
Feedback-Based Iterative Learning Control for MIMO LTI Systems                      269 
 

 
Feedback-Based Iterative Learning Control for MIMO LTI Systems 

 
Tae-Yong Doh and Jung Rae Ryoo 

 
Abstract: This paper proposes a necessary and sufficient condition of convergence in the 2L -
norm sense for a feedback-based iterative learning control (ILC) system including a multi-input 
multi-output (MIMO) linear time-invariant (LTI) plant. It is shown that the convergence 
conditions for a nominal plant and an uncertain plant are equal to the nominal performance 
condition and the robust performance condition in the feedback control theory, respectively. 
Moreover, no additional effort is required to design an iterative learning controller because the 
performance weighting matrix is used as an iterative learning controller. By proving that the least 
upper bound of the 2L -norm of the remaining tracking error is less than that of the initial 
tracking error, this paper shows that the iterative learning controller combined with the feedback 
controller is more effective to reduce the tracking error than only the feedback controller. The 
validity of the proposed method is verified through computer simulations. 
 
Keywords: Convergence, iterative learning control (ILC), 2L -norm, least upper bound, multi-
input multi-output (MIMO) linear time-invariant (LTI) systems, nominal performance, robust 
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1. INTRODUCTION 
 
Iterative learning control (ILC) has been used in 

control systems that perform repeated tasks [1,2]. Just 
as humans learn skills by trial and error, the ILC 
system learns the dynamics of the system by repeated 
trials. Studies on ILC systems, therefore, have been 
mainly focused on the convergence of proposed 
learning algorithms. Because ILC is an open-loop 
control scheme, it is applied to real systems along 
with feedback control for enhancing robustness 
against unrepeatable disturbances and for reducing the 
tracking error in the early stage of learning [3-8]. It is 
desirable that the least information about the plant is 
required in design of an iterative learning controller. 
However, at least a nominal plant model is needed 
because the convergence of the ILC system is 
guaranteed based on the mathematical model of the 
plant. The ILC system is designed to guarantee a 
convergence condition expressed in terms of the 
nominal plant model. As a result, the ILC system 

applied to a real plant may not converge because 
modeling errors are unavoidable to some extent. To 
solve the problem, some robust approaches to 
feedback-based ILC have been proposed. Moon et al. 
suggested a robust approach to ILC design for a unity 
feedback control system [4]. Doh et al. presented a 
sufficient condition for robust stability and robust 
convergence for uncertain linear systems and a 
method to design a feedback controller and an 
iterative learning controller simultaneously [5]. Hu et 
al. derived a necessary and sufficient condition of 
convergence for linear time-invariant systems with 
multiplicative uncertainties and time delays and 
showed that the condition is of the same form with the 
robust performance condition [9]. Tayebi and 
Zaremba proposed a result similar to that of Hu et al. 
[10]. 

Most studies on robust ILC with current feedback 
have focused on single-input and single-output (SISO) 
systems with multiplicative uncertainties. In this paper, 
motivated by the results in [9-11], we consider a 
feedback-based ILC scheme for multi-input and multi-
output (MIMO) plants. We first obtain a necessary and 
sufficient condition of convergence in the 2L -norm 
sense for nominal plants, which is equal to the 
nominal performance condition in the feedback 
control theory. And then a modified convergence 
condition considering the plant uncertainty is derived, 
which is described only by the nominal parts and is 
exactly the same as the robust performance condition 
expressed by the structured singular value ( µ ) [12-
14]. The iterative input updating rule is established by 
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using the weighting performance matrix as an iterative 
learning controller. Owing to these results, there is no 
need to design an iterative learning controller if a 
feedback controller is designed to satisfy the robust 
performance condition. Moreover, using the similar 
approach in [10], we demonstrate that the least upper 
bound of the 2L -norm of the remaining tracking 
error is less than that of the initial tracking error in 
case of MIMO plants. Finally, a simulation study on a 
two-mass/spring/damper system is performed to 
verify the effectiveness of the proposed method.  

Throughout this paper, signals in the time domain 
are denoted by lower-case letters and their capitals 
denote their own Laplace transforms, for example, 

{ ( )} ( ).f t F s=L  If there is no other definition, 
capitals such as ( )G s  or G  stand for transfer 
matrices. The subspace of real rational matrices in 

2H (respectively, )∞H  is denoted by 2RH  

(respectively, ∞RH ). σ( )⋅  and σ( )⋅  signify the 
singular value and the largest singular value, 
respectively. The Laplace variable s  and the angular 
frequency ω  will be omitted when these do not lead 
to any confusion. A lower linear fractional 

transformation (LFT) on ∆  with 11 12

21 22

M M
M

M M
 
 
 
 

=  

is ( ) 1
11 12 2122( ∆) ∆ ∆l M M M MI M −, := + −F  [14]. 

In a similar manner, an upper LFT on ∆  with M  is 
( ) 1

22 21 1211( ∆) ∆ .∆u M M M MI M −, := + −F  
 

2. MAIN RESULTS 
 
Consider the feedback control system in Fig. 1. In 

this figure, ( ) p
dy t ∈  is the desired trajectory, 

( ) py t ∈  is the plant output, and ( ) qu t ∈  is the 
feedback control input. C(s) is the feedback controller 
that stabilizes the feedback control system. G(s) is the 
plant with q  inputs and p  outputs. 

To apply ILC technique to the feedback system, we 
consider an ILC system shown in Fig. 2 with the 
additional input ( )kv t  of which iterative updating 
rule is given by  

1( ) ( )( ( ) ( ))k p k kV s W s V s E s+ = +   (1) 

with 1( ) 0V s =  where the tracking error ( )kE s  is 
given by  

( ) ( ) ( )k d kE s Y s Y s= −    (2) 

and ( )pW s  is a stable performance weighting matrix 
with the following type:  

1( ) 0
( )

0 ( )
p

p

w s
W s

w s

 
 = . 
 
 

  (3) 

Here, the subscript k means the number of iterations. 
(1) is similar to the laws proposed by Kavli [15] and 
Roh et al. [16] and generates a modified desired 
trajectory by learning. In the formulation of the ILC 
problem, the following assumptions are made:  

Assumption 1: The desired trajectory ( )dy t  is 
bounded within the tracking interval, i.e., ( )dY s ∈  

2.RH  
Assumption 2: Without loss of generality, the zero-

input response 0 ( )Y s  of the plant ( )G s  is invariant 
with respect to iteration and equal to zero, i.e., 

0 0( ) ( ) 0kY s Y s= =  for all k ∈  where 0 ( )kY s  is 
the zero-input response of the plant at the k th 
iteration.  

The convergence condition in the 2L -norm sense 
is summarized as the following theorem.  

Theorem 1: For the ILC system shown in Fig. 2, 
the proposed learning control algorithm (1) converges 
uniformly to  

( ) 11( ) lim ( )k p p d
k

v t v t I W S W SY
−  −

 ∞  →∞  
= = −L  (4) 

as ,k → ∞  in the 2L -norm sense if and only if  

|| ( ) ( ) || 1,pW s S s ∞ <    (5) 

where ( ) 1( ) ( ) ( )S s I G s C s −= + is the sensitivity 
matrix of the feedback control system revealed in Fig. 
1. As the iteration tends to infinity, the remaining error 
is given by  

 
Fig. 1. Feedback control system. 
 

Fig. 2. Feedback-based ILC system. 
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{ }
{ }

1 1

1 1

( ) lim ( )

( ( ) )

( ) ( ) ,

k
k

p d

p p d

e t e t

I T I W S Y

I W S I W S Y

∞
→∞
− −

− −

=

= − −

= − −

L

L

 (6) 

where ( ) 1( ) ( ) ( )( ) ( )T s G s C sI G s C s −= +  is the com-
plementary sensitivity matrix of the feedback control 
system shown in Fig. 1.  

Proof: (⇒ ) In Fig. 2, the tracking output at the 
k th iteration is  

( ) ( ) ( )1 .k k d k dY GC V Y T V YI GC −= + = ++  (7) 

Using (1), (2), (7), and the relationship between S  
and ,T  i.e., ,S T I+ =  the updated learning input at 
the ( 1)k + th iteration is given by  

1k p k p dV W SV W SY+ = + .    (8) 

Similarly,  

1k p k p dV W SV W SY−= + .    (9) 

From (8) and (9), we get  

 ( )1 1k k p k kV V W S V V+ −− = − .   (10) 

By Parseval’s theorem, (10) becomes  

1 2 1 2|| ( ) ( ) || || ||k k k kv t v t V V+ +− = −  

1 2|| || || ||p k kW S V V∞ −≤ − .   (11) 

Consequently, it is clear that if (5) is satisfied, the 
updated learning input ( )kv t  converges to ( )v t∞ =  

1{ ( )}V s−
∞L  in the 2L -norm sense as k  approaches 

infinity. The fixed value ( )V s∞  in (4) is obtained 
from (8) by substituting ( )kV s  and 1( )kV s+  with 

( ).V s∞  With the help of (1) and (4), the remaining 
error ( )E s∞  is also obtained as (6).  

( )⇐ The necessity can be proved using 
contradiction. Let 0ω  be such that  

 { }0 0|| || σ ( ω ) ( ω ) 1p pW S W j S j∞ = ≥ .  (12) 

Denote the singular value decomposition of 
0 0( ω ) ( ω )pW j S j  as 

0 0( ω ) ( ω )pW j S j  

{ }0 0 1 0 1 0σ ( ω ) ( ω ) ( ω ) ( ω )pW j S j g j h j∗=  

{ }0 0 0 0
2
σ ( ω ) ( ω ) ( ω ) ( ω ),

r

i p i i
i

W j S j g j h j∗

=
+∑   

where r is the rank of 0 0( ω ) ( ω )pW j S j  and ,ig ih  

have unit length. Suppose the 1 0( ω )g j  is written as  

 1 2 θθ θ
1 0 1 2( ω ) α α α ,p

Tjj j
pg j e e e 

 
  

=  (13) 

where αi ∈  and θ ( π 0]i ∈ − , . Let 0 βi≤ ≤ ∞  be 
such that  

 0

0

β ω
θ

β ω
i

i
i

j
j

 −
= ∠ + 

   (14) 

with βi = ∞  if θ 0i =  and let 2 ( )V s  be given by  

 

1
1

1

2
2

22 2

βα
β
βα
β ˆ( ) ( )

β
α

β
p

p
p

s
s
s
sV s sV

s
s

− 
 + 
 −
 +=  
 
 

− 
 + 

  (15) 

with 1 replacing β
β

i
i

s
s

−
+  if θ 0.i =  A scalar function 

2ˆ ( )sV  is chosen so that  

 0 0
2

if ω ω ε or ω ω ε
ˆ ( ω)

0 otherwise,
c

jV
| − |< | + |<

| |= 


 (16) 

where 0 ε 1<  and 0 π 2ε.c c= /  Then 

 
2

2 2 2 2

2
0

1|| ( ) || Trace[ ( ω) ( ω)] ω
2π

.

V s V j V j d

c

∞ ∗
−∞

=

=

∫  (17) 

In case of 3 2 2|| ( ) ( ) || ,V s V s−  

2
3 2 2|| ( ) ( ) ||V s V s−  

{ }
{ }

{ }

2
2 1 2

2 20
0 0

2
0 0

2 2
00 0

2 2
0

2 2
0 2 1 2

|| ( ) ( )( ( ) ( ) ||

[σ π( ω ) ( ω )
2π

σ π]( ω ) ( ω )

σ ( ω ) ( ω )

|| ( ) ( ) ||

|| ( ) ( ) || ,

p

p

p

p

p

W s S s V s V s

c
W j S j

W j S j

cW j S j

W s S s c

c V s V s

∞

= −

= − −

+

= ⋅

= ⋅

≥ = −

    (18) 

because || ||pW S ∞  is larger than 1 and 1( ) 0.V s =  
Similarly, it can be shown that  
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1 2 1 2|| ( ) ( ) || || ( ) ( ) ||k k k kV s V s V s V s+ −− ≥ −  (19) 

for all .k ∈  Hence, the proof is completed.      
Remark 1: The convergence condition (5) is well 

known as the nominal performance condition in the 
feedback control theory [13]. In other words, the 
weighting matrix ( )pW s  to specify the performance 
of the feedback system plays a role of iterative 
learning controller and also determines the 
convergence of the ILC system.  

Because the convergence condition shown in 
Theorem 1 includes the plant uncertainty, it is not 
proper to apply this condition to real plants. To 
examine the convergence of the ILC system with plant 
uncertainty, therefore, a modified convergence 
condition is required, which is expressed with only the 
known parts of the system.  

Now, let the plant ( )G s  be an element of the set of 
uncertain plants  

{ }( ( ) ∆( )) ∆( ) (∆) ,u oG s s s= , : ∈G F M  (20) 

where ( )oG s  is a plant free from the uncertainty, an 
( ) ( )n p n q+ × +  transfer matrix, and partitioned as  

11 12

21 22

( ) ( )
( )

( ) ( )
o o

o
o o

G s G s
G s

G s G s

 
= , 
  

  (21) 

∆( )s  is a model uncertainty, and (∆)M  and ∆  
are defined as 

0

0

(∆) {∆( ) ∆( ) ∆
for all }

s
s

∞

+

:= ⋅ ∈ : ∈
∈ ,

M RH
  (22) 

( )11 1

×

∆ {diag δ δ ∆ ∆ δ

∆ }

S

j j

r S r F i

m m
j

I I= , , , , , : ∈ ,

∈
(23) 

with 1 1
S F

i ji jr m n= =+ =∑ ∑ [13], respectively. For 
× ,n nM ∈  the structured singular value ∆µ ( )M  is 

defined as  

{ }∆
1µ ( )

min σ(∆) ∆ ∆ det( ∆) 0
M

I M
=

: ∈ , − =
 

unless no ∆ ∆∈  makes ∆I M−  singular, in which 
case ∆µ ( ) 0M :=  [12,13].  

The following lemma, which is widely known as 
the robust performance test in the feedback control 
theory, will be used to derive the modified 
convergence condition.  

Lemma 1 [13]: Let β 0.>  Suppose that ( )P s  is 
a stable, real-rational, proper transfer matrix with 
n q+  inputs and n p+  outputs and is partitioned as  

11 12

21 22

( ) ( )
( )

( ) ( )
P s P s

P s
P s P s
 

= . 
 

   (24) 

For all ∆( ) (∆)s ∈M  with ||∆ || 1 β,∞ < /  ( ∆)l P,F  is 
well-posed, internally stable, and || ( ∆) || βl P ∞, ≤F  if 
and only if  

∆
ω
sup µ ( ( ω)) β

P
P j

∈
≤    (25) 

where { }×diag(∆ ∆ ) ∆ .∆ q p
f fP := , : ∈  

The uncertainty-free convergence condition is 
summarized as Theorem 2. 

Theorem 2: Let 0 ρ 1.< <  For the ILC system 
shown in Fig. 2, the proposed learning control 
algorithm (1) converges uniformly to (6) as ,k → ∞  
in the 2L -norm sense for all ∆( ) (∆)s ∈M  with 
||∆ || 1 ρ∞ < /  if and only if  

{ }∆
ω
sup µ ( ( ω) ( ω)) ρ 1

P l M j C j
∈

, ≤ <F   (26) 

where  

11 12

21 22

21 22

0o o

pp o p o

o o

G G

M W G W W G

G I G

 
 
 
 
 
 
 
  

= − − .

− −

  (27) 

As the iteration tends to infinity, the remaining error 
converges to (6).  

Proof: (⇒ ) Using the similar approach in the 
proof of Theorem 1, the relationship between 
consecutive updated learning inputs is given by  

1
1 1( ( ∆) ) ( )k k p u o k kV V W I G C V V−

+ −− = + , − ,F  (28) 

which leads to  

1 2
1

1 2

|| ||

|| ( ( ∆) ) || || ||
k k

p u o k k

V V

W I G C V V
+

−
∞ −

−

≤ + , − .F
 (29) 

Under Assumptions 1 and 2, if  

( ) 1|| || 1( ∆)p u oW I G C −
∞ <+ ,F   (30) 

is satisfied, the updated learning input converges to 
( )v t∞  given in (4) in the 2L -norm sense as .k → ∞   

( ) 1( ∆)p u oW I G C −+ ,F  is equal to the transfer 

matrix from 2w  to 2z  in the block diagram shown 
in Fig. 3 and can be rearranged as an LFT with 

2 2( ( ) ∆) .u lz M C w= , ,F F  Hence, the condition (30) 
can be represented as || ( ( ) ∆) || 1.u l M C ∞, , <F F  
Finally, according to Lemma 1, (30) is ensured if (26) 
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is met for all ∆( ) (∆)s ∈M  with ||∆ || 1 ρ.∞ < /   
( ⇐ ) Let the condition (26) not be satisfied, that is, 

let 0ω  be such that  

{ }0 0∆µ ( ( ω ) ( ω )) 1
P l M j C j, <F   (31) 

for all ∆( ) (∆)s ∈M  with ||∆ || 1 ρ.∞ < /  Then, by 
Lemma 1, || ( ( ) ∆) || || ( ( ∆)u l p u oM C W I G∞, , = + ,F F F  

1) || 1.C −
∞ ≥  From this result, as shown in the proof of 

Theorem 1, it is easily obtained that 1|| ( )kV s+  

2 1 2( ) || || ( ) ( ) ||k k kV s V s V s−− ≥ − for all .k ∈  
Therefore, (26) is the necessary condition for the 
convergence in the 2L -norm sense.              

Remark 2: The convergence condition obtained in 
Theorem 2 is equal to that of robust performance by 
structured singular value. Therefore, if the feedback 
control system satisfies the robust performance 
condition, the convergence of the feedback-based ILC 
system is automatically ensured, and vice versa. 
Accordingly, the ILC design problem is equivalent to 
finding a feedback controller ( )C s  satisfying (26).  

Remark 3: Using the so-called D-K iteration, we 
can obtain a controller ( )C s  which not only 
stabilizes the overall feedback system but also 
satisfies the condition (26) [13]. The upper bound on 
the model uncertainty can be easily found using 
several methods in the books related with robust 
control [13,17].  

Remark 4: Let the plant ( )G s  be a SISO system 
with the multiplicative uncertainty, i.e., 

2( ) (1 ∆( ) ( )) ( ),nG s s W s G s= +   (32) 

where ( )nG s  is the nominal plant, 2 ( )W s  is a 
known stable weighting function, and ∆( )s  is an 
unknown stable transfer function satisfying 
||∆ || 1 ρ.∞ < /  Then, as in [9] and [10], (26) boils down 
to the robust performance condition  

2 ρ,p n nW S W T
∞

| | + | | ≤    (33) 

where 1 (1 )n nS CG= / +  and (1 ).n n nT CG CG= / +   
As Theorem 1, the tracking error converges 

uniformly to the remaining error given in (6) in the 
2L -norm sense as the iteration tends to infinity. 

However, no one can guarantee that the remaining 
error is less than the initial tracking error. Therefore, a 
condition is needed that the tracking error converges 
to a less value than the initial one, which is given in 
the following theorem.  

Theorem 3: For the ILC system shown in Fig. 2, if 
there exists a Wp(s) such that || || 1pI W ∞− <  and if  

   || || 1,pW S∗
∞ <     (34) 

where (1 || || ),p p pW W I W∗
∞= / − −  then  

i) the tracking error is bounded for all k ∈  and 
converges uniformly to the remaining error (6) as 
k → ∞  in the 2L -norm sense;  

ii) the least upper bound of the 2L -norm of the 
remaining error is less than the least upper bound 
of the 2L -norm of the initial tracking error, i.e., 

2 1|| || α ,e∞ ≤  1 2 2|| || α ,e ≤  with 1 2α α ;<  
iii) the infinity norm of the remaining error is less 

than that of the initial tracking error, i.e., 
1|| || || || .E E∞ ∞ ∞<  

Proof: 
i) If ,pW I=  (34) is equal to condition (5) and the 

proof of convergence of the tracking error is the 
same as that of Theorem 1. Consider .pW I≠  

Since || || 1,pI W ∞− <  (34) becomes  

   || || 1 || || ,p pW S I W∞ ∞< − −   (35) 

 which implies that the convergence condition (5) 
is satisfied and then the tracking error is bounded 
for all iterations. By Theorem 1, the remaining 
error can be also given by (6).  

ii) The initial tracking error is obtained by setting 
1( ) 0.V s =  Let 1α  and 2α  be the least upper 

bounds of the remaining error and the initial 
tracking error, respectively:  

   
2 2

1
2 1

|| || || ||

|| ( ) ( ) || || || α ,p p d

e E

I W S I W y
∞ ∞

−
∞

=

≤ − − =
 (36) 

   1 2 1 2 2 2|| || || || || || || || α .de E S y∞= ≤ =   (37) 

 From the condition (35), we get the following 
inequality:  

   1 ωp pI W W S| − |< − | |, ∀ .   (38) 

 We have  

Fig. 3. Block Diagram of ( ) 1.( ∆)p u oW I G C −+ ,F  
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   1 ωp p p pI W S W S W S I W S=| + − |≤| | + | − |, ∀ (39) 

 and therefore  

   1 ωp pW S I W S− | |≤| − |, ∀ .   (40) 

 Finally, from (38) and (40), the following 
inequality  

   ωp pI W I W S| − |<| − |, ∀    (41) 

 is obtained, which implies that  

   1|| ( ) ( ) || || || .p pI W S I W S S−
∞ ∞− − <  (42) 

 Therefore, 1 2α α<  is established.  
iii) (41) also yields that  

   1|| ( ) ( ) || || || ,p p d dI W S I W S Y SY−
∞ ∞− − <  (43) 

which means that 1|| || || || .E E∞ ∞ ∞<               
Remark 5: Theorem 3 shows the boundedness of 

the tracking error. Under some conditions, the 
iterative learning controller diminishes the tracking 
error below, which only the feedback controller 
generates. In other words, by adding an iterative 
learning controller with a simple structure, we can 
reduce the tracking error more effectively than when 
only the feedback controller is used. If the plant with 
multiplicative uncertainty, i.e., 2(1 ∆ ) nG W G= +  is 
considered, the conditions for the boundedness of the 
tracking error are modified to be more or less 
conservative as shown in Theorem 2 of [10].  

 
3. SIMULATION RESULTS 

 
Consider a two-mass/spring/damper system as 

given in Fig. 4 [13]. The dynamical system can be 
described by the following differential equations:  

( ) ( ) ( ),
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=

 

with [ ]1 2 3 4( ) ,( ) ( ) ( ) ( ) Tx t x t x t x t x t=  

1 2 1 2

1 1 1 1

1 1 1 1

1 1 2 1 1 2

2 2 2 2

( ) ( ) ( ) , ( ) ( ) ( ) ,

0 0 1 0
0 0 0 1

T T
u t u t u t y t y t y t

k k b b
A

m m m m
k k k b b b
m m m m

   = =   
 
 
 
 
− −= , 
 
 + +− − 
 

  

1

2

0 0
0 0

1 0 0 01 0
0 1 0 0

10

B C
m

m

 
 
 
   

= , = .   
  

 
 
 

 

Suppose that the transfer matrix from 1 2( )u u,  to 

1 2( )x x,  is the nominal plant ( )nG s  and suppose 
that parameters 1 2 1 21 4 0 2 0 1k k b b= , = , = . , = . , 1m  

1,=  and 2 2m =  with appropriate units. The plant 
G(s) is described in the following multiplicative 
uncertain form:  

( ) ( )( ∆( ) ( )),n uG s G s I s W s= +   (44) 

where ( )uW s  is given as  

5 0
50( )

50
50

u

s
sW s

s
s

+ 
 += . 

+ 
 + 

   (45) 

A method to find ( )oG s  from ( )G s  is introduced in 
[5]. To improve the tracking performance of 

1 1( ) ( )y t x t=  and 2 2( ) ( )y t x t=  in a frequency range 
0 ω 2,≤ ≤  the performance weighting matrix ( )pW s  
is given as  

1 0
2 1( )

10
2 1

p
sW s

s

 
 / += . 
 
 / + 

  (46) 

Using the µ -Analysis and Synthesis Toolbox of 

Matlab [18], the controller 11 12

21 22

( ) ( )
( )

( ) ( )
C s C s

C s
C s C s
 

=  
 

 

satisfying the robust performance condition that can 
be obtained where 

 
Fig. 4. A two-mass/spring/damper system. 
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The largest structured singular value with this 
controller is  

{ }∆
ω
sup µ ( ( ω) ( ω)) 0 9013

P l M j C j
∈

, = .F  

as shown in Fig. 5. In simulations, let the desired 

trajectory ˆ ˆ( ) ( ) ( ) 0 15T
d d dy t t t ty y = , ≤ ≤   be the 

following signal shown in Fig. 6:  

2

2

25 0 5

ˆ ( ) ( 10) 25 2 5 10
2 10 15.

d

t t

t t ty
t

 / , ≤ <
= − − / + , ≤ <
 , ≤ ≤

 (47) 

We performed a simulation using the obtained 
controller and the proposed iterative updating rule. 
The learning control input was initialized as 

1( ) 0,v t =  thus the tracking error at the first iteration 
was only the result of the feedback control. Fig. 7 
indicates the desired trajectory, tracking outputs, and 
tracking errors 1 1ˆ( ) ( ) ( ),de t t y ty= − 2 ˆ( ) ( )de t ty=  

2 ( ),y t−  at 1,k =  2,k =  10,k =  and 20.k =  Fig. 
8 presents the root mean square (rms) values of the 
tracking errors versus the number of iterations, where 
the performance evolution by the added iterative 
learning controller is clearly seen. More quantitatively, 
the rms values of 1( )e t  and 2 ( )e t  decrease steadily 
to approach around 0.037 and 0.31, 5.2 %  and 
26.5 %  of the initial rms values, 0.70 and 1.17, 

2 2

11 2 2

2

12 2
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Fig. 5. { }∆µ ( ( ω) ( ω))
P l M j C j,F  versus frequency.

 

Fig. 6. Desired trajectory. 

 

Fig. 7. Desired trajectory (dotted line), tracking 
outputs, and tracking errors at 1k = (solid 
line), 2k =  (dashed line), 10k = (dashed 
and dotted line), and 20k =  (bold line). 
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respectively, which verifies the benefit of iterative 
learning control.  

Remark 6: By iteratively performing D-K iteration 
or selecting a new performance weighting matrix 

( ),pW s  we can obtain a lower ρ  in the condition 
(26) and a controller with higher gain. Then, it is 
possible to improve the initial tracking performance 
when only the feedback controller is applied. 

 
4. CONCLUDING REMARKS 

 
In this paper, the convergence for a MIMO 

feedback-based ILC was considered. It was shown 
that convergence in the 2L -norm sense is closely 
related with the nominal performance condition and 
the robust performance condition in the feedback 
control theory. Therefore, the design problem of the 
iterative learning controller for an uncertain MIMO 
system is equivalent to designing a feedback 
controller C(s) or selecting a performance weighting 
function Wp(s) to satisfy the robust performance 
condition. Moreover, it was shown that the least upper 
bound of 2L -norm of the remaining tracking error is 
less than that of the initial error. From the result, it 
was verified that the iterative learning controller is 
useful in reducing the tracking error. Simulation on a 
2-mass/spring/damper system was performed and its 
results were presented to validate the effectiveness of 
the proposed method.  
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