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Abstract

Genetic algorithm is one of the main heuristics that
have been applied to scheduling problems in the last
few decades. This paper presents a generalization of
the genetic algorithm for solving project scheduling
problem under time uncertainties within resource
leveling technique. The generalization consists of
handling fuzzy time parameter and fuzzy resource
distribution instead of crisp ones. The provided
fuzzy genetic algorithm is justified and applied to a
real multi-project and multi-resources problem from
the helicopter maintenance activity.
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1. Introduction

Maintenance is a costly and important activity in
the aeronautical industry. Aircraft maintenance
consists of carrying out all the necessary actions to
guarantee the required level of reliability, safety and
operational capacity of the aircraft. Hence, the or-
ganization of helicopters maintenance, repair and
overhaul (MRO) is an important issue and some
problems like particularly planning and schedul-
ing have already been studied for the military do-
main [20, 21]. In this paper, only Heavy Mainte-
nance Visits (HMV); the heaviest aircraft mainte-
nance checks, are considered. These checks affect
all the aspects (structure, avionics, mechanics) and
can last up to several months.

The HMV check contains planned maintenance
tasks and also corrective maintenance tasks because
problems are discovered during the inspection of
the helicopter. Precedence constraints exist, due
to technical or accessibility considerations. Hence
a HMV may be seen as a project involving var-
ious resources as operators, equipment and spare
parts. Consequently, the management of a main-
tenance center is viewed as multi-project manage-
ment, where every project duration should be min-
imized while respecting capacity constraints.

In[6], multi-project organizations are classified
according to projects variability and dependency.
Dealing with high variability is an important is-
sue in aircraft maintenance domain. Although it
is qualified as non optimal, the Theory of Con-
straints provided by Eliyahu Goldratt has proven

its effectiveness when coping with scheduling prob-
lem under uncertainty in military aircraft mainte-
nance [19]. According to our knowledge, no solution
has been provided in literature for civil helicopter
maintenance. This can be explained by the disper-
sal of civil actors who are positioning as small ser-
vice providers with limited resources. Helicopters
have some specificities: particular flight conditions,
compact volume, high criticality etc. Moreover, in
contrary to military helicopter maintenance work-
shops, a great heterogeneity is involved when re-
pairing civil helicopters.

Focused on civil domain, three high sources of un-
certainty have been identified: uncertainty on the
release date, the inspection duration and the pro-
curement delays. To cope with these uncertainties
on scheduling optimization, a fuzzy set modeling
has been justified and explained in[14].

Typically, two techniques - time driven and
resource driven - are employed to solve project
scheduling problem. In this paper we focus on the
first technique and we provide a new generaliza-
tion of genetic algorithm to fuzzy Resource Leveling
Problem.

The paper is organized as follows. The second
section introduces Fuzzy set theory and its applica-
tion to projects modeling. In the third section, a
GA procedure to solve resource leveling problem is
described. In the forth section, a generalization of
the GA-based resource leveling technique to fuzzy
time and resource parameters is provided. The last
section contains some conclusions.

2. Fuzzy time and resource modeling

2.1. Fuzzy set theory

Introduced by Zadeh [16] in 1965, The fuzzy set
theory is well-suited to cope with uncertainties. It
becomes more and more useful in different domains
especially in production management [3, 12].

Zadeh has defined a fuzzy set Ã as a subset of
a referential set X, whose boundaries are gradual
rather than abrupt. Thus, the membership function
µ
Ã
of a fuzzy set assigns to each element x ∈ X its

degree of membership µ
Ã

(x) taking values in [0, 1].
Many profiles are used in the literature to model

fuzzy quantity. Particularly, the trapezoidal pro-
file (Fig.1) is the best-supported by the possibility
approach (Sec. 2.3).
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Figure 1: Trapezoidal fuzzy set

To generalize some operations from classical logic
to fuzzy sets, Zadeh has given the possibility to rep-
resent a fuzzy profile by an infinite family of inter-
vals called α-cuts. Hence, the fuzzy profile Ã can be
defined as a set of intervals Aα = {x ∈ X;µ

Ã
(x) ≥

α} with α ∈ [0, 1]. It became consequently easy
to utilize classical interval arithmetics and adapt it
to fuzzy numbers. Dubois and Prade [3] and Chen
and Hwang [10] have defined mathematical oper-
ations that can be performed on trapezoidal fuzzy
sets. Let Ã(aA, bA, cA, dA) and B̃(aB , bB , cB , dB) be
two trapezoidal fuzzy numbers, then:

Ã⊕ B̃ = (aA + aB , bA + bB , cA + cB , dA + dB),
(1)

Ã	 B̃ = (aA − dB , bA − cB , cA − bB , dA − aB),
(2)

max(Ã, B̃) = ( max(aA, aB),max(bA, bB),
max(cA, cB),max(dA, dB))

(3)

min(Ã, B̃) = ( min(aA, aB),min(bA, bB),
min(cA, cB),min(dA, dB))

(4)

Other operations like multiplication and division
have also been studied. For more details on fuzzy
arithmetics we refer readers to [3].

2.2. Fuzzy PERT technique

The PERT/CPM technique is used to determine
critical tasks in a project. This technique is com-
posed of two successive steps: The forward propaga-
tion providing earliest starting and finishing dates
and consequently free margins and the Backward
propagation providing latest starting and finishing
dates and consequently total margins.

PERT technique was studied in case of fuzzy time
parameters and recently some complexities were
raised [1, 15]. In fact, contrary to forward propaga-
tion that can faultless be easily generalized to fuzzy
parameters by applying formulas 1 and 4, the gener-
alization of backward propagation by using formu-
las 2 and 3 would provide erroneous or even nega-
tive values because uncertainty would be taken into

account twice [1]. Soltani and Haji [15] suggest a
modification of the back propagation by eliminat-
ing negative values using a PL-based method. By
applying this method, the domain of possible val-
ues is restricted. Dubois et al. [1] show that the
boundaries of latest dates (and consequently floats)
are reached in extreme configurations. They sug-
gest some algorithms based on properties defined
by Dubois et al. [2] to calculate optimally the fuzzy
latest starting times and fuzzy total floats. These
algorithms are applied in this work and some for-
mulas are added (Sec. 4.1) to calculate the fuzzy
latest finishing times and other fuzzy time parame-
ters useful for the resource leveling problem.

2.3. Possibility theory

To cope with decision making on fuzzy area,
Zadeh [17] developed the concept of the possibility
approach based on fuzzy subsets. Recently, possibil-
ity theory becomes frequently used in fuzzy schedul-
ing problems [9, 22].

The possibility theory introduces both a possibil-
ity measure (denoted Π) and a necessity measure
(denoted N). Let P be a set (fuzzy or not) and
Ã a fuzzy set attached to a single valued variable
t. The possibility of the event “t ∈ P”, denoted by
Π(t ∈ P ), evaluates the extent to which the event
is “possibly” true. It is defined as the degree of
intersection between Ã and P by the minimum op-
eration:

Π(t ∈ P ) = sup
u

min(µ
Ã

(u), µP (u)) (5)

The dual measure of necessity of the event “t ∈
P”, denoted by N(t ∈ P ), evaluates the extent to
which the event is “necessarily true”. It is defined
as the degree of the inclusion (Ã ⊂ P ) by the max-
imum operation:

N(t ∈ P ) = inf
u

max(1− µ
Ã

(u), µP (u))

= 1−Π(t ∈ P c)
(6)

Where P c is the complementary of P (µP c(u) =
1− µP (u)).

Let t be a real-valued variable in the fuzzy interval
Ã and τ be a constant. To measure the truth of the
event Ã > τ , equivalent to t ∈ [τ ; +∞), we need the
couple Π(τ ≤ t) and N(τ ≤ t) (Fig. 2). Thus :

Π(τ ≤ t) = µ(−∞;Ã](τ) = sup
u≥τ

µ
Ã

(u)

= sup
u

min(µ
Ã

(u), µ[τ ;+∞)(u))

(7)
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and

N(τ ≤ t) = µ(−∞;Ã[(τ) = inf
u<τ

(1− µ
Ã

(u))

= inf
u

max(1− µ
Ã

(u), µ[τ ;+∞)(u))

(8)

1

aA bAcAdAτ

Π(τ ≥ t ∈ Ã) µ
Ã

(1− µ
Ã

)

t

1

aA bAcAdAτ

N(τ ≤ t ∈ Ã)

µ
Ã

(1− µ
Ã

)

t

Figure 2: Necessity and possibility of τ ≤ t ∈ Ã.

Consequently, let τ and σ two variables in respec-
tively fuzzy intervals Ã and B̃ and t a real value. To
measure the truth of the event “t between Ã and B̃”
we need both Π(Ã ≤ t ≤ B̃) and N(Ã ≤ t ≤ B̃) .
Thus:

Π(Ã ≤ t ≤ B̃) = µ[Ã;B̃](t) = µ[Ã;+∞)∩(−∞;B̃](t)

= min(µ[Ã;+∞)(t), µ(−∞;B̃](t))

(9)

and

N(Ã ≤ t ≤ B̃) = µ]Ã;B̃[(t) = µ]Ã;+∞)∩(−∞;B̃[(t)

= min(µ]Ã;+∞)(t), µ(−∞;B̃[(t))

(10)

2.4. Fuzzy workload

The workload plan is established and compared to
the available capacity to decide the feasibility of
a project schedule. In the literature, the majority
of authors who work with fuzzy sets in scheduling
problems apply α-cuts on fuzzy dates. Hence, they
generate a set of deterministic optimistic and pes-
simistic workload plans [7, 8, 13].
In [14], the authors use possibility theory to de-

fine the new concept of fuzzy workload distribution.
They generate a unique couple of fuzzy optimistic
and pessimistic workload plans.

Let T be an operational task and S̃(aS , bS , cS , dS)
its fuzzy starting date, F̃ (aF , bF , cF , dF ) its fuzzy
finishing date, D̃(w, x, y, z) its fuzzy duration and
r its required resources. For each period, four val-
ues are given, corresponding to scenarios with the
four duration values w, x, y, z of the tasks. Hence,
the workload plan can be represented as suggested
by Grabotet al. [22] for fuzzy MRP. Masmoudi and
Haït [14] define the new concepts of necessary work-
loadN and possible workload Π and between partic-
ularly the pessimistic workload distribution p∗ and

r

aS bS cS dS aF bF cF dF

w x y z

Π(t) p∗(t): Optimistic workload

N(t) p∗(t): Pessimistic worklaod

t

Figure 3: Fuzzy resource profiles.

the optimistic workload distribution p∗ correspond-
ing respectively to the extreme tasks durations w
and z (Fig. 3).

The Fig. 4 shows an example of optimistic and
pessimistic workload plans built for a small project
with three tasks Ti(i ∈ {1, 2, 3}). The correspon-
dent resource requirement are r1 = r2 = 2 and
r3 = 1. For each task Ti, pessimistic and optimistic
workload are established (dashed lines). The In-
tegration of all tasks profiles over periods of time
gives the mean resource workload Ri of the project
for pessimistic and optimistic cases (Fig. 4).

1
2

t

1
2

t

1
t

Ri

1 2 3 4 5 6 7
1
2
3

t

Figure 4: Optimistic and pessimistic workload Plans

The concept of pessimistic and optimistic fuzzy
distributions is adopted in the generalization of the
resource leveling technique using GA to fuzzy pa-
rameters.

3. Genetic Algorithm for resource leveling

Many analytical and heuristic methods were devel-
oped to solve resource leveling problems [4, 13, 18].
The GA is particularly studied in this paper. The
following section presents first some literature about
the Genetic Algorithm. Then an adopted GA to the
problem of resource leveling is provided. This GA
will finally generalized to fuzzy parameters.

3.1. Literature about Genetic Algorithm

A genetic algorithm (GA) is a search heuristic
that follows the natural evolutionary process. The
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strength of the Genetic algorithm is that it repre-
sents the main computational intelligence approach
that cope with big instances. Hence, since 1975, the
GA has been used to solve complex problems like
particularly the multi-projects and multi-objectives
scheduling problem [11]. The technique of GA is
quite known thus it will not be explained in detail
in this paper. Hence, to get more complete infor-
mation about the Genetic Algorithm technique we
refer readers to [5].

3.2. Genetic Algorithm description

In multi-projects context, the Resource Leveling
Problem can be defined as a set of tasks with
precedence constraints and predetermined dura-
tions. A schedule is defined by a set of tasks’
starting times. Let n the total number of tasks
and let P be the number of projects to sched-
ule and nj the number of tasks in project j

(n =
∑P
j=1 nj). A schedule is defined by the

set S = (S11, S21, ..., Sn11, ..., Sij , ..., S1P , ..., SnPP )
where Sij is the starting time of the task i from the
project j (Card(S) = n).

The CPM technique is applied to a scheduling
problem without resources consideration in order to
define the lower and upper bounds of each value
Sij which are respectively the Earliest Starting time
(ESij) and the Latest Starting time (LSij) of the
task i from the project j.

The objective L is to smooth resources utilization
which can be mathematically expressed as follows:

min(
K∑
k=1

(
T∑
t=1

P∑
j=1

nj∑
i=1

(rkit − [
T∑
t=1

P∑
j=1

nj∑
i=1

rkit]/D)2))

(11)
Where:
L: The resource leveling index indicates the sum of
squared differences between period resource usage
and average resource usage.
rkijt: The partial resource k demand of the activity
i from the project j at the period of time t.
D: The projects duration.
K: The number of resource types.
P : The number projects.
nj : The number tasks in project j.

The genetic algorithm procedure followed in this
paper to cope with resource leveling problem is pre-
sented below in pseudo-code form:

A GENETIC ALGORITHM procedure for
resource leveling problem:

Apply CPM/PERT technique to have for each
task its Earliest Starting and Latest Starting times
Parametrize the Genetic algorithm;
Begin GA:

Generate initial population P0 of npop candi-
dates;

Evaluate initial population P0;
Initialize generation counter t← 0;
While Stopping criteria not satisfied Repeat:

Select m best candidates; The best mn can-
didates from m are identically kept for Pt+1 and
the m \mn other candidates are reproduced based
on Elitist method until the population Pt+1 is com-
pletely generated;

Crossover mk candidates (from npop \ mn)
randomly at one or more random position(s);

Mutate md candidates (from npop \ mn) ran-
domly, by mutating gmut random genes per candi-
date;

Evaluate new population Pt+1 and select the
best candidate for the iteration;

Increment current population: Pt ← Pt+1;
Increment generation counter: t← t+ 1;

End while;
End GA;

The issue of applying Genetic Algorithm is to se-
lect an appropriate form of the chromosome repre-
sentation. In resource leveling problem, the well-
appropriate form is the one considering starting
times of tasks as decision variable being coded as
genes values. Thus, the sequence of the tasks in the
chromosome corresponds to the sequence of tasks
project by project sorted by their Id number. Each
gene value is equal to a possible starting time of
corresponding task. The starting time of each task
Tij is chosen randomly in its domain rate respecting
precedence constraints.

T11 T21 ... Tn1 ...
Tij ... T1P ... TnP

Project 1 ... Project P

S11 S21 ... Sn1 ... Sij ... S1P ... SnP

Task′s Id

Task′s starting time

Figure 5: Chromosome representation in Multi-
project resource leveling

The fitness function needed to evaluate chromo-
somes is chosen equal to the resource leveling index
L defined in 11. There was no need in our algo-
rithm to modify the equation to cope with the fact
that GA is traditionally designed to solve problems
of seeking maximums.

The adopted selection technique is the roulette
wheel method that we combine with Elitist
method [5] in order to improve selection efficiency.
Thus, the selection probability for a chromosome k
is proportional to the ratio fk/

∑npop
j=1 fj , where fk is

the fitness value of the chromosome k and npop is the
population size. According to the Elitist method,
the bests chromosomes of the current generation are
kept and preserved into the next generation.

The GA operators are uniform 1-point crossover
and uniform mutation. The crossover starts with
randomly selecting a cut point and parent’s chro-
mosomes. The right parts of the chromosomes
are swapped and hence child are generated(Fig. 6).
Some child generated with this way do not satisfy
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T11 T21 T31 T12 T22 T32 T42 T13 T23 T33

Project 1 Project 2 Project 3

0 3 3 1 2 5 7 2 5 6Parent 1

1 2 3 2 5 6 9 3 7 9

Cut point

Parent 2

0 3 3 1 5 6 9 3 7 9Child 1

1 2 3 2 2 5 7 2 5 6Child 2

Figure 6: Uniform 1-point crossover

precedence constraints. To deal with this situation,
a reparation technique is applied (Fig. 7).

T11 T21 T31 T12 T22 T32 T42 T13 T23 T33

Project 1 Project 2 Project 3

Parent 1 2 3 2 2 5 7 2 5 6

Child
1 2 3 2 3 5 8 2 5 6

Figure 7: Reparation after crossover

Let k the one-cut-point value and the task Tij
is the correspondent task of the gene k. All genes
values of the successors of k must be checked to
deal with precedence constraints. Hence, the task
k+ 1 is the first task to be checked if its part of the
project j, else no reparation is needed. The formula
of reparation is the following:

Slj = max(Slj ,maxp∈pred(Tlj)(Spj +Dpj))
∀l ∈ [i+ 1, n]

(12)

Where:
pred(Tlj): The set of predecessors of task Tlj .
Dpj : The duration of the task Tpj .

The mutation consists of randomly replacing at
least one gene with a random real value within the
specified range of the corresponding task’s starting
time (Fig. 9).

T11 T21 T31 T12 T22 T32 T42 T13 T23 T33

Parent 1 2 3 2 3 5 8 2 5 6

Child
1 2 3 1 3 5 8 2 5 6

Figure 8: Uniform mutation

Let k a selected gene to mutate and the task Tij is

its correspondent task. The new value of the gene
is chosen randomly between the maximum finish-
ing time of predecessors tasks (maxp∈pred(Tij)(Spj+
Dpj))and the minimum starting time of successors
tasks(minp∈succ(Tij)(Spj)).

4. Fuzzy genetic algorithm for resource
leveling

Resource Leveling technique for Fuzzy Scheduling
Problem is studied in some recent papers [13, 18]
where genetic algorithm is adopted to projects with
fuzzy time parameters. The idea in these papers is
to make a different α-cuts on tasks durations to ob-
tain pessimistic and optimistic scenarios for each α-
cut and then apply deterministic Genetic Algorithm
to each scenario to find the correspondent best plan.

In this section a new vision of fuzzy resource lev-
eling is provided. The idea is to make just one
couple of fuzzy Genetic Algorithm instead of multi-
deterministic ones. Therefore, some useful hypoth-
esis and extensions are suggested.

4.1. Useful fuzzy concepts

Genetic Algorithm developed in (Sec. 3.2) well
cope with deterministic Mutli-projects and Multi
resources scheduling problems. To be generalized
to fuzzy parameters some useful fuzzy concepts are
considered.

A trapezoidal fuzzy number is numerically repre-
sented by 4 deterministic values (Sec. 2.1). Genetic
algorithm becomes very heavy in compilation when
considering 4 numbers for each fuzzy decision vari-
able. To deal with this problem only one value is
considered and then the encoding and decoding of
each solution (chromosome)is done according to the
principal of linearity (Fig. 9) which appears logical
in our case.

x

1
S̃1 S̃2

es1 es2 es3 es4

ẼSij

ls1 ls2 ls3 ls4

L̃Sij

Figure 9: Linearity

Let ẼSij = [es1, es2, es3, es4] the Earliest start-
ing time and L̃Sij = [ls1, ls2, ls3, ls4] the Latest
starting time of task Tij . To generate a possi-
ble Starting time S̃ij = [s1, s2, s3, s4], we choose
randomly a value of s4 between es4 and ls4. Let
β = (s4−ls4)/(es4−ls4). Thus, S̃ij is simply calcu-
lated according to the principle of linearity within
si = βesi + (1 − β)lsi ∀i ∈ {1, 2, 3}. In Fig. 9
two examples of possible starting times are showed;
S̃1 with choosing β = 1/3 and S̃2 with choosing
β = 2/3.

Some algorithms in [1] are provided to well cal-
culate fuzzy latest starting times and fuzzy total
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floats. However, no algorithms are provided in the
same framework to calculate fuzzy latest finishing
times. As these parameters are necessary for our
study, the following formula is provided to calcu-
late them:

L̃Fij = min(L̃Sij + D̃ij ,min( ˜LSsucc(ij)), D̃d(j))
(13)

Where:
L̃Fij : The fuzzy Latest Finishing time of task Tij .
D̃dj : The fuzzy duedate of the project j.

As latest starting times are calculated within
the consideration of extreme configuration as ex-
plained in [2], the value of L̃Sij + D̃ij can exceed
the range domain of L̃Fij . In fact, the duration D̃ij

of the task Tij is not necessarily totally in the range
of the extreme configurations provided by the for-
ward propagation. Thus, the 13 provide meaning-
ful computable results respecting precedence con-
straints. Considering the same explanation, the fin-
ishing time is calculated as follows:

F̃ij = min(S̃ij + D̃ij , L̃Fij) (14)

Once starting and finishing times are calculated for
each task, fuzzy workload is established as explained
in Sec. 2.4. Thus, for each solution (chromosome),
the corresponding fuzzy fitness L̃ is calculated as
follows:

min(
K∑
k=1

(
T∑
t=1

P∑
j=1

nj∑
i=1

(r̃kit − [
T∑
t=1

P∑
j=1

nj∑
i=1

r̃kit]/D̃)2))

(15)

Many defuzzification techniques are provided in lit-
erature [23, 24] to cope with fuzzy rules particu-
larly while using Genetic Algorithm [25]. These
techniques can certainly be applied to defuzzify our
fitness function. Nevertheless, in this work, we
only consider the extreme values while durations
are equal to w or z to get the corresponding op-
timistic and pessimistic workload plans. Moreover
D̃ is always projected to the maximum value of the
projects duration.

4.2. Real case study from Helicopter
maintenance domain

The Fuzzy Genetic Algorithm is applied to a real
RCCP from the helicopter maintenance domain. In
MRO, three principal human resources are needed
to make HMVs; avionics, structure and mechanics
experts. They work generally on more than one
helicopter at the same time. Table1 contains the
data of a real example with three fuzzy projects.
The GA parameters values are fixed as follows:

• npop: Population Size (npop = 100).

• m: The best candidates to reproduce (m =
round(npop/3)).

• mn: The best of the best candidates (mn =
max(2, npop/20)).
• mk: The number of candidate to crossover

(mk = 2 ∗ round(2 ∗ (npop −mn)/5)).
• md: Number of candidate to mutate (d =
round(3 ∗ (npop −mn)/5)).
• gmut: Number of genes to mutate by candidate

(gmut = min(2, round(n/10))).
• niter: Number of iterations (niter = 60).
• nstop: Stop algorithm condition (with nstop =

5, if the result is the same for 5 successive iter-
ations then stop algorithm).

The Genetic Algorithm is applied twice; for pes-
simistic and for optimistic case separately. Fig. 10
shows the earliest planning, the results and the con-
vergence of the GA for the two cases.

5. Conclusion

This paper presents a generalized heuristic for
solving scheduling problem under time uncertain-
ties modeled by fuzzy memberships. A new Ge-
netic Algorithm is developed to cope with fuzzy
multi-resources and multi-projects Resource Level-
ing Problem. This algorithm is based on the idea of
fuzzy workload plan developed in [14]. Contrary to
the classical method existing in the literature which
consists of applying α-cuts on fuzzy parameters to
generate multi deterministic couples of pessimistic
and optimistic workload plans, this new generalized
algorithm provides one couple of pessimistic and op-
timistic fuzzy workload plans. It is applied to a real
work case and gives interesting results. The Idea
of integrating this algorithms into a DSS is under
development for a real MRO.
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