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Abstract

Actin-encoding cDNAs of Nile tilapia (Oreochromis niloticus) were isolated by RT-PCR using total RNA samples of
different tissues and further characterized by nucleotide sequencing and in silico amino acid (aa) sequence analysis.
Comparisons among the actin gene sequences of O. niloticus and those of other species evidenced that the isolated
genes present a high similarity to other fish and other vertebrate actin genes. The highest nucleotide resemblance
was observed between O. niloticus and O. mossambicus α-actin and β-actin genes. Analysis of the predicted aa se-
quences revealed two distinct types of cytoplasmic actins, one cardiac muscle actin type and one skeletal muscle
actin type that were expressed in different tissues of Nile tilapia. The evolutionary relationships between the Nile
tilapia actin genes and diverse other organisms is discussed.
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Actin is a ubiquitous protein of eukaryotic cells that

has a crucial role in muscle contraction, cell motility, cyto-

skeletal structure, cell division, intracellular transport, and

cell differentiation (Herman, 1993). In yeast and some pro-

tozoans, actin is encoded by a single gene only (Hightower

and Meagher, 1986; Reece et al., 1997). However, in the

nuclei of all animals, plants and in many protozoans exam-

ined to date, actin proteins are encoded by a multigene fam-

ily. In these organisms it seems that actin isoforms are

encoded by a set of structurally related genes that resulted

from gene duplications followed by functional divergence

(Hightower and Meagher, 1986). The number of actin iso-

forms varies greatly in different lineages. While mammals

posses at least six different isoforms (Vandekerckhove and

Weber, 1978), teleost fishes contain at least nine (Ven-

katesh et al., 1996) and echinoderm genomes at least eight

(Fang and Brandhorst, 1994) distinct actin isoforms. Simi-

larly, insects have at least six actin genes (Fyrberg et al.,

1980). The actin gene family of plants is much larger, com-

prising 8-44 genes, depending on the taxon (Reece et al.,

1992; Drouin and de Sá, 1996).

The actin gene family can be divided into two broad

categories: cytoplasmic (β and γ) and muscle (α) type

actins. Invertebrate muscle and cytoplasmic actins seem to

be more similar to chordate cytoplasmic actins than to

chordate muscle actins (Vandekerckhove and Weber,

1984). It has been suggested that the muscle actins of ar-

thropods differ from the muscle actins of deuterostomes to

such an extent that two independent divergence events of

muscle actin genes probably occurred, one within the

protostome lineage and one within the deuterostome lin-

eage (Mounier et al., 1992).

Although there are data on the evolution of mamma-

lian actin genes, the evolutionary origin, pattern of organi-

zation, and the diversity of these genes in other vertebrates,

especially fishes, remain to be investigated. To date, an

in-depth research on the diversity of actin gene types and

tissue expression profiles in a fish species was only per-

formed on Takifugu rubripes, revealing nine different actin

genes: six muscle-type actin genes that include two α-skel-

etal actins, three α-cardiac actins, an α-anomalous tes-

tis-type actin, and three cytoplasmic actins that include two
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β-cytoplasmic actins and one β-cytoplasmic vascular-type

actin (Venkatesh et al., 1996). The purpose of the present

study was the isolation and characterization of distinct actin

cDNAs from different tissues of the Nile tilapia

(Oreochromis niloticus) - one of the most important food

fish species intensively exploited in tropical and subtropi-

cal aquaculture (Pullin, 1991) - not only to enhance our

knowledge of the species, but also to provide a better under-

standing of the organization of the actin multigene family

in fish genomes.

Total RNA samples were obtained from different tis-

sues (gills, heart, ovaries, skeletal muscle, liver, and brain)

of two adult individuals of Oreochromis niloticus using

TRIzol reagent (Gibco-Brl Life Technologies), following

the manufacturer’s instructions. First-strand cDNA synthe-

sis reactions were performed with the SuperScript First-

Strand Synthesis System for RT-PCR (Invitrogen Life

Technologies) using random hexamer primers. cDNA am-

plification was performed using the primer sets αActF (5’-

ATGAGACTACCGCCCTTGTG-3’) and αActR (5’-AAT

CCACATCTGCTGGAAGG-3’) for α-actin gene amplifi-

cation, and βActF (5’-TGTTGACAATGGATCCGGTA-

3’) and βActR (5’-CTGCTGGAAGGTGGAGAGAG-3’)

for β-actin gene amplification. Both primer sets were de-

signed using the software Primer3 (Rozen and Skaletsky,

2000) based on α-actin and β-actin gene sequences de-

scribed previously for T. rubripes (Venkatesh et al., 1996).

RT-PCR products were electrophoresed and visualized on

a 1% agarose gel, purified and ligated into pCR2.1 plasmid

(TA Cloning Kit, Invitrogen) used to transform DH5α E.

coli competent cells. Plasmid DNA was purified with the

Wizard Plus SV Minipreps DNA Purification System Kit

(Promega) and submitted to nucleotide sequencing on an

ABI 377 Automated DNA Sequencer (Applied Bio-

systems).

Nucleic acid and amino acid sequences of O. niloticus

were analyzed using BLASTn and BLASTx (Altschul et

al., 1990). Additionally, sequences from different organ-

isms obtained from GenBank, were aligned with O.

niloticus sequence data using the software ClustalW

(Thompson et al., 1994); alignment was checked by eye

and adjusted as necessary. Phylogenetic analyses using the

putative aa sequences derived from O. niloticus clones and

other aa sequences from previously published actin genes

in GenBank were performed using MEGA version 3.1

(Kumar et al., 2004). Phylogenetic trees were constructed

using the neighbor-joining method (Saitou and Nei, 1987).

RT-PCR of Oreochromis niloticus cDNA samples,

obtained from total RNA extracted from gills, liver, heart,

ovary, skeletal muscle and brain, was performed using the

two sets of primers αActF/αActR and βActF/βActR in or-

der to amplify α-actin and β-actin gene sequences, respec-

tively. Irrespective of the tissue or the primer set used, all

PCR amplifications resulted in one fragment of approxi-

mately 1,100 base pairs (bp) that was cloned and

sequenced.

A total of 11 clones were isolated and sequenced in

both directions from two individuals of O. niloticus. These

represented three skeletal muscle type α-actins from gills

(On1a7, On1a8, and On1a9); one skeletal muscle type

α-actin from heart (On3a8); one cardiac muscle type α-

actin from heart (On3a10c); one β-actin from ovary

(On4b1); four skeletal muscle type α-actins (On5a18,

On5a10, On5a3 and On5a5) and one β-actin (On5b2) from

skeletal muscle tissue (Figure 1). The nucleotide sequences

were deposited in the GenBank database under the acces-

sion numbers EF206791-EF206801. The obtained se-

quences of the amplified cDNAs of O. niloticus revealed

segments ranging in size from 884 to 1,063 bp. The differ-

ences in the sequence sizes were due to failures in the se-

quencing procedure.

Searches in the NCBI database by means of BLASTn

indicated that the isolated cDNA nucleotide sequences

from O. niloticus were very similar to several fish actin

gene sequences, especially to α-actins and β-actins of O.

mossambicus (99% mean nucleotide identity between the

two species). The putative amino acid sequences of the iso-

lated cDNAs from O. niloticus were also compared to skel-

etal actin1, skeletal actin2, cardiac1 alpha actin, cytoplas-

mic actin1 and cytoplasmic actin2 genes of T. rubripes

(Venkatesh et al., 1996), which resulted in a 98,4% mean

identity (Figure 1).

Although the nucleotide sequences of the isolated

cDNAs of O. niloticus and the actin genes of T. rubripes

differ by several nucleotides, their inferred aa sequences

present a high degree of similarity, approximately 98%,

since most nucleotide variation corresponds to synony-

mous substitutions and, thus, their aa residues are mostly

identical (Figure 1). Diagnostic aa positions that distin-

guish α-muscle actin from β-cytoplasmic actin of Nile

tilapia could be observed (Figure 1). These aa positions

were also identified in the isolated cDNAs of T. rubripes

(Venkatesh et al., 1996). Most amino acids that distinguish

fish α-striated muscle actins from β-cytoplasmic actins

correspond to those that also distinguish mammalian α- and

β-actins (Mounier and Sparrow, 1997). Diagnostic amino

acids 281, 321 and 325 that distinguish T. rubripes β-cyto-

plasmic actin2 from β-cytoplasmic actin1 were identified

in the isolated cDNA sequence On4b1 of O. niloticus,

which validates the occurrence of a second type of cyto-

plasmic actin gene expressed in fish species. This is a novel

finding, since the expression of β-cytoplasmic actin2 has

not yet been reported, only its genomic sequence (Ven-

katesh et al., 1996).

A molecular phylogenetic analysis of some actin aa

sequences was performed to examine the evolutionary rela-

tionship of the actin isoforms isolated from Nile tilapia and

several other eukaryote species (Table 1, Figure 2). The
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Figure 1 - Alignment of putative amino acid sequences of actin cDNAs isolated from Oreochromis niloticus (On) and cDNAs of Takifugu rubripes (Tr)

obtained from NCBI database. Dashes indicate gaps introduced in the sequences to optimize the alignment. Diagnostic aa positions that distinguish

α-muscle actin from β-cytoplasmic actins are in bold face type. Sources and accession numbers for the actin sequences are described in Materials and

Methods.



myxamoeba species Dictyostelium discoideum was used as

an outgroup. The animal actins were clearly discriminated

from plant actins in 95% of the recovered trees. Not surpris-

ingly, a close relationship was observed between Nile tila-

pia and other vertebrate α-actins. The clustering of the

isolated Nile tilapia α-actins with other vertebrate and

ascidian muscle actins in the same clade was strongly sup-

ported in 100% of bootstrap replicates. This strongly sup-

ported relationship between vertebrate and ascidian muscle

actins has been already demonstrated by the comparison of

diagnostic aa and phylogenetic analyses, suggesting that

the chordate muscle-type actins probably diverged from a

nonmuscle-like actin before the divergence of urochordates

and vertebrates, but presumably after the divergence of

echinoderms and chordates (Kusakabe et al., 1997). The

actin genes allowed the discrimination of higher taxa, but

were not informative for lower taxonomic levels because of

the high conservation at DNA sequence level.

The clade composed of the isolated Nile tilapia cyto-

plasmic actins and vertebrate cytoplasmic actins is sup-

ported in 84% of the bootstrap replicates. An interesting

point was the presence of invertebrate muscle and cytoplas-

mic actins in the clade of vertebrate cytoplasmic actins (tree

node percentage recovery of 65%). This relationship is in

accordance with previous analyses that suggest that non-
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Figure 2 - Molecular phylogenetic tree inferred by the neighbor-joining

method from predicted amino acid (aa) sequences of actin genes. The

myxamoeba species Dictyostelium discoideum was used as an outgroup.

Branch lengths are proportional to evolutionary distances. Scale bar indi-

cates an evolutionary distance of 0.05 aa substituition per position in the

sequences. The numbers at each node indicate the percentage recovery (>

60%) of the particular node (500 bootstrap replicates) in which the same

internal branch was recovered. Sources and accession numbers for the

actin sequences are described in Material and Methods.

Table 1 - Species and accession numbers of actin cDNA sequences ob-

tained from GenBank.

Species Actin type and GenBank

entries

Ambystoma mexicanum (salamander) α-actin: AF276076

Arabidopsis thaliana (arabidopsis) β-actin: NM179953

Bos taurus (cattle) α-actin: NM174225;

β-actin: AY141970

Ciona intestinalis (ascidian) α-actin: AK115759

Danio rerio (zebrafish) α-actin: BC065435;

β-actin: NM131031

Dictyostelium discoideum (myxamoeba) β-actin: XM632417

Dipsosaurus dorsalis (iguana) α-actin: AF503591

Drosophila melanogaster (fruit fly) α-actin: NM079643;

β-actin: NM079076

Gallus gallus (chicken) α-actin: X02212;

β-actin: NM205518

Homo sapiens (human) α-actin: BC012597;

β-actin: NM001101

Mus musculus (mouse) α-actin: M12866;

β-actin: NM007393

Oryza sativa (rice) β-actin: AB047313

Rattus norvegicus (rat) α-actin: NM019212;

β-actin: NM031144

Spodoptera exigua (moth) α-actin: AY507963

Strongylocentrotus purpuratus

(sea urchin)
α-actin: J01202;

β-actin: NM214529

Sus scrofa (pig) β-actin: AY550069

Takifugu rubripes (fugu) α-actins: U38850, U38958,

U38959, U38960, U38961;

β-actins: U37499, U38848,

U38849

Xenopus laevis (African clawed frog) α-actin: BC041197

Xenopus tropicalis (pipid frog) β-actin: BC064155



chordate muscle actin genes are more closely related to ver-

tebrate cytoplasmic actins than to vertebrate muscle actins

(Kusakabe et al., 1997). The actins expressed in muscle

cells of non-chordates have traditionally been considered to

be cytoplasmic-like (Vandekerckhove and Weber, 1984),

and non-muscle actins are likely to represent ancestral actin

forms.

As evidenced for other organisms, different fish actin

types also seem to be under different evolutionary selection

pressures, leading to the conjecture that these isoforms

seem to have somewhat different roles. Further analyses

comparing the organization of distinct actin isoforms from

several species will be useful for understanding the molec-

ular evolution and function of these genes in fishes.
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