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ABSTRACT

Uncertainty propagation has been successfully employed for

speech recognition in nonstationary noise environments. The

uncertainty about the features is typically represented as a di-

agonal covariance matrix for static features only. We present

a framework for estimating the uncertainty over both static

and dynamic features as a full covariance matrix. The esti-

mated covariance matrix is then multiplied by scaling coeffi-

cients optimized on development data. We achieve 21% rel-

ative error rate reduction on the 2nd CHiME Challenge with

respect to conventional decoding without uncertainty, that is

five times more than the reduction achieved with diagonal un-

certainty covariance for static features only.

Index Terms— Automatic speech recognition, noise ro-

bustness, uncertainty handling

1. INTRODUCTION

Robust automatic speech recognition (ASR) remains very

challenging in scenarios involving nonstationary noise sources

overlapping with the target speech [1–4]. Model compensa-

tion [5], feature compensation [6] and hybrid compensation

techniques [7–10] are the three main types of approaches [11].

Uncertainty propagation [12–15] is a hybrid technique in

which the features are considered as a distribution with dy-

namic covariance matrix instead of point estimates. The mean

and the covariance matrix are first estimated in the spectral

domain using a speech enhancement system and they are

propagated to the feature domain. This information is then

exploited to dynamically adapt the acoustic model on each

time frame via uncertainty decoding [16]. In the following,

we use uncertainty propagation in combination with multi-

channel speech enhancement, which typically outperforms

single-channel enhancement in real nonstationary noise con-

ditions [4].

The estimation and the propagation of uncertainty have

been examined in several previous studies. In the spectral do-

main, the uncertainty in different time-frequency bins is typ-

ically assumed to be independent so that it is represented as

a diagonal covariance matrix [12, 15, 17]. In the feature do-

main, this translates into a full uncertainty covariance matrix

over the Mel frequency cepstral coefficients (MFCCs) [17],

yet only the diagonal of this matrix is typically retained for

decoding [12,13,15]. Moreover, propagation to delta-MFCCs

and delta-delta-MFCCs has not been considered to the best of

our knowledge. This comes as no surprise, since the above

independence assumption is likely to result in erroneous un-

certainty estimates over the dynamic MFCCs.

The major contribution of this work is the introduction of

a step-by-step procedure to propagate the estimated spectral

domain uncertainty to the static MFCCs, to the log-energy,

and to their first- and second-order time derivatives. In or-

der to correct the mismatch due to the spectral domain inde-

pendence assumption, we multiply the estimated covariance

matrix by scaling coefficients which are optimized on devel-

opment data. We evaluate the resulting ASR performance on

Track 1 of the 2nd CHiME Challenge [4].

The paper is organized as follows. Section 2 reviews un-

certainty estimation in the spectral domain. The proposed

uncertainty propagation procedure is described in Section 3.

ASR results are reported in Section 4. We conclude in Section

5.

2. UNCERTAINTY ESTIMATION

Let us consider a mixture of J speech and noise sources

recorded by I microphones. In the short-time Fourier trans-

form (STFT) domain, the observed multichannel signal xfn

can be modeled as [18]

xfn =

J∑

j=1

yjfn (1)

where yjfn is the spatial image of the j-th source, and f and

n are the frequency index and the frame index, respectively.

The goal of uncertainty estimation is to obtain not only a point

estimate of the target speech source yjfn represented by its

mean µ̂yjfn
but also an estimate of how much the true (un-

known) source signal may deviate from it, as represented by



its covariance matrix Σ̂yjfn
. This may be achieved by multi-

channel Wiener filtering as follows [13, 17]:

µ̂yjfn
= Wjfnxfn (2)

Σ̂yjfn
= (II − Wjfn) vjfnRjf (3)

where Wjfn = vjfnRjf (
∑

j′ vj′fnRj′f )
−1 is the Wiener fil-

ter, II is the identity matrix of size I , and vjfn and Rjf are

the short-term power spectrum and the spatial covariance ma-

trix of the source, which may be estimated using a number of

alternative speech enhancement techniques [12, 15, 18]. The

source spatial images yjfn are then downmixed into single-

channel source signals sjfn as

sjfn = uH
f yjfn (4)

where uf is a steering vector pointing to the source direction

and H denotes conjugate transposition. In the context of the

CHiME challenge [4], uH
f = [0.5 0.5] for all f . The mean

and the variance of sjfn are given by

µ̂sjfn
= uH

f µ̂yjfn
(5)

σ̂2
sjfn

= uH
f Σ̂yjfn

uf (6)

As an alternative to the STFT, quadratic time-frequency

representations often improve enhancement by accounting for

the local correlation between channels [18]. The variance of

sjfn can still be computed as above but the mean cannot any-

more since the mixture is represented by its local covariance

matrix R̂xfn
instead of xfn. A more general expression may

however be obtained for the magnitude of the mean as

|µ̂sjfn
| =

(
uH
f WjfnR̂xfn

WH
jfnuf

)1/2
. (7)

3. EXTENSION OF UNCERTAINTY PROPAGATION

The mean µ̂sjfn
and the variance σ̂2

sjfn
of the target speech

source are propagated step by step to the feature domain for

exploitation by the recognizer. We use 39-dimensional fea-

ture vectors cn consisting of 12 MFCCs, the log-energy, and

their first- and second-order time derivatives. For legibility,

we remove the index j from now on.

3.1. To the magnitude and the power spectra

The first step is to propagate the uncertainty from the complex-

valued spectrum to the magnitude and the power spectra. Let

us define the 2 × 1 vector vfn = [|sfn| |sfn|
2]T . The mean

and the covariance matrix of vfn are given by

µ̂vfn
=

[
E1

E2

]
(8)

Σ̂vfn
=

[
E2 − E2

1 E3 − E1E2

E3 − E1E2 E4 − E2
2

]
(9)

where Ek = E(|sfn|
k) is the k-th order moment of the

distribution of |sfn|. The distribution of sfn is assumed be

complex-valued Gaussian distribution [19]. Therefore, Ek

has the following closed form [20]:

Ek = Γ

(
k

2
+ 1

)(
σ̂2
sfn

) k
2

L k
2

(
−
|µ̂sfn

|2

σ̂2
sfn

)
(10)

where Γ is the gamma function and L k
2

is the Laguerre poly-

nominal. The first four moments are obtained as

E1 = Γ

(
3

2

)(
σ̂2
sfn

) 1
2

L 1
2

(
−
|µ̂sfn

|2

σ̂2
sfn

)
(11)

E2 = σ̂2
sfn

+ |µ̂sfn
|2 (12)

E3 = Γ

(
5

2

)(
σ̂2
sfn

) 3
2

L 3
2

(
−
|µ̂sfn

|2

σ̂2
sfn

)
(13)

E4 = |µ̂sfn
|4 + 4|µ̂sfn

|2σ̂2
sfn

+ 2σ̂4
sfn

(14)

where L 1
2

and L 3
2

are given by [13, 20, 21]

L 1
2
(q) = e

q
2

(
(1− q) I0(

q

2
) + qI1

(q
2

))
(15)

L 3
2
(q) =

1

3
e

q
2

((
2q2 − 6q + 3

)
I0

(q
2

)
+
(
4q − 2q2

)
I1

(q
2

))

(16)

with I0 and I1 denoting order-0 and order-1 Bessel functions.

The full magnitude and power spectra are concatenated

into a 2F × 1 vector vn = [|s1n| . . . |sFn| |s1n|
2 . . . |s2Fn|]

T

where F is the number of frequency bins. The mean µ̂vn

and the covariance matrix Σ̂vn of vn are obtained by stacking

µ̂vfn
and Σ̂vfn

in the same order, yielding a block-diagonal

covariance matrix with four diagonal blocks.

3.2. To the static MFCCs and to the log-energy

In the second step, uncertainty is propagated to the vector zn
consisting of the static MFCCs and the log-energy. This vec-

tor may be computed using the nonlinear function F

zn = F (vn) = L̄D̄log
(
M̄Ēvn

)
(17)

where Ē, M̄, D̄ and L̄, are expanded versions of the pre-

emphasis matrix, the Mel filterbank matrix, the discrete co-

sine transform (DCT) matrix, and the liftering matrix, respec-

tively. More specifically, these matrices are defined as

Ē =

[
Diag(e) 0

0 IF

]
M̄ =

[
M 0

0 JF

]
(18)

D̄ =

[
D 0

0 1

]
L̄ =

[
Diag(l) 0

0 1

]
(19)

where IF is the identity matrix of size F , JF is a 1× F vec-

tor of ones, Diag(.) is the diagonal matrix built from its vector



argument, e and l are the vectors of pre-emphasis and lifter-

ing coefficients, and M and D are the usual Mel filterbank

and DCT matrices, respectively. Following the improvement

demonstrated by vector Taylor series (VTS) over other tech-

niques in [17], F is approximately linearized by its first-order

VTS expansion [22] as zn ≈ F
(
v0
n

)
+ JF

(
v0n
) (

vn − v0n
)
.

The mean and the covariance of zn are therefore computed as

µ̂zn
= F(µ̂vn

) = L̄D̄log
(
M̄Ēµ̂vn

)
(20)

Σ̂zn = JF

(
µ̂vn

)
Σ̂vnJF

(
µ̂vn

)T
(21)

with the Jacobian matrix JF

(
µ̂vn

)
given by

JF

(
µ̂vn

)
= L̄D̄Diag

(
1/(M̄Ēµ̂vn

)
)
M̄Ē (22)

where the division is performed element-wise. The static

MFCCs are subject to cepstral mean normalization [23]. For

large enough number of time frames N , we treat the mean of

the MFCCs over time as a deterministic quantity. Therefore,

the mean MFCC vectors µ̂zn
are normalized as usual while

the covariance matrices are unchanged.

3.3. To the full feature vector

In the third step, we propagate the uncertainty about the

static features to the full feature vector. The static features

in the 4 preceding 4 frames, in the current frame, and in

the following 4 frames are concatenated into a column vec-

tor z̄n = [zTn−4 zTn−3 . . . zTn+4]
T . The full feature vector

cn = [zn ∆zn ∆2zn] can be expressed in matrix form as

cn = (A⊗ IC)z̄n (23)

where ⊗ is the Kronecker product, IC the identity matrix of

size C = 13, and the matrix A is given by [23]

A =
1

100




0 0 0 0 100 0 0 0 0
0 0 −20 −10 0 10 20 0 0
4 4 1 −4 −10 −4 1 4 4


 .

(24)

The mean and the covariance matrix of cn are derived as

µ̂cn
= (A⊗ IC)µ̂z̄n

(25)

Σ̂cn = (A⊗ IC)Σ̂z̄n(A⊗ IC)
T (26)

where µ̂z̄n
and Σ̂z̄n are obtained by concatenating µ̂zn−4

, . . . ,

µ̂zn−4
into a column vector and Σ̂zn−4

, . . . , Σ̂zn+4
into a

block-diagonal matrix. Either the full uncertainty covariance

matrix Σ̂cn or its diagonal diag(Σ̂cn) are then exploited to

dynamically adapt the recognizer using Deng’s uncertainty

decoding rule [16].

3.4. Uncertainty scaling

The spectral domain uncertainty estimates in Section 2 rely on

the assumption that uncertainty is independent across time-

frequency bins. This assumption is not satisfied in practice,
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Fig. 1. Optimal scaling coefficients.

so that it translates into biased feature domain uncertainty es-

timates. The estimation of uncertainty across time-frequency

bins appears to be a difficult far-end goal. In this work, we

propose a simpler approach to compensate for this bias by

scaling the coefficients of the uncertainty covariance matrix.

More precisely, the diagonal covariance matrix and the full

covariance matrix are scaled as

diag(Σ̂
scaled

cn
) = Diag(b)diag(Σ̂cn) (27)

Σ̂
scaled

cn
= Diag(b)1/2Σ̂cnDiag(b)1/2 (28)

where b is a 39 × 1 vector of nonnegative scaling coeffi-

cients (one per feature). Note that (28) preserves the positive-

definiteness of the full covariance matrix. The scaling co-

efficients are optimized on development data for which the

true speech signal is known then they are used for test data.

The oracle (perfect) uncertainty covariance matrix is defined

as [17]: Σcn =
(
µ̂cn

− cn
) (

µ̂cn
− cn

)T
. Where cn is the

true feature vector. The optimal coefficients are found by

minimizing some measure of divergence D [24] between the

scaled diagonal covariance matrix and the oracle diagonal co-

variance matrix:

b = argmin
b

D
(

diag (Σcn) |Diag(b)diag(Σ̂cn)
)
. (29)

In the following, we employ the squared Euclidean distance,

so that the scaling coefficients are found in closed form. Fig. 1

depicts the scaling coefficients estimated on the development

data of the 2nd CHiME Challenge, which are subsequently

applied to the test data. All scaling coefficients are larger

than 1, which supports the claim in [25] that Wiener-based

spectral domain uncertainty estimates are systematically un-

derestimated.

4. EXPERIMENTS

We assess our uncertainty propagation procedure on Track 1

of the 2nd CHiME Challenge [4]. Speech consists of 6-word



Uncertainty Uncertain
Scaling

Test set Development set

covariance matrix features -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

no uncertainty 73.75 78.42 84.33 89.50 91.83 92.25 85.01 73.25 78.02 84.33 89.25 91.75 92.18 84.80

static no 75.00 79.00 84.75 90.13 91.92 93.67 85.74 74.93 78.75 84.83 89.92 91.83 92.18 85.41

dynamic no 75.00 79.00 84.92 90.33 91.92 92.33 85.58 74.67 78.92 84.75 89.50 91.93 92.48 85.37

diagonal
all no 76.93 79.17 85.92 90.00 92.00 93.75 86.29 76.13 78.75 85.56 89.68 91.75 93.50 85.89

static yes 76.50 79.25 85.67 90.17 92.58 92.58 86.13 77.00 78.51 85.82 89.58 91.50 93.52 85.98

dynamic yes 76.50 79.25 85.50 90.00 91.92 92.67 86.00 75.92 78.00 85.75 89.75 91.83 92.42 85.61

all yes 78.67 79.50 86.33 90.17 92.08 93.75 86.75 78.25 79.17 85.92 89.87 91.80 93.41 86.40

static no 76.75 79.33 85.50 90.33 92.33 93.67 86.31 76.40 79.33 85.50 89.75 91.92 92.38 85.88

dynamic no 76.75 79.17 85.75 90.33 92.00 93.83 86.30 76.17 79.25 85.50 89.75 91.92 92.55 85.85

full
all no 77.92 80.75 86.75 90.50 92.92 93.75 87.00 77.92 79.81 86.51 89.93 92.92 93.75 86.80

static yes 77.42 79.50 86.67 90.33 92.83 94.17 86.82 77.81 79.64 86.00 90.16 92.17 93.00 86.46

dynamic yes 77.92 80.00 86.75 90.17 92.17 93.50 86.75 77.86 79.92 86.17 89.83 91.93 92.42 86.35

all yes 81.75 81.83 88.17 90.50 92.67 93.75 88.11 80.63 81.87 87.35 90.57 92.33 93.75 87.75

Table 1. ASR performance expressed in terms of keyword accuracy (in %). Average accuracies have a 95% confidence interval

of ±0.8%

utterances of the form <command><color><preposition>
<letter> <digit> <adverb>. The utterances are read by 34

speakers and mixed with real domestic background noise at 6

different signal-to-noise ratios (SNRs). The task is to report

the letter and digit keywords and performance is measured by

keyword accuracy. The training set contains 500 noiseless re-

verberated utterances corresponding to 0.14 hour per speaker.

The development set and the test set each contain 600 utter-

ances corresponding to 0.16 hour per SNR.

4.1. Experimental setup

Speech enhancement is applied to the development and test

datasets using the Flexible Audio Source Separation Toolbox

(FASST) [18] with the following settings optimized on the

development set. A quadratic time-frequency representation

on the auditory-motivated equivalent rectangular bandwidth

(ERB) scale is used with 160 bands and half-overlapping

32 ms frames. The number of noise sources is set to 2. The

power spectra of speech and noise are modeled by nonnega-

tive matrix factorization (NMF) with 32 components and their

spatial covariance matrices are modeled as full-rank [18].

Speaker-dependent acoustic models with diagonal Gaussian

mixture model (GMM) densities are trained from the train-

ing set using the HTK baseline provided by the challenge

organizers [4]. Uncertainty decoding is performed using the

HTK baseline with Astudillo’s patch1 for diagonal uncer-

tainty covariances and with our own patch for full uncertainty

covariances.

4.2. Experimental results

ASR accuracies are reported in Table 1. Similar trends are

observed on the development and the test data. On average

over all SNRs in the test set, the baseline accuracy with con-

ventional decoding (no uncertainty) is 85.01%. State-of-the-

1http://www.astudillo.com/ramon/research/stft-up/

art uncertainty decoding with diagonal uncertainty covariance

on static features (and no uncertainty on dynamic features)

increases accuracy to 85.74%, that is 4% relative error rate

reduction with respect to the baseline. Using the full un-

certainty covariance, modeling the uncertainty over the dy-

namic features, and/or scaling the estimated uncertainties sys-

tematically improve the average performance. The best sys-

tem using full uncertainty covariance on all features achieves

88.11% accuracy. This corresponds to 21% relative error rate

reduction with respect to the baseline, that is five times more

than the reduction achieved with diagonal uncertainty covari-

ance for static features.

5. CONCLUSION

We presented a procedure for estimating the uncertainty about

both static and dynamic MFCCs in the context of noise robust

ASR based on uncertainty decoding. The estimated uncer-

tainty is scaled by minimizing some measure of divergence

with oracle uncertainty estimates on development data. The

results demonstrate the benefit of modeling the uncertainty

over both static and dynamic features, of scaling these esti-

mates, and of using the full uncertainty covariance. In future

work, we will seek to develop a method to estimate the inter-

frame correlation between uncertainties.
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and sparse imputation for missing data speech recogni-

tion in multisource reverberant environments,” in Proc.

CHiME, 2011, pp. 58–63.

[15] F. Nesta, M. Matassoni, and R. Astudillo, “A flexi-

ble spatial blind source extraction framework for robust

speech recognition in noisy environments,” in Proc.

CHiME, 2013, pp. 33–40.

[16] L. Deng, J. Wu, J. Droppo, and A. Acero, “Dy-

namic compensation of HMM variances using the fea-

ture enhancement uncertainty computed from a para-

metric model of speech distortion,” IEEE Transactions

on Audio, Speech, and Language Processing, vol. 13,

no. 3, pp. 412 – 421, May 2005.

[17] A. Ozerov, M. Lagrange, and E. Vincent, “Uncertainty-

based learning of acoustic models from noisy data,”

Computer Speech and Language, vol. 27, no. 3, pp. 874–

894, Feb. 2013.

[18] A. Ozerov, E. Vincent, and F. Bimbot, “A general flex-

ible framework for the handling of prior information in

audio source separation,” IEEE Transactions on Audio,

Speech, and Language Processing, vol. 20, no. 4, pp.

1118 – 1133, May 2012.

[19] R. Astudillo, Integration of Short-Time Fourier Do-

main Speech Enhancement and Observation Uncer-

tainty Techniques for Robust Automatic Speech Recog-

nition, Ph.D. thesis, TU Berlin, 2010.

[20] I. Gradshteyn and I. Ryzhik, Table of Intergral, Series

and Product, 1995.

[21] S. Rice, “Mathematical analysis of random noise,” Bell

System Technical Journal, vol. 23, 1944.

[22] P. J. Moreno, B. Raj, and R. M. Stern, “A vector Tay-

lor series approach for environment-independent speech

recognition,” in Proc. ICASSP, 1996, vol. 2, pp. 733 –

736.

[23] S. Young, G. Evermann, D. Kershaw, G. Moore,

J. Odell, D. Ollason, V. Valtchev, and P. Woodland, The

HTK book, 2002.

[24] R. Kompass, “A generalized divergence measure fon

nonnegative matrix factorization,” Neural Computation,

vol. 19, no. 3, pp. 780–791, Mar. 2007.
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