1+ |g|2

ḡgz
Gz

}
, (5.11)

x3 = 1+ |g|2
|g|2gz Gz. (5.12)

Then x = (x1, x2, x3) : M → S31 is a space-like surface with de Sitter Gauss map G and holomorphic
normal Gauss map g and Gauss curvature K satisfying

√
1− K = 1+|g|2

|g|2−1 . And the conformal structure
onM is induced by the negative definite second fundamental form. Conversely, any surface x : M → S31
with

√
1− K = 1+|g|2

|g|2−1(= η3) can be given by (5.10), (5.11), (5.12), and the de Sitter Gauss map G
and the normal Gauss map g must satisfy (5.7), (5.8), (5.9), where the conformal structure on M is
induced by the negative definite second fundamental form.

(2) When the antiholomorphic map g : M → C ∪ {∞}\{|z| = 1} without holomorphic points satisfies
|g| < 1 and

Gz̄
|g|2gz̄ > 0, (5.13)

|g|2|Gz|
|Gz̄| < 1, (5.14)

Gzz̄ + ḡz
(|g|4 − 1)ḡ Gz̄ − |g|2ḡgz̄

|g|4 − 1Gz = 0, (5.15)
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put

x1 = Re

{
G − 1+ |g|2

ḡgz̄
Gz̄

}
, (5.16)

x2 = Im

{
G − 1+ |g|2

ḡgz̄
Gz̄

}
, (5.17)

x3 = 1+ |g|2
|g|2gz̄ Gz̄. (5.18)

Then x = (x1, x2, x3) : M → S31 is a space-like surface with de Sitter Gauss map G and antiholomor-
phic normal Gauss map g and Gauss curvature K satisfying

√
1− K = 1+|g|2

1−|g|2 . And the conformal
structure on M is induced by the negative definite second fundamental form. Conversely, any surface
x : M → S31 with

√
1− K = 1+|g|2

1−|g|2 (= −η3) can be given by (5.16), (5.17), (5.18), and the de Sitter
Gauss map G and the normal Gauss map g must satisfy (5.13), (5.14), (5.15), where the conformal
structure on M is induced by the negative definite second fundamental form.

6 GRAPHS AND EXAMPLES

In this section,we give the examples of surfaces in S31 with conformal normal Gauss map within the trans-
lational surfaces and the Euclidean ruled surfaces.

In H 3, the graph (u, v, f (u, v))with conformal normalGaussmap satisfies the following fully nonlinear
equation of Monge-Ampère type (Shi 2004, 2006)

f
(
fuu fvv − f 2uv

) + [(
1+ f 2v

)
fuu − 2 fu fv fuv + (

1+ f 2u
)
fvv

] = 0. (6.1)

Take upper half-space model of S31 . Consider the space-like graph (u, v, f (u, v)) in S
3
1 with f 2u +

f 2v < 1. Its Gauss curvature is given by

K = 1− f 2
(
fuu fvv − f 2uv

) − f
[(
1− f 2v

)
fuu + 2 fu fv fuv + (

1− f 2u
)
fvv

] + (
1− f 2u − f 2v

)
(
1− f 2u − f 2v

)2 .

So K = 1− η23 is equivalent to

f
(
fuu fvv − f 2uv

) − [(
1− f 2v

)
fuu + 2 fu fv fuv + (

1− f 2u
)
fvv

] = 0, (6.2)

where f 2u + f 2v < 1. This is the fully nonlinear equation of Monge-Ampère type which the space-like graph
in S31 with K = 1− η23 must satisfy.

REMARK. There exists a nice duality between the solutions of minimal surface equation

(
1+ f 2v

)
fuu − 2 fu fv fuv + (

1+ f 2u
)
fvv = 0

in R3 and the ones of maximal surface equation

(
1− f 2v

)
fuu + 2 fu fv fuv + (

1− f 2u
)
fvv = 0
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in Lorentz-Minkowski 3-space L3 (Alías and Palmer 2001). Here, by the duality given by (5.2) (or (5.3)), we
know that if f (u, v) is a solution of (6.1), then the local graph of the space-like surface (− f fu −u,− f fv −
v, f

√
1+ f 2u + f 2v ) (or ( f fu+u, f fv+v, f

√
1+ f 2u + f 2v )) in S31 satisfies (6.2). Conversely, if f (u, v) is

a solution of (6.2) with f 2u + f 2v < 1, then the local graph of the surface ( f fu−u, f fv−v, f
√
1− f 2u − f 2v )

(or (u − f fu, v − f fv, f
√
1− f 2u − f 2v )) in H 3 satisfies (6.1).

Next, as similar as done in section 6 of (Shi 2004), we get the following Theorem.

THEOREM 6.1. The nontrivial translational space-like surfaces with form f (u, v) = φ(u) + ψ(v) in S31
with conformal normal Gauss map are given, up to a linear translation of variables, by

f (u, v) =
√
a2 + u2 ±

√
b2 + v2 (6.3)

with f 2u + f 2v < 1, where a and b are nonzero constants. The parameter form of these translational surfaces
are locally given by

x(u, v) = (a sinh u, b sinh v, a cosh u + b cosh v). (6.4)

REMARK. We may check that the isometric transformation

(
x1, x2, x3

) → (
x1 cos θ − x2 sin θ + a, x1 sin θ + x2 cos θ + b, x3

)
(6.5)

preserves the concept of the ruled surfaces and the conformality of the normal Gauss map of the space-like

surface in S31 .
Considered as surfaces in 3-dimensional Minkowski space L3, the space-like ruled surfaces in S31

can be represented as x(u, v) = α(v) + uβ(v) : D → S31 , where D(⊂ R2) is a parameter domain and
α(v) and β(v) are two vector valued functions into L3 corresponding to two curves in L3. When β is
locally nonconstant, without loss of generality we can assume that either 〈β, β〉 = 1, 〈β ′, β ′〉 = ±1, and
〈α′, β ′〉 = 0 or 〈β, β〉 = 1, 〈β ′, β ′〉 = 0, and 〈α′, β〉 = 0, where 〈·, ·〉 is the scalar product in L3. As similar
as done in Theorem 2 of (Shi 2006), we have

THEOREM 6.2. Up to an isometric transformation (6.5) in S31 , every space-like ruled surface in S
3
1 with

conformal normal Gauss map is locally a part of one of the following,

(1) ordinary Euclidean space-like planes in S31 ,

(2) (u cosh v, c · sinh v, u sinh v), for a constant c 	= 0,

(3) (c2 sinh v + u cosh v, c1 sinh v, c2 cosh v + u sinh v), for constants c1 	= 0 and c2 	= 0.

We should note that in the proof of Theorem 6.2, only when 〈β ′, β ′〉 = −1, we may get the nontrivial
cases (2) and (3).

Locally, the ruled surfaces (2) and (3) in Theorem 6.2 can be represented as the graph (u, v, f (u, v))
as follows,
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COROLLARY. f (u, v) = ±c1c2 + uv√
c21 + v2

is a solution of equation (6.2), where c1 	= 0 and c2 are constants.

REMARK. In H 3, the translational surfaces

(a cos u, b cos v, a sin u + b sin v) (6.6)

and the ruled surfaces

(u cos v, c · sin v, u sin v) (6.7)

and

(−c2 sin v + u cos v, c1 · sin v, c2 cos v + u sin v) (6.8)

with conformal normal Gaussmap have been obtained (Shi 2004, 2006), where a, b, c, c1 and c2 are nonzero
constants. Using (5.2) (or (5.3)) and Theorem 4.2, we may check that up to a isometric transformation (6.5)

in S31 (θ = ±π
2 ), (6.4) in Theorem 6.1 and (2) and (3) in Theorem 6.2 are, respectively, the polar varieties

of (6.6), (6.7) and (6.8) and vice versa.

REMARK. Every geodesic of H 3, corresponding respectively to u = 0, u = π , v = 0 and v = π on

surfaces (6.6) and to v = π
2 on surfaces (6.7) and to v = ±π

2 on surfaces (6.8) follow which K = −1 is
mapped to a single point in S0 by the generalized Gauss map.

7 TIME-LIKE SURFACES IN S31 WITH CONFORMAL NORMAL GAUSS MAP

In this section, we state the similar results as above for time-like surfaces in S31 without proofs.
Take upper-half space model of S31 . Let M be a 2-dimensional Lorentz surface and x : M → S31 be the

time-like immersion with local coordinates u1, u2. The first and the second fundamental forms are given,
respectively, by I = gi jduidu j and II = hi j duidu j . The space-like unit normal vector is

N = x3η1
∂

∂x1
+ x3η2

∂

∂x2
+ x3η3

∂

∂x3
,

where η21 + η22 − η23 = 1. We have the Weingarten formula

∂ηA

∂uk
= 1

x3

(
η3
∂xA
∂uk

− g jlhkl ∂xA
∂u j

)
.

Left-translating N to Te(R3+), we obtain

Ñ : M → S21(1) ⊂ Te(R3+), Ñ = Lx−1∗(N ) = η1
∂

∂x1
(e) + η2

∂

∂x2
(e) + η3

∂

∂x3
(e),

which is called the normal Gauss map of time-like surface x : M → S31 (Aiyama and Akutagawa 2000).
Call IV = 〈d Ñ , d Ñ 〉 the fourth fundamental form of the time-like surface x : M → S31 . We have

IV = (
η23gi j − 2η3hi j + gklhikh jl

)
duidu j .

An Acad Bras Cienc (2008) 80 (1)



16 SHUGUO SHI

Of course, we may also define the high-dimensional version of the fourth fundamental form for time-like

hypersurfaces in Sn+11 (1).

THEOREM 7.1. Let M be a 2-dimensional Lorentz surface and x : M → S31 be a time-like immersed surface
without umbilics. Then the normal Gauss map of x(M) is conformal if and only if the Gauss curvature
K = 1+ η23.

In the Minkowski model of the de Sitter 3-space S31 , the generalized Gauss map N : M → S31 of the
time-like surface X : M → S31 is a branched time-like immersion with branch points where K = 1.

THEOREM 7.2. Let M be a connected 2-dimensional Lorentz surface. Let X : M → S31 be a time-like
surface with K 	= 1 and without umbilics. If the normal Gauss map of X : M → S31 is conformal, then the
normal Gauss map of its generalized Gauss map N : M → S31 is also conformal and vice versa.

The time-like graph (u, v, f (u, v)) in S31 with conformal normal Gauss map also satisfies the fully
nonlinear equation of Monge-Ampère type (6.2) with f 2u + f 2v > 1.

THEOREM 7.3. The nontrivial translational time-like surfaces with form f (u, v) = φ(u)+ψ(v) in S31 with
conformal normal Gauss map are given, up to a linear translation of variables, by

(1) f (u, v) = √
u2 + a2 ± √

v2 + b2,
(2) f (u, v) = √

u2 − a2 ± √
v2 − b2,

(3) f (u, v) = √
u2 + a2 ± √

v2 − b2,
(4) f (u, v) = √

u2 − a2 − √
v2 + b2,

(5) Flaherty’s time-like surfaces in S31 (Milnor 1987) f (u, v) = ±u + ψ(v) and f (u, v) = ±v + ϕ(u),
where a and b are nonzero constants and ψ ′(v) 	= 0 and ϕ′(u) 	= 0.

REMARK. Wemay check that the isometric transformation (6.5) preserves the concept of the ruled surfaces

and the conformality of the normal Gauss map of the time-like surfaces in S31 .
We may prove that the normal Gauss map of the time-like surfaces (2) and (3) in Theorem 6.2 are also

conformal. In addition, for the time-like ruled surface x(u, v) = α(v)+ uβ(v) in S31 , we may also assume
the remained four cases:

(i) 〈β, β〉 = −1, 〈β ′, β ′〉 = 1, and 〈α′, β ′〉 = 0,

(ii) β is constant null vector,

(iii) β is constant and 〈β, β〉 = −1, 〈α′, β〉 = 0,

(iv) 〈β, β〉 = 0, 〈β ′, β ′〉 = 1, and 〈α′, β ′〉 = 0, where 〈·, ·〉 is the scalar product in L3. Hence, we have

THEOREM 7.4. Up to an isometric transformation (6.5) in S31 , every time-like ruled surface in S
3
1 with

conformal normal Gauss map is locally a part of one of the following,
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(1) ordinary Euclidean time-like planes in S31 ,

(2) ordinary Euclidean generalized cylinder x(u, v) = α(v) + uβ, where β = (0, 0, 1) and α(v) is
arbitrary curve in L3 with 〈α′, α′〉 > 0 and 〈α′, β〉 = 0,

(3) (u cosh v, c · sinh v, u sinh v), for a constant c 	= 0,

(4) (c2 sinh v + u cosh v, c1 sinh v, c2 cosh v + u sinh v), for constants c1 	= 0 and c2 	= 0,

(5) (u sinh v, c · cosh v, u cosh v), for a constant c 	= 0,

(6) (c2 cosh v + u sinh v, c1 cosh v, c2 sinh v + u cosh v), for constants c1 	= 0 and c2 	= 0,

(7) Flaherty’s time-like surfaces in S31 (Milnor 1987), x(u, v) = α(v)+ uβ, where β = (1, 0, 1) and α(v)
is arbitrary curve in L3 with 〈α′, β〉 	= 0.

We should note that in the proof of Theorem 7.4, only for case (i) and (ii), we may get the surfaces (5),

(6), (7) in Theorem 7.4. For case (iv), we may assume β(v) = (ρ(v) cos θ(v), ρ(v) sin θ(v), ρ(v)) with

ρ2(θ ′)2 = 1. Next, we get a contradictory system of equations.

Locally, the ruled surfaces (5) and (6) in Theorem 7.4 can be represented as the graph (u, v, f (u, v))
as follows,

COROLLARY. f (u, v) = ±c1c2 − uv√
v2 − c21

is a solution of equation (6.2), where c1 	= 0 and c2 are constants.

REMARK. The totally umbilical time-like surfaces in S31 given by (x1 − a)2 + (x2 − b)2 − (x3 − c)2 = R2,
where constants c 	= 0 and R > 0, are Euclidean ruled surfaces but K 	= 1+ η23. Their normal Gauss maps
are also conformal.

REMARK. Up to a isometric transformation (6.5) in S31 (θ = ±π
2 ), the time-like surfaces (3) and (4) in

Theorem 7.4 are, respectively, the polar varieties of the time-like surfaces (5) and (6) in Theorem 7.4 and

vice versa. The similar result also holds for the time-like surfaces in Theorem 7.3. Generally, if f (u, v)
is a solution of (6.2) with f 2u + f 2v > 1, then the local graph of the time-like surface ( f fu − u, f fv −
v, f

√
f 2u + f 2v − 1) (or (u − f fu, v − f fv, f

√
f 2u + f 2v − 1)) in S31 also satisfies (6.2).

REMARK. When we do not assume that f > 0, (6.3) and

f (u, v) = ±c1c2 + uv√
c21 + v2

and f (u, v) = ±u + ψ(v) and f (u, v) = ±v + ϕ(u)

with ψ ′(v) 	= 0 and ϕ′(u) 	= 0 are all nontrivial entire solutions of the equation (6.2) defined on R2. In
addition, the cone f (u, v) = √

u2 + v2 is also the special solution of the equation (6.2), but its graph is

the light-like surface. By Omori-Yau’s Maximum Principle (Omori 1967, Yau 1975), there exist no entire

solution f (u, v) of (6.2) satisfying f 2u + f 2v > 1 and f > 0 on R2. Does there exist nontrivial entire
solutions of equation (6.2) defined on R2 satisfying f 2u + f 2v < 1 and f > 0?
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RESUMO

Neste artigo, introduzimos a quarta forma fundamental de uma hipersuperfície em Hn+1 de uma hipersuperfície tipo-
espaço em Sn+11 , e discutimos a conformalidade da aplicação normal de Gauss de tais hipersuperfícies. Em particular,

investigamos o caso de superfícies com aplicação normal de Gauss conforme em H3 e S31 , e provamos um teorema
de dualidade. Apresentamos uma representação de Weierstrass para superfícies tipo-espaço em S31 com aplicação de
Gauss conforme. Enunciamos também resultados semelhantes para superfícies tipo-tempo em S31 . São dados alguns
exemplos de superfícies em S31 com aplicações de Gauss conformes, e é deduzida uma equação totalmente não-linear
do tipo Monge-Ampère para gráficos em S31 com aplicações de Gauss conformes.

Palavras-chave: quarta forma fundamental, aplicação normal de Gauss conforme, aplicação de Gauss generalizada,

propriedade de dualidade, aplicação de Gauss de Sitter, equação de Monge-Ampère.
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