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A Simple Approximation for the Bit-interleaved

Coded Modulation Capacity
Alex Alvarado, Fredrik Brännström, and Erik Agrell

Abstract—The generalized mutual information (GMI) is an
achievable rate for bit-interleaved coded modulation (BICM) and
is highly dependent on the binary labeling of the constellation.
The BICM-GMI, sometimes called the BICM capacity, can
be evaluated numerically. This approach, however, becomes
impractical when the number of constellation points and/or
the constellation dimensionality grows, or when many different
labelings are considered. A simple approximation for the BICM-
GMI based on the area theorem of the demapper’s extrinsic
information transfer (EXIT) function is proposed. Numerical
results show the proposed approximation gives good estimates
of the BICM-GMI for labelings with close to linear EXIT
functions, which includes labelings of common interest, such as
the natural binary code, binary reflected Gray code, etc. This
approximation is used to optimize the binary labeling of the 32-
APSK constellation defined in the DVB-S2 standard. Gains of
approximately 0.15 dB are obtained.

Index Terms—Binary labeling, bit-interleaved coded modula-
tion, extrinsic information transfer, mutual information.

I. INTRODUCTION AND MOTIVATION

Bit-interleaved coded modulation (BICM) is a pragmatic

approach for coded modulation (CM) [1]–[3]. The transmitter

is constructed by serially concatenating a binary channel

encoder, a bit-level interleaver, and a memoryless mapper. At

the receiver, a suboptimal bit-wise decoder is used, where

logarithmic likelihood ratios (LLRs) are calculated, deinter-

leaved, and passed to a soft-input binary decoder. Despite its

suboptimality, BICM is very attractive from an implementation

point of view because of its performance–flexibility tradeoff.

BICM is used in most of the existing wireless standards,

e.g., IEEE 802.11a/g/n and DVB-T2/S2/C2.

When the channel inputs are taken from a discrete con-

stellation, the mutual information (MI) represents the largest

achievable rate for a CM scheme with optimal decoding.

The BICM generalized mutual information (BICM-GMI) [2],

[3], sometimes called the BICM capacity, is an achievable

rate for the (suboptimal) BICM decoder. The MI depends

on the constellation, but the BICM-GMI also depends on the

binary labeling. Both the MI and BICM-GMI can be evalu-

ated numerically using, e.g., Gauss–Hermite (GH) quadratures

[4, Sec. III], Monte-Carlo integration [2], [5, Appendix A],

histograms, or Riemann-sum integration. However, all these
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methods typically become impractical when the number of

constellation points and/or the number of dimensions grow.

The BICM-GMI can be optimized for a given constellation

by properly selecting the binary labeling. Analytical results are

available for low and high signal-to-noise ratios (SNRs) [6],

[7], but for finite SNR values, numerical optimization methods

need to be applied. One of the most popular algorithms is the

binary switching algorithm (BSA) [8, Sec. IV], popularized

in [9] in the context of BICM with iterative demapping. The

BSA iteratively improves a given initial labeling evaluating

a cost function at each step. In [9], the Chernoff bound on

the pairwise error probability was used as a low complexity

cost function. A simulated annealing algorithm was recently

proposed in [10], [11], where the labeling and the constellation

are jointly optimized. Although the approaches in [10], [11]

used the BICM-GMI as a cost function (calculated using

GH quadratures), simple approximations for the BICM-GMI

would simplify the optimization.

The main contribution of this letter is a simple approxima-

tion for the BICM-GMI. The approximation is based on the

area theorem [12, Sec. IV-A] applied to the extrinsic informa-

tion transfer (EXIT) function of the demapper [3, Sec. 5.4],

which is approximated by a straight line, combined with an

approximation of the so-called J-function [13, Sec. III]. Nu-

merical results show that the proposed approximation predicts

the true BICM-GMI well in many cases. It seems particularly

well suited to some particular labelings such as Gray codes.

II. SYSTEM MODEL

We consider a discrete-time, real-valued N -dimensional

additive white Gaussian noise (AWGN) channel Y = X+Z,

where the noise Z is an N -dimensional Gaussian random

vector, independent of the input X , whose components are

independent and identically distributed (i.i.d.) Gaussian ran-

dom variables with zero mean and variance N0/2. The ca-

pacity of this channel is given by Shannon’s formula Caw ,
N
2
log2

(

1 + 2γ

N

)

, where γ , Es

N0

and Es , E[‖X‖2] = 1.

The transmitted symbols X are drawn uniformly from a

constellation X , {x1, . . . ,xM}, where |X | = M = 2m. The

distinct nonzero Euclidean distances in the constellation are

denoted by d = [d1, . . . , dL], with dl < dl+1, l = 1, . . . , L−1.

The number of pairs of constellation points at Euclidean

distance dl whose labels are at Hamming distance one is

denoted by wl. Since each symbol has m symbols at Hamming

distance one, the sum of the elements in w , [w1, . . . , wL] is

mM/2.

The system model is shown in Fig. 1, where a binary

encoder of rate Rc and a bit-level interleaver are concatenated
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Fig. 1. BICM system model under consideration.

with a memoryless mapper Φ. At the receiver side, LLRs Λk,

k = 1, . . . ,m are calculated and passed to a deinterleaver and

then to a soft-input binary decoder. When communicating at

rate R = mRc, the average bit energy is Eb = Es/R.

The CM mutual information (CM-MI) is defined as the

input-output MI of the channel [14, eq. (5)], i.e., Icm ,

I(X ;Y ). The BICM-GMI is defined as [14, eq. (10)]

Ibi ,

m
∑

k=1

I(Bk;Y ) ≤ Icm, (1)

where I(Bk;Y ) is the MI between Bk and Y , and Bk are

the input bits to the memoryless mapper. The bits Bk are

assumed to be i.i.d. random variables with Pr{Bk = b} = 1/2
for k = 1, . . . ,m and b ∈ {0, 1}. The BICM-GMI in (1)

was shown to be an achievable rate in [14], where the BICM

decoder in Fig. 1 was cast as a mismatched decoder.

III. MAIN RESULT

Let Idem(i) ∈ [0, 1] be the demapper’s EXIT function [13],

[15], where the a priori information i ∈ [0, 1] is modeled using

a binary erasure channel (BEC) [12, Sec. IV-A], [3, Sec. 5.3].

The area theorem [3, Corollary 5.2] states that
∫ 1

0

Idem(i) di =
1

m
Icm. (2)

The zero a priori information value can be shown to be a

scaled version of the BICM-GMI [3, Sec. 5.3], [15, eq. (65)]

Idem(0) = Ibi/m. (3)

The full a priori value is [15, eq. (60)]

Idem(1) =
2

mM

L
∑

l=1

wlJ
(

dl
√

2γ
)

, (4)

where J (·) is the so-called J-function [13, eq. (7)], which

represents the MI between a pair of constellations points at a

given Euclidean distance. Note that both Idem(0) and Idem(1)
are independent of the BEC model used in (2).

The main result of this letter is the following approximation

for the BICM-GMI in (1):

Ibi ≈ Ĩbi , 2Icm − 2

M

L
∑

l=1

wlJ̃
(

dl
√

2γ
)

, (5)

where [13, eq. (9)]

J (x) ≈ J̃ (x) ,
(

1− 2−0.3073x1.7870
)1.1064

. (6)

The approximation in (5) follows by considering a linear
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Fig. 2. The CM-MI, the exact BICM-GMIs (solid lines) and the approxi-
mation in (5) (dashed lines) for an 8-PAM constellation.

approximation of the demapper’s EXIT function1

Idem(i) ≈ Ĩdem(i) , Idem(0) + i(Idem(1)− Idem(0)). (7)

Combining (7) with (2), we obtain

1

m
Icm ≈

∫ 1

0

Idem(0) + i(Idem(1)− Idem(0)) di, (8)

which results in

mIdem(0) ≈ 2Icm −mIdem(1). (9)

The expression in (5) is obtained by using (3) and (4) in (9),

and by using the approximation of the J-function in (6).

IV. NUMERICAL EXAMPLES

The approximation in (5) allows us to approximate the

BICM-GMI for any given constellation and binary labeling.

Consider an equally spaced 8-ary pulse amplitude modulation

(PAM) constellation (dl = 2l/
√
21, l = 1, . . . , 7) and the

three labelings in [6, Example 1]: the binary reflected Gray

code (BRGC) with w = [7, 0, 3, 0, 1, 0, 1], the natural binary

code (NBC) with w = [4, 4, 0, 4, 0, 0, 0], and the folded

binary code (FBC) with w = [5, 4, 1, 0, 1, 0, 1]. In Fig. 2, we

show the BICM-GMIs for these three labelings (numerically

calculated using 50 GH quadratures [4, Sec. III]) as well as the

approximation in (5). The CM-MI and the channel capacity

are also included for comparison. The results in Fig. 2 show

that the proposed approximation works well for the BRGC

and FBC for the entire SNR range of interest. For the NBC,

the approximation is not tight for medium SNRs. However, it

still gives good results for high and low SNRs.

As (5) is an approximation, some discrepancies are indeed

observed in Fig. 2. The first approximation comes from

considering a linear model for the EXIT function of the

demapper in (7). This model is relatively good for labelings

with close-to-linear EXIT functions. These are the labelings

1The EXIT function of the demapper can be shown to be a polynomial
function of i with degree m− 1, see, e.g., [16, eqs. (10), (15), and (19)].
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Fig. 3. The CM-MI, the exact BICM-GMIs (solid lines) and the approxima-
tion in (5) (dashed lines) for a 16-PAM constellation and 5 randomly chosen
Gray codes. The squares show the approximation in (5) using the J-function
computed via GH quadratures.

usually analyzed in the literature: Gray or quasi-Gray codes

[16, Fig. 2], set-partitioning [3, Fig. 5.8 (a)], the natural

binary code [15, Fig. 8], etc. The second approximation

comes from considering an easy-to-evaluate approximation

for the J-function in (6). When compared to the J-function

computed using 50 GH quadratures, we have verified that the

approximation (6) results in errors always smaller than 10−3.

Consider now an equally spaced 16-PAM constellation

(dl = 2l/
√
85, l = 1, . . . , 15). For this constellation the

number of different labelings is very large, so we focus only

on Gray codes. For 16-PAM, there are 131 nonequivalent

Gray codes in terms of uncoded bit error rate (BER) [17,

Table I], from which we randomly chose five. The BICM-

GMIs for those labelings are shown in Fig. 3 together with

their approximations in (5). These results show a good match

between the true and approximated BICM-GMI. More impor-

tantly, the results in this figure also show that, for a given SNR

value, a maximization of the true BICM-GMI is equivalent to

a maximization of the approximated BICM-GMI.

In Fig. 3, we also show the results obtained when the J-

function is computed using GH quadratures, which shows

that the use of the approximation of the J-function in (6)

is indeed very tight. To study the tightness of the proposed

approximation, we introduce the error function ε , Ibi − Ĩbi.
Since J̃ (x) = J(x) as x → 0 or x → ∞, we conclude

that ε = 0 as γ → 0 and γ → ∞, i.e., the approximation

is tight for both high and low SNR. In Fig. 4, we show the

error ε for the same binary labelings as in Fig. 3 when the J-

function is evaluated using GH quadratures or via (6). These

results show that ε tends to zero at low and high SNR, and

that ε is in general very small for different labelings across

the SNR range. This figure also shows that the error can be

both positive and negative, and thus, the approximation Ĩbi is

neither an upper nor a lower bound to Ibi, which is also clear

from Figs. 2 and 3. More importantly, Fig. 4 also shows that

the use of (6) results in no noticeable difference.

Lastly, we consider a 32-ary amplitude phase shift keying
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Fig. 5. 32-APSK constellation with the DVB-S2 labeling (red) and the new
labeling found numerically using the approximation in (5) (blue).

(APSK) constellation defined in the DVB-S2 standard [18, Fig.

13] where the values of the three radii depend on the targeted

spectral efficiency R [18, Table 10]. Here we consider Rc =
3/4 (R = 3.75 bit/symbol with L = 57 distinct Euclidean dis-

tances), and thus, d = [0.34, 0.36, 0.45, 0.48, 0.49, 0.50, . . .].
The 32-APSK constellation is shown in Fig. 5, where the

binary labeling proposed in the DVB-S2 standard (from

now on called “DVB-S2 labeling”) is shown (in decimal)

below the constellation points (in red). For this labeling,

w = [4, 12, 0, 0, 8, 12, . . .]. The corresponding BICM-GMI

and its approximation are shown in Fig. 6 (in red). Again,

our approximation predicts the BICM-GMI well for the SNR

range of interest.

To prove the usefulness of our approximation, we imple-

mented the BSA using the sum in the right-hand side of (5)

as cost function and ran it for the constellation in Fig. 5 for

γ = 12 dB. The best labeling found, which is shown in Fig. 5

above the constellation points, gives a higher BICM-GMI than

the DVB-S2 labeling, and has w = [4, 12, 4, 0, 0, 16, . . .]. The

corresponding BICM-GMI and its approximation are shown

in Fig. 6 (blue), where for rates around 3.75 bit/symbol,

gains of 0.15 dB are observed. Similar gains have been

recently reported in [11]. Although not a large gain, the results

demonstrate the usefulness of the approximation.
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To conclude, we simulate the low-density parity-check

(LDPC) code proposed in the DVB-S2 standard (without the

BCH outer code) for frames of 12960 APSK symbols with the

new binary labeling. We use the belief propagation algorithm

and 100 iterations for decoding. For simplicity, we consider

the constellation and labelings in Fig. 5 together with the

three code rates: Rc ∈ {3/4, 4/5, 5/6} (instead of three

different constellations and possibly three new labelings). The

BER and frame error rate (FER) results in Fig. 7 show that

the gains in terms of BICM-GMI translate into BER/FER

performance. Finally, assuming frames in error are perfectly

detected at the receiver, we consider the effective throughput

Θ , mRc(1 − P ) [19, eq. (4)], where P denotes the FER

shown in Fig. 7. The corresponding throughputs are shown

in Fig. 6. These results indicate that the “envelope” of the

throughput curves follow the BICM-GMI curves (as previously

shown in [19, Sec. V]), and that the gap between the LDPC-

coded system and the BICM-GMI is approximately 0.6 dB.

V. CONCLUSIONS

A simple approximation for the BICM-GMI was presented.

It depends on the MI of the underlying constellation and the

extrinsic information produced by the demapper when full

a priori information is available. Due to its simplicity, it

allows fast numerical estimation of the BICM-GMI for a given

constellation and different labelings, which, as demonstrated

by examples, can help improve BICM system designs. Future

work includes a refined model for the approximation of the

EXIT function in (7) and a formal analysis of the error.
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