
High resolution imaging of maize (Zea mays) leaf temperature
in the field: the key role of the regions of interest

Taha JerbiA, Nathalie WuytsA,B, Maria Angela CaneC, Philippe-François FauxA

and Xavier DrayeA,D

AEarth and Life Institute, Université catholique de Louvain, Croix du Sud 2 L7.05.11,
1348 Louvain-la-Neuve, Belgium.

BPresent address: Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie,
Technologie Park, 9000 Gent, Belgium.

CDi.S.T.A. Department of Agroenvironmental Sciences and Technologies, University of Bologna,
Viale Fanin 44, 40127 Bologna, Italy.

DCorresponding author. Email: xavier.draye@uclouvain.be

Abstract. The use of remote sensors (thermometers and cameras) to analyse crop water status in field conditions is
fraught with several difficulties. In particular, average canopy temperature measurements are affected by the mixture of
soil and green regions, the mutual shading of leaves and the variability of absorbed radiation. The aim of the study was to
analyse how the selection of different ‘regions of interest’ (ROI) in canopy images affect the variability of the resulting
temperature averages. Using automated image segmentation techniques we computed the average temperature in four
nested ROI of decreasing size, from the whole image down to the sunlit fraction of a leaf located in the upper part of
the canopy. The study was conducted on maize (Zea mays L.) at the flowering stage, for its large leaves and well structured
canopy. Our results suggest that, under these conditions, the ROI comprising the sunlit fraction of a leaf located in the
upper part of the canopy should be analogous to the single leaf approach (in controlled conditions) that allows the estimation
of stomatal conductance or plant water potential.

Additional keywords: canopy, phenotyping, remote sensing, segmentation, thermography.

Received 22 February 2014, accepted 7 May 2015, published online 15 June 2015

Introduction

Monitoring crop water status at critical phenological stages is
an important task for irrigation scheduling, and allows for the
identification of genotypes that are able to maintain transpiration
underwaterdeficit, aswell as foranalysingmechanismsunderlying
drought tolerance (Costa et al. 2013). Canopy temperature is used
operationally to compute various water stress indices (reviewed
by Maes and Steppe 2012), as it is easily obtained by remote
sensing and relates to plant transpiration through the cooling effect
of evaporation at the leaf surface.

Physical relations relating leaf temperature to stomatal
conductance and leaf water potential in controlled conditions
have been established and validated experimentally (Jones
1999b; Cohen et al. 2005). However, the use of remotely-
sensed temperatures to quantify plant water status in the field is
fraught with several difficulties, primarily because environmental
conditions influence the heat balance and temperature of leaves.
Several normalisation techniques have been proposed to remove
the effect of these environmental influences from sensed values.
These techniques relyonair temperature (Jacksonet al. 1977),non-
transpiring and non-stressed crop temperatures (Idso et al. 1981),

physical reference surface temperatures (Jones 1999a) and, more
recently, theoretical wet and dry reference temperatures (Leinonen
et al. 2006).

Scaling up remote sensing techniques from individual leaves
to crop canopies also introduces issues related to the complexity
of the canopy within the field of view of the sensor (Jones et al.
2009). When using thermometer sensors or thermal cameras
with low spatial resolution compared with the leaf size, the
measurements provide an average value over a collection of
objects. That value can be used to estimate various indices of
crop water status, as long as one is confident that the sensor is
recording the temperature of the leaves of interest (Grant et al.
2007;Zia et al. 2013).More sophisticated approaches arepossible
with ground-based remote sensing using high resolution thermal
and visible (RGB) cameras. In these conditions, the segmentation
of the RGB image provides a mask of leaves that is applied on
the thermal image to obtain a temperature measurement of the
green area of the canopy ignoring background temperature
(Leinonen and Jones 2004).

Temperature variations up to 10�15�Coccur among leaves of
a canopy as well as along individual leaves (Jones et al. 2002;
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Grant et al. 2007; see Fig. 1). Consequently, the green mask that
is obtained by the segmentation of RGB image still contains
a population of leaf segmentswith contrasting age, exposition and
environmental conditions, depending on their position in the
canopy and on the direction of solar radiation. This variability
has been exploited with a variable success to estimate stomatal
conductance, based on the rationale that transpiration smoothes
the temperature variation between leaves of the canopy (Fuchs
1990; see review by Jones et al. 2009).

The variability of leaf temperature in a canopy has been
attributed mainly to the effect of absorbed radiation, resulting
from mutual shading, position in the canopy and the major effect
of leaf angle (Jones et al. 2009). Prior investigations of the
influence of the leaf orientation suggested that the mean
canopy temperature is a less variable measurement than leaf
temperature, due to the implicit averaging of the leaf angle
(Grant et al. 2007). However, such averaging is likely to
introduce confounding effects for at least two reasons. First,
the information content of individual leaf segments with
respect to the derivation of physiological crop parameters
varies among segments; and second, their absorbed radiation
cannot be considered as random as it depends on canopy
architecture and on the direction of solar radiation.

Our study takes advantage of image segmentation techniques
to perform the automated selection of four nested ‘regions of
interest’ (ROI) of decreasing size, from the whole image down to
the sunlit fraction of a leaf located in the upper part of the canopy.
The aimof the studywas to compare the variability of temperature
measurements averaged within these regions. Maize (Zea mays
L.) canopies at the flowering stage were chosen for this analysis.
Given the large leaves of this species, image segmentation yields
areas comprised of hundred of pixels and it can be assumed that
the averaging is not affected by sample size issues. In addition, the
maize canopy is structured in away such that leaves in the row are
most likely to be upper leaves, and leaves between rows are
located at an intermediate height.Our results suggest that, in these
conditions, theROI comprising the sunlit fraction of a leaf located
in the upper part of the canopy should be analogous to the single
leaf approach in controlled conditions that allows the estimation
of stomatal conductance or plant water potential.

Materials and methods
Image data

For this analysis, we selected 74 images of maize canopies from
the imagedatabase of theDROPsproject (www.drops-project.eu,
accessed 22 May 2015). This database contained thousands of
images acquired in 2011 and 2012 during the flowering period of
maize in large scale field trials (250 hybrids) located in Bologna
(Italy). Images had been acquired using a thermal camera (FLIR
SC660 http://www.flir.eu/science/content/?id=41965, accessed
22 May 2015) mounted on a pole, ~1m above the top of the
canopy,with avertical orientation of thefield of view.The camera
provides thermal and visible (RGB) modalities, with sensor sizes
of 480 �640 and 1536 �2048 respectively.

The selection of images for our analysis aimed at assembling
a set of images embracing a range of canopy structure, leaf
exposition, solar radiation and plant water status. For this
purpose, images were picked from a subset of six hybrids with
different canopy structures (W64A, F894, PH207, B73, Oh-43,
MS153, all crossed to UH007 as tester). The selected set of
images also embraces different hours and days of acquisition,
viz. between 0800 and 1700 hours within a period of seven
consecutive days during which the field was not irrigated
(drying cycle).

General scheme of the algorithm

A general pipeline was set up usingMicrosoft Visual C++ and the
open-source library ITK to compute the average temperature in
different ROI (Fig. 2). A registration was first carried out to
establish pixel-to-pixel correspondence between IR and RGB
modalities. Images were then segmented to mark different ROI,
namely (i) thewhole image, (ii) thewhole canopy (after exclusion
of the soil pixels), (iii) a large leaf aligned on the field row, and
(iv) the sunlit part of that leaf. The average temperature was then
calculated in the four ROI for each of the 74 images. The different
imaging steps are described hereafter.

Registration

A registration was required to establish the pixel-to-pixel
correspondence between the IR and RGB modalities produced

(a) (b)

Fig. 1. High resolution infrared (a) andRGB (b) images of amaize canopy. Circles 1 to 3 illustrate the effect of, respectively,mutual
shading, leaf rolling and orientation on the spatial variation of temperature along leaves.
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by different imaging sensors (Fig. 3 top row). This requires a
transformation to match the images and a similarity criterion to
measure the difference between the images. In a similar work
(Yang et al. 2009), the transformation between the images used
a translation, a rotation and a scale factor. We used the same
kind of transformation as the risk of non-rigid motion of leaves
during the small delay between RGB and IR acquisition had been
reduced by selecting images acquired in the absence of wind.

Thedifferencesbetween imageswasquantifiedwith adistance
based on the normalised correlationmetric, whichwas previously
identified as the best measure for multi-modal registration in

medical applications (Penney et al. 1998). Yang et al. (2012)
applied a normalised cross correlation (NCC) metric on the
gradient (by using a modified Sobel edge detector to get the
contours) and a multiscale registration scheme to get a first rough
registration. Their approach is justifiedwhere regionswith higher
intensity in one image have lower intensity in the other. In our
case, the NCCmetric was applied directly to the pixels grey level
intensity (Penney et al. 1998).

Acquisitions of a chessboard pattern were used to validate the
registrationmethod. The chessboardwas printed on awhite paper
which was placed on window in a sunny day in order to obtain
a temperature difference between the white and black squares.
The registration errors for these testswere evaluatedbymeasuring
the difference between the positions of the corners in the two
images. These errors were less than two pixels. Fig. 3 illustrates
the results obtained by registering visible and infrared images of
a maize canopy.

Soil detection

A segmentation procedure was used to split thermal images into
uniform regions with the aim to separate soil pixels from canopy
pixels. As the separation between objects was not always clear in
the infrared modality, the segmentation was done using the RGB
modality. It was achieved using a watershed algorithm that
separates regions of the image using an analogy with the
flooding of a natural relief. Where the water in two different
basinsmerges, a line separating twodifferent regions of the image
is formed. In the image segmentation case, the relief corresponded
to the gradient of the image. This algorithm is one of the most
popular in the image segmentation field (Bieniek and Moga
2000). The threshold gradient value separating neighbour
regions was set empirically in order to reduce the risk of over-
segmentation (themajor drawbackof thewatershed algorithm).A
unique value was found to be suitable for the complete set of
images, despite the varying levels of light levels and quality
across images. This was essentially due to the steep gradient
appearing at the boundaries between soil and canopy pixels.
Finally, the labelling of every region into soil or canopy
classes could be made according to their average RGB profile.

Shadow detection
Detecting the shaded areas of the canopywas a preliminary step to
compute the average temperature of the sunlit canopy fraction.

Thermal image RGB image

Registration

Registered
thermal image

Registered
RGB image

Soil 
segmentation

Shadow 
detection

Canopy
segmentation

Temperature averaging
(Ti Tc Tl Tsl)

Fig. 2. Workflow of the automated image processing pipeline.

(a) (b) (c)

Fig. 3. Illustration of the registration process. RGB (a) and thermal (b) images. The black frame around the thermal image indicates the field of view of the RGB
image. (c) A chess-like composite overlay of the RGB and thermal images after registration that illustrates the quality of the registration. The rectangle at position
i, j (i, j 2 [1, 10]) shows the corresponding area of the RGB modality if (i + j) is odd and of the thermal modality if (i+ j) is even.
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The RGB images were transformed to the HSV (hue, saturation,
value) colour system and a normalised saturation-value
difference index was computed for each pixel (Ma et al.
2008). The separation of shaded and sunny leaf pixels was
then made by conventional thresholding (Ma et al. 2008). This
method was tested on several canopy images and was compared
with a manual tracing of shadowed areas. The comparison
revealed that the proportion of mis-classified pixels (in the
‘shadowed’ class in one method and in the ‘sunny’ class in the
other) was less than 2%. It was ~1.59%on the image illustrated in
Fig. 4. Themanual selection of the shadow area took to the expert
nearly half an hour whereas this method provided results in just
few seconds.

Leaf selection
Using the results of the segmentation above, a single leaf located
in the centre of the image and with a large area was selected as a
representative leaf. This ensured (i) that the selected leaf belonged
to a plant located in the central row and not to a plant from a
neighbouring row (with a different genotype), and (ii) that the
representative leafwas located in the top part of the canopy,with a
minimum shadowed area.

Finally, the shadowed area of the image was subtracted from
the area of the single leaf to obtain a mask of the sunlit fraction of
that leaf.We assumed that this leaf fraction should be in exposure
conditions similar to the single leaf approach by Jones (1999b).

Temperature averaging

Using the results of the registration, the various ROI obtained in
the RGB modality were used to compute average temperatures
in the corresponding areas of the thermal modality. Four
temperature estimates were obtained in this way: (i) the
average temperature of the whole image (Ti), (ii) the average
temperature of the whole canopy (i.e. after exclusion of the soil
pixels) (Tc), (iii) the average temperature of the representative leaf
(Tl), and (iv) the average temperature of the sunlit part of the
representative leaf (Tsl).

Finally, we compared the different estimates over the sample
of 74 images which represented a wide range of conditions for
maize at flowering. Small differences could have arisen during

image processing (segmentation, registration) and should not
be considered as meaningful. We considered a conservative
baseline of 1.5�C, which is below genotypic differences of leaf
temperature of 1.8–3.7�C reported under field conditions (Jones
et al. 2009).

Results

Fig. 5 reports the range of the four temperature estimates for each
of the 74 images. As expected, there was a large effect of the time
of day, with a ~6�C difference between 0900 and 1200 hours,
which resultedpresumably fromdifferences in absorbed radiation
and plant transpiration (Jones et al. 2009). Although not directly
visible on the figure, there were also differences up to 7�C
between images for the same ROI. These most likely resulted
from a mixture of the effects of canopy structure (hybrid) and
plant water status (day during the drying cycle).

In this set of data, only small differences were found between
the temperature of the canopy (Tc) and the temperature of the
whole image (Ti) (r >0.99, Fig. 6a). This has to be related to the
fact that acquisitions had been done near flowering, when plants
have reached their maximal leaf area. In these conditions, the
soil is largely under the shadow of the plants and soil areas in
the field of view of the camera tend to be small. The largest soil
region comprised 51 615 pixels (16% of the image pixel count)
and the corresponding temperature difference |Ti – Tc| was only
0.46�C.

To further assess the effect of soil pixels on Ti, we analysed 12
acquisitions (not comprised in the 74) in which sunlit soil pixels
comprised 25–96% of the image (Fig. 7). Because sunlit soil
pixels tend to have larger temperatures than leaves, the difference
(Ti – Tc) increased with increasing fraction of soil pixels. (Ti – Tc)
reached 2�C with a soil fraction of 25–40%, 5�C with a soil
fraction of 40–85%, 10�C with 85% and up to 12.7�C for a soil
fraction of 96%. As the structure of the canopy itself determines
the size of the soil area (in acquisitions made from the top of the
canopy), average image temperatures carry a genotype dependent
bias that could affect their assessment.

On the majority of images, the temperature of the
representative leaf (Tl) and that of the sunlit part of that leaf
(Tsl) were higher than Ti (Fig. 6b, c) and Tc, a consequence of the

Fig. 4. Illustration of the shadow detection process. The left image is the original RGB. The right image is the processed image after
masking pixels corresponding to shadow areas.
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selected leaf being in the top of the canopy and of the heating
effect of radiation absorption in sunlit parts. The correlation
between Ti and Tl was 0.95 and that between Ti and Tsl was

0.93. Tl and Tsl exceeded Ti by, respectively, 0.7 and 1.2�C on
average, or by1.5�C in, respectively, 19 and32%of the images.Tl
and Tsl were also highly correlated (Fig. 6d) and displayed an
average difference of 0.5�C.

An examination of metadata indicated that images with low
(Tl – Ti) or (Tsl – Ti) differences had been acquired early in the
morning, i.e. under diffuse day light and limited solar radiation.
This is not surprising as, compared with mid-day acquisitions,
the absorption of radiation by the top and exposed leaves was
reduced in the early morning and the temperature contrast
between the two tended to be smaller.

The set of ROI considered here constitutes a nested series
of regions of increasing complexity and area {well exposed
leaf area} � {representative leaf} � {whole canopy} �
{whole image}. To estimate the benefit of the shadow
exclusion and of the segmentation of a single leaf, we
estimated the variance (across the 74 images) of the four
temperature indicators. The variance of Tsl (11.01) turned out
to be 22% larger than that ofTl (9.18),Tc (9.13) andTi (9.09). This
result indicates that the inclusion of shaded leaf parts and soil
inside the ROI did not increase the variance across images but,
on the contrary, seemed to smooth out the differences of the
sunlit parts. This suggests that the temperature of the shaded or
bottom part of the canopy tends to be more stable across scenes
than that of the sunlit canopy fraction.
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Fig. 5. Dependence of leaf temperature on the time of day. Each bar
corresponds to a single image and represents the range (min–max) of
temperatures estimated from the image using the four regions of interest.
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Discussion

In this study, we propose an automated image analysis pipeline
combining high resolution IR and RGB image modalities
to estimate the leaf temperature of maize plants in the field
during the flowering period. The pipeline includes the
registration of the IR and RGB modalities and uses
segmentation algorithms to estimate the temperature of four
ROIs of decreasing complexity, from the whole image to the
sunlit fraction of a single leaf. This pipeline is then used on a set
of contrasting scenes (different genotypes, time-of-day and
level of water deficit) to study the major benefits of high
resolution thermal imaging in field conditions, in comparison
with intermediate or low resolution imaging techniques.

It has been recently reported that the average temperature
of the green area of maize rows can be used to differentiate
maize hybrids of contrasting phenologies in field conditions
(Zia et al. 2013). Our results strengthen the grounds of this
statement by showing that the average canopy temperature
correlates with the temperature of the sunlit canopy fraction,
for which the physiological basis of leaf temperature has been
established (Jones et al. 2009). However, the observation that
the inclusion of shaded leaf parts and soil smoothed out the
differences between scenes indicates that the selection of a single
well-exposed leaf area has the potential to reveal differences
among scenes that would be filtered out without segmentation.
We note that these differences might be significant for field
phenotyping, as scene and leaf temperatures differed by a
value that can be greater than genotypic differences reported
elsewhere (Liu et al. 2011), especially under direct solar radiation.
Therefore, we propose that the use of the temperature of the
sunlit canopy fraction has the potential to improve the reliability
of thermal imaging for field phenotyping applications (Leinonen
et al. 2006). However, the experimental validation of this
proposition requires the demonstration that the information
carried by the higher temperature variation of the sunlit
canopy fraction, compared with that of the rest of the canopy,
is actually relevant for a physiological interpretation.

In the method we applied to maize, we pushed further this
‘leave of interest’ problem and evaluated the relevance of
extracting a unique leaf aligned on the planting row. Given the
structure of the maize canopy, the selection of a leaf aligned
on the row narrows the age range of the leaves analysed across
different images and reduces the age-related variability in
stomatal conductance and leaf temperature. The selected leaf
ROI may therefore be a better choice to reveal differences
between genotypes compared with the use of larger ROIs. In
addition, since the corresponding leaf is located in the upper part
of the canopy, meteorological data obtained with on-site stations
provide an accurate description of its local environment. The
obtained results are ultimately analogous to the single leaf
approach for which the accuracy of thermal imaging has been
established (Maes and Steppe 2012). A possible improvement of
the method would be to take into account the orientation of the
leaf segment relative to the sun, which would provide a better
estimate of the specific radiation absorption by the selected leaf.
With the large area ofmaize leaves, this spatial informationmight
be captured by time-of-flight cameras or LiDar equipment.

The extraction of temperature of the leaves of interest from
whole canopy images has been highlighted as a major problem in
the scaling up of thermal imaging from leaves in controlled
conditions to real canopies (Jones et al. 2009). The notion of
‘leaves of interest’ reflects different realities depending on the
chosen estimationmethod. In the study byWang et al. (2010), for
example, the problem was to identify wet and dry reference
leaves, based on their relative position to a reference object or
on their temperature ranking. When reference temperatures are
known (Leinonen et al. 2006), the focusmoved to the selection of
a part of the canopy that carries themost relevant information. The
elimination of the shadowed canopy fraction has been proposed
as an appropriate filtering strategy (Leinonen and Jones 2004).
It is based on the premise that the sunlit parts of the canopy
are generally comprised of the young leaves with highest
hydraulic conductance, are the most distant from the roots, and
are exposed to the driest atmospheric conditions and to the
highest solar radiation. Sunlit leaves are therefore likely to be
a rather sensitive sensor of plantwater status (Leinonen and Jones
2004; Möller et al. 2007). However, shadow exclusion is not
generally applied, seemingly because of difficulties for its
implementation (Prashar et al. 2013). The algorithm that we
have developed appears to be generally applicable to canopies
of adult maize plants, characterised by long and large leaves that
ease segmentation.

Unlike intermediate resolution techniques (e.g. Zia et al.
2013), high resolution imaging enables the exclusion of soil
and shaded leaves or the segmentation of a sunlit leaf fraction
and theuse of automated segmentation algorithms todramatically
improve the throughput of image analysis downstream of
acquisition. However, the high spatial resolution is only
compatible with 640� 480 cameras maintained ~1m above
the canopy, which prevents achieving the throughput
requirement of phenotyping applications. It is expected that
the decreasing costs and miniaturisation of thermal sensors
will make it realistic to embark thermal cameras on board
small UAVs (Maes and Steppe 2012), which will provide the
needed flexibility for scene acquisition at the field scale when
atmospheric conditions are suitable.
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