
Journal of Algebra and Related Topics

Vol. 3, No 1, (2015), pp 51-61

A NOTE ON MAXIMAL NON-PRIME IDEALS

S. VISWESWARAN∗ AND ANIRUDHDHA PARMAR

Abstract. The rings considered in this article are commutative
with identity 1 6= 0. We say that a proper ideal I of a ring R is
a maximal non-prime ideal if I is not a prime ideal of R but any
proper ideal A of R with I ⊆ A and I 6= A is a prime ideal. That
is, among all the proper ideals of R, I is maximal with respect to
the property of being not a prime ideal. The concept of maximal
non-maximal ideal and maximal non-primary ideal of a ring can be
similarly defined. The aim of this article is to characterize ideals
I of a ring R such that I is a maximal non-prime (respectively, a
maximal non-maximal, a maximal non-primary) ideal of R.

1. Introduction

The rings considered in this article are nonzero commutative with iden-
tity. If R is a subring of a ring T with identity 1, then we assume that
1 ∈ R. If a set A is a subset of a set B and A 6= B, we denote it sym-
bolically using the notation A ⊂ B. Let P be a property of rings. Let
R be a subring of a ring T . Recall from [4] that R is a maximal non-
P , if R does not have P , whereas each subring S of T with R ⊂ S has
property P . The concept of maximal non-Noetherian subring of a ring
T was investigated in [3]. There are other interesting research articles
which appeared in the literature focussing on maximal non-P subring
of a ring T (see for example, [2, 4]). Let R be a non-zero commutative
ring with identity. A proper ideal I of a ring R is said to be a maximal
non-prime ideal of R if the following conditions hold: (i) I is not a
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prime ideal of R and (ii) If A is any proper ideal of R such that A
contains I properly, then A is a prime ideal of R. Similarly, we can
define the concept of a maximal non-maximal (respectively, a maximal
non-primary) ideal of R. Motivated by the above mentioned works
on maximal non- P subrings, in this article, we focus our attempt on
characterizing maximal non-prime (respectively, maximal non-maximal
, maximal non-primary) ideals of a ring R. Let I be a proper radical
ideal of a ring R. It is proved in Proposition 3.2 that I is a maximal
non-primary ideal of R if and only if I is a maximal non-prime ideal of
R if and only if I is a maximal non-maximal ideal of R if and only if
I = M1 ∩M2 for some distinct maximal ideals M1,M2 of R. Let I be
a proper ideal of R such that I 6=

√
I. It is shown in Proposition 4.1

that I is a maximal non-prime ideal of R if and only if I is a maximal
non-maximal ideal of R if and only if

√
I = M is a maximal ideal of

R with M2 ⊆ I, and M = Rx + I for any x ∈ M\I. Moreover, it is
proved in Proposition 4.2 that I is a maximal non-primary ideal of R if
and only if

√
I = P is a prime ideal of R such that R/I is a quasilocal

one-dimensional ring and P/I is a minimal ideal of R/I.
By a quasilocal ring we mean a ring which admits only one maximal

ideal. A Noetherian quasilocal ring is referred to as a local ring.. By
dimension of a ring R, we mean its Krull dimension and we use the
abbreviation dimR to denote the dimension of a ring R. We denote
the nilradical of a ring R by nil(R). A ring R is said to be reduced if
nil(R) = (0).

2. Some preliminary results

As mentioned in the introduction the rings considered in this article
are commutative with identity 1 6= 0. We begin with the following
lemma.

Lemma 2.1. Let R be a ring. If P1, P2 are incomparable prime ideals
of R under inclusion, then P1 ∩ P2 is not a primary ideal of R.

Proof. Let I = P1 ∩ P2. Since P1 and P2 are incomparable under
inclusion, there exist a ∈ P1\P2 and b ∈ P2\P1. Note that ab ∈ I. By
the choice of a, b, it is clear that a /∈ I and no power of b ∈ I. This
proves that I = P1 ∩ P2 is not a primary ideal of R. �

Lemma 2.2. Let R be a reduced ring which is not an integral domain.
If every nonzero proper ideal of R is primary, then R has exactly two
prime ideals and both of them are maximal ideals of R.
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Proof. Since R is reduced but not an integral domain, it follows that R
has at least two minimal prime ideals. Let P1, P2 be distinct minimal
prime ideals of R. Now we obtain from Lemma 2.1 and the hypotesis
that P1 ∩ P2 = (0). We prove that P1, P2 are maximal ideals of R. Let
M be a maximal ideal of R such that P1 ⊆M . We claim that M = P1.
Suppose that P1 6= M . Then M 6⊆ P1 ∪ P2. Let a ∈ M\(P1 ∪ P2) and
b ∈ P2\P1. As ab /∈ P1, it follows that ab 6= 0. Hence Rab is a primary
ideal of R. Note that Rab ⊆ P2. Hence it follows from the choice of
a that no power of a ∈ Rab. Therefore, b ∈ Rab. This implies that
b = rab for some r ∈ R and so b(1− ra) = 0. As b /∈ P1, it follows that
1− ra ∈ P1 ⊂ M . From a ∈ M , we obtain that 1 = 1− ra + ra ∈ M .
This is a contradiction. Therefore, P1 = M is a maximal ideal of R.
Similarly, it follows that P2 is a maximal ideal of R. From P1∩P2 = (0),
we get that R has exactly two prime ideals which are P1 and P2 and
moreover, both are maximal ideals of R. �

Lemma 2.3. Let R be a ring such that every nonzero proper ideal of
R is primary. Then dimR ≤ 1. Moreover, if R is not a reduced ring,
then R is necessarily quasilocal.

Proof. Suppose that dimR > 1. Then there exists a chain of prime
ideals P1 ⊂ P2 ⊂ P3 of R. Let a ∈ P2\P1 and b ∈ P3\P2. Since
ab /∈ P1, it is clear that ab 6= 0 and hence Rab 6= (0). Observe that
Rab ⊆ P2. By hypothesis, Rab is a primary ideal of R. From the
choice of the element b, it is clear that no power of b can belong to
Rab. Hence a ∈ Rab. This implies that a = rab for some r ∈ R and so
a(1 − rb) = 0. Since a /∈ P1, it follows that 1 − rb ∈ P1 ⊂ P3. From
b ∈ P3, we obtain that 1 = 1 − rb + rb ∈ P3. This is a contradiction.
Therefore, dimR ≤ 1.

We next prove the moreover assertion. Suppose that R is not quasilo-
cal. Then there exist at least two distinct maximal ideals M1,M2 of
R. As we are assuming that R is not a reduced ring, it follows that
M1∩M2 6= (0). Hence by hypothesis, M1∩M2 is a primary ideal of R.
This contradicts Lemma 2.1. Therefore, R is necessarily quasilocal. �

Lemma 2.4. Let R be a ring which is not reduced. Suppose that (0) is
not a primary ideal of R. If every nonzero proper ideal of R is primary,
then nil(R) is a minimal prime ideal of R. Indeed, nil(R) is a minimal
ideal of R.

Proof. We know from Lemma 2.3 that R is necessarily quasilocal. Let
M be the unique maximal ideal of R. Since R is not reduced, nil(R) 6=
(0). Hence nil(R) is a primary ideal of R and so it follows from [1,



54 S. VISWESWARAN AND ANIRUDHDHA PARMAR

Proposition 4.1] that
√

nil(R) = nil(R) is a prime ideal of R. Since
nil(R) ⊆ P for any prime ideal of R, it follows that nil(R) is a minimal
prime ideal of R. As (0) is not a primary ideal of R, it follows from

[1, Proposition 4.2] that
√

(0) is not a maximal ideal of R. Thus
nil(R) ⊂M . We prove that for any nonzero a ∈ nil(R), nil(R) = Ra.
First we verify that for any b ∈ nil(R)\(0) and for any m ∈M\nil(R),
bm = 0. Suppose that bm 6= 0. By hypothesis, Rbm is a primary
ideal of R. In fact Rbm is a nil(R)-primary ideal of R. Since no power
of m ∈ nil(R), we obtain that b ∈ Rbm. This implies that b = rbm
for some r ∈ R. Thus b(1 − rm) = 0. As 1 − rm is a unit in R, it
follows that b = 0. This is a contradiction. Hence for any nonzero
b ∈ nil(R) and m ∈ M\nil(R), bm = 0. Let x ∈ nil(R). We assert
that x ∈ Ra. This is clear if x = 0. If x 6= 0, then xm = 0 ∈ Ra. Now
Ra is a nil(R)-primary ideal of R and no power of m ∈ nil(R). Hence
it follows that x ∈ Ra. This proves that for any nonzero a ∈ nil(R),
nil(R) = Ra. This shows that nil(R) is a minimal ideal of R. �

Lemma 2.5. Let R be a quasilocal ring with M as its unique maximal
ideal. Suppose that R is not reduced and nil(R) is a prime ideal of R
with nil(R) 6= M . If nil(R) is a minimal ideal of R, then (0) is not a
primary ideal of R.

Proof. Let a ∈ nil(R), a 6= 0. Let b ∈ M\nil(R). Since nil(R) is a
simple R-module, it follows that M(nil(R)) = (0) and so ab = 0. Now
a 6= 0 and as b /∈ nil(R), it follows that bn 6= 0 for all n ≥ 1. This
proves that (0) is not a primary ideal of R. �

Lemma 2.6. Let R be a ring which is not reduced. If every nonzero
proper ideal of R is a prime ideal of R, then R is quasilocal with nil(R)
as its unique maximal ideal and (nil(R))2 = (0). Moreover, for any
x ∈ nil(R)\{0}, nil(R) = Rx.

Proof. Since any prime ideal is primary, it follows from Lemma 2.3
that R is necessarily quasilocal. Let M be the unique maximal ideal
of R. We prove that M = nil(R). Let m ∈ M . We assert that
m2 = 0. Suppose that m2 6= 0. Then Rm2 is a prime ideal of R.
Therefore, m ∈ Rm2. This implies that m = rm2 for some r ∈ R
and so m(1 − rm) = 0. From 1 − rm is a unit in R, it follows that
m = 0. This is a contradiction. Thus for any m ∈ M , m2 = 0 and
so M = nil(R). Hence M is the only prime ideal of R. Let a, b ∈ M .
We show that ab = 0. This is clear if either a = 0 or b = 0. Suppose
that a 6= 0 and b 6= 0. Then Ra,Rb are prime ideals of R. Therefore,
Ra = Rb = M . This implies that a = ub for some unit u ∈ R. It follows
from b2 = 0 that ab = 0. This proves that M2 = (nil(R))2 = (0).
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We next prove the moreover part. Let x ∈ nil(R)\{0}. Then Rx is
a prime ideal of R. From the fact that nil(R) is the only prime ideal
of R, it follows that nil(R) = Rx. �

3. Radical non-maximal prime ideals

The aim of this section is to determine proper radical ideals I of a
ring R such that I is a maximal non-prime ideal. We start with the
following lemma.

Lemma 3.1. Let D be an integral domain which is not a field. Then
it admits nonzero proper ideals which are not prime ideals.

Proof. Let d ∈ D be a nonzero nonunit. Then for any n ≥ 2, Ddn is a
proper nonzero ideal of D which is not a prime ideal of D. �

Proposition 3.2. Let R be a ring and I be a proper radical ideal of
R. Then the following statements are equivalent:
(i) I is a maximal non-primary ideal of R.
(ii) I = M1 ∩M2 for some distinct maximal ideals M1,M2 of R.
(iii) I is a maximal non-maximal ideal of R.
(iv) I is a maximal non-prime ideal of R.

Proof. (i) ⇒ (ii) Note that R/I is a reduced ring and as I is not
primary, it follows that I is not a prime ideal of R and so R/I is not
an integral domain. Since I is a maximal non-primary ideal of R, it
follows that every nonzero proper ideal of R/I is primary. Hence we
obtain from Lemma 2.2 that there exist distinct maximal ideals M1,M2

of R such that I = M1 ∩M2|.
(ii) ⇒ (iii) We know from Lemma 2.1 that I = M1 ∩ M2 is not a
primary ideal and hence it is not a maximal ideal of R. Let A be any
proper ideal of R such that M1 ∩M2 ⊂ A. Then either A 6⊆ M1 or
A 6⊆ M2. Without loss of generality we may assume that A 6⊆ M1.
Then A + M1 = R. Hence 1 = a + x for some a ∈ A and x ∈ M1.
Now for any y ∈ M2, y = ay + xy ∈ A + M1M2 = A. This proves that
M2 ⊆ A and so A = M2. Thus the only proper ideals A of R which
contain I properly are M1 and M2 and both are maximal ideals of R.
Therefore, we obtain that I is a maximal non-maximal ideal of R.
(iii) ⇒ (iv) Let A be a proper ideal of R with I ⊂ A. Then by (iii)
A is a maximal ideal of R. Hence A is a prime ideal of R. We claim
that I is not a prime ideal of R. Suppose that I is a prime ideal of R.
Since R/I is not a field, it follows from Lemma 3.1 that R/I admits
nonzero proper ideals which are not maximal ideals. This contradicts
(iii). Therefore, I is not a prime ideal of R. This shows that I is a
maximal non-prime ideal of R.
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(iv)⇒ (i) Let A be any proper ideal of R with I ⊂ A. Then by (iv) A
is a prime ideal and hence is a primary ideal of R. Since I is a radical
ideal of R and is not a prime ideal of R, we get that I is not a primary
ideal of R. This proves that I is a maximal non-primary ideal of R. �

4. Non-radical maximal non-prime ideals

The aim of this section is to determine ideals I of a ring R such that
I 6=
√
I and I is a maximal non-prime ideal of R.

Proposition 4.1. Let I be a proper ideal of a ring R such that I 6=
√
I.

Then the following statements are equivalent:
(i) I is a maximal non-prime ideal of R.

(ii)
√
I is a maximal ideal of R, (

√
I)2 ⊆ I, and

√
I = Rx + I for any

x ∈
√
I\I.

(iii) I is a maximal non-maximal ideal of R.

Proof. (i) ⇒ (ii) Note that R/I is a non-reduced ring in which any
non-zero proper ideal is a prime ideal. Hence we obtain from Lemma
2.6 that R/I is a quasilocal ring with

√
I/I as its unique maximal ideal,

(
√
I/I)2 = I/I, and moreover,

√
I/I = R/I(x + I) for any x ∈

√
I\I.

Therefore,
√
I is a maximal ideal of R, (

√
I)2 ⊆ I, and

√
I = Rx + I

for any x ∈
√
I\I.

(ii)⇒ (iii) Since I ⊂
√
I, it follows that I is not a maximal ideal of R.

Let A be any proper ideal of R such that I ⊂ A. From (
√
I)2 ⊆ I ⊂ A,

it follows that
√
I ⊆
√
A. Since

√
I is a maximal ideal of R, we obtain√

I =
√
A. Let a ∈ A\I. Then a ∈

√
I. Hence

√
I = Ra + I ⊆ A and

so A =
√
I is a maximal ideal of R. This proves that I is a maximal

non-maximal ideal of R.
(iii)⇒ (i) As I ⊂

√
I, it follows that I is not a prime ideal of R. Let

A be any proper ideal of R with I ⊂ A. Then A is a maximal ideal and
hence is a prime ideal of R. This shows that I is a maximal non-prime
ideal of R. �

We next proceed to characterize proper ideals I of a ring R such that
I 6=
√
I and I is a maximal non-primary ideal of R.

Proposition 4.2. Let I be a proper ideal of a ring R such that I 6=
√
I.

Then the following statements are equivalent:
(i) I is a maximal non-primary ideal of R.

(ii)
√
I is a prime ideal of R, R/I is quasilocal, dim(R/I) = 1, and√

I/I is a simple R/I-module.
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Proof. (i) ⇒ (ii) As I 6=
√
I and I is a maximal non-primary ideal of

R, it follows that I is not a primary ideal of R, whereas
√
I is a primary

ideal of R. Hence
√√

I =
√
I is a prime ideal of R. Let us denote√

I by P . Note that R/I is not a reduced ring, the zero-ideal of R/I
is not primary but each proper nonzero ideal of R/I is primary. Hence
we obtain from Lemma 2.3 that R/I is quasilocal, dim(R/I) ≤ 1,
and moreover, it follows from Lemma 2.4 that P/I is a minimal ideal
of R/I (that is, P/I is a simple R/I-module). Let M/I denote the
unique maximal ideal of R/I. Since I is not a primary ideal of R, it

follows from [1, Proposition 4.2] that
√
I is not a maximal ideal of R.

Therefore, P/I ⊂M/I and so dim(R/I) = 1.
(ii) ⇒ (i) Note that the ring R/I satisfies the hypotheses of Lemma
2.5. Hence it follows from Lemma 2.5 that the zero-ideal of R/I is not
a primary ideal. Hence I is not a primary ideal of R. Let A be any
proper ideal of R such that I ⊂ A. We consider two cases:
Case(1) A ⊆

√
I

In this case A/I is a nonzero ideal of R/I and A/I ⊆
√
I/I. As

√
I/I

is a minimal ideal of R/I, we obtain that A/I =
√
I/I and so A =

√
I

is a prime ideal of R. Hence A is a primary ideal of R.
Case(2) A 6⊆

√
I

Let us denote the unique maximal ideal of R/I by M/I. Note that M is

the only prime ideal of R containing A. Hence it follows that
√
A = M .

Since M is a maximal ideal of R, we obtain from [1, Proposition 4.2]
that A is a primary ideal of R.

This proves that I is a maximal non-primary ideal of R. �

Recall from [1, p.52] that a proper ideal I of a ring R is said to be
decomposable if I admits a primary decomposition (that is, I can be
expressed as the intersection of a finite number of primary ideals of R).
The following proposition characterizes decomposable ideals I of a ring
R such that I 6=

√
I and I is a maximal non-primary ideal.

Proposition 4.3. Let I be a proper ideal of a ring R such that I 6=
√
I

and I is decomposable. The following statements are equivalent:
(i) I is a maximal non-primary ideal of R.

(ii)
√
I is a prime ideal of R, (R/I,M/I) is quasilocal, dim(R/I) = 1,

I =
√
I ∩ q, where q is a M-primary ideal of R, q 6= M , and

√
I/I is

a simple R/I-module.

Proof. (i)⇒ (ii) It follows from (i)⇒ (ii) of Proposition 4.2 that
√
I

is a prime ideal of R, R/I is quasilocal, dim(R/I) = 1, and
√
I/I is a

simple R/I-module. Let M/I denote the unique maximal ideal of R/I.
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We are assuming that I is decomposable. Let I = q1 ∩ · · · ∩ qn be an
irredundant primary decomposition of I in R with qi is a Pi-primary
ideal of R for each i ∈ {1, . . . , n}. Since I is not a primary ideal of R, it

follows that n ≥ 2. Note that
√
I = ∩ni=1Pi. As

√
I is a prime ideal of

R, it follows that
√
I = Pi for some i ∈ {1, 2, . . . , n}. Without loss of

generality we may assume that
√
I = P1. Since Pi 6= Pj for all distinct

i, j ∈ {1, 2, . . . , n}, it follows that P1 ⊂ Pj for all j ∈ {2, . . . , n}. As
P1/I and M/I are the only prime ideals of R/I, it follows that n = 2
and P2 = M . Note that I ⊆ P1 ∩ q2. We assert that I = P1 ∩ q2. Since
q1 6⊆ q2, it follows that P1 6⊆ q2. Let x ∈ P1\q2 and let y ∈ q2\P1.
Observe that xy ∈ P1 ∩ q2 but no power of y belongs to P1 ∩ q2 and
x /∈ P1 ∩ q2. Hence P1 ∩ q2 is not a primary ideal of R. As we are
assuming that I is a maximal non-primary ideal of R, it follows that
I = P1 ∩ q2. Since I 6=

√
I, it follows that q2 6= M .

(ii) ⇒ (i) This follows immediately from (ii) ⇒ (i) of Proposition
4.2. �

Example 4.4. Let R = K[[X, Y ]] be the power series ring in two
variables X, Y over a field K. It is well-known that R is a local ring
with M = RX+RY as its unique maximal ideal. Let I = RX2+RXY .
Observe that I = RX ∩M2. Note that

√
I = RX is a prime ideal of

R, M2 6= M is a M -primary ideal of R, dim(R/I) = 1, and RX/I is
a simple R/I-module. Hence it follows from (ii) ⇒ (i) of Proposition
4.3 that I is a maximal non-primary ideal of R.

5. Maximal non-irreducible ideals

Recall that an ideal I of a ring R is irreducible, if I is not the intersec-
tion of any ideals I1, I2 of R with I ⊂ Ii for each i ∈ {1, 2}. The aim
of this section is to determine proper ideals I of a ring R such that I
is a maximal non-irreducible ideal of R. We first characterize proper
radical ideals I of R such that I is a maximal non-irreducible ideal of
R.

Proposition 5.1. Let I be a proper radical ideal of a ring R. Then
the following statements are equivalent:
(i) I is a maximal non-irreducible ideal of R.
(ii) I = M1 ∩M2 for some distinct maximal ideals M1,M2 of R.

Proof. (i)⇒ (ii) Since I is a proper radical ideal of R, it follows from [1,
Proposition 1.14] that I is the intersection of all the prime ideals P of R
such that P ⊇ I. Let C be the collection of all prime ideals P of R such
that P is minimal over I. Observe that we obtain from [5, Theorem 10]
that I is the intersection of all members of C. Since I is not irreducible
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and any prime ideal is irreducible, we get that C contains at least two
elements. Let P1, P2 ∈ C be distinct. We assert that C = {P1, P2}.
Suppose that there exists P3 ∈ C such that P3 /∈ {P1, P2}. Then it
is clear that I ⊂ P2 ∩ P3 and P2 ∩ P3 is non-irreducible. This is in
contradiction to the assumption that I is a maximal non-irreducible
ideal of R. Therefore, C = {P1, P2} and so I = P1 ∩ P2. We next
show that P1 and P2 are maximal ideals of R. Towards showing it, we
first prove that P1 + P2 = R. Suppose that P1 + P2 6= R. Let M be
a maximal ideal of R such that P1 + P2 ⊆ M . Since P1 and P2 are
not comparable under the inclusion relation, there exist a ∈ P1\P2 and
b ∈ P2\P1. Consider the ideals J1 = I+Ra+Rb2 and J2 = I+Ra2+Rb
of R. It is clear that I ⊆ J1 ∩ J2. As a2 ∈ (J1 ∩ J2)\I, it follows that
I ⊂ J1 ∩J2. Since I is a maximal non-irreducible ideal of R, we obtain
that J1 ∩ J2 is irreducible. Therefore, either J1 ⊆ J2 or J2 ⊆ J1.
If J1 ⊆ J2, then a = x + ra2 + sb for some x ∈ I = P1 ∩ P2 and
r, s ∈ R. This implies that a(1 − ra) = x + sb ∈ P2. As a /∈ P2, we
obtain that 1 − ra ∈ P2. Therefore, 1 = ra + 1 − ra ∈ P1 + P2 ⊆ M .
This is a contradiction. Observe that we get a similar contradiction if
J2 ⊆ J1. Hence P1 + P2 = R. Let M1 be a maximal ideal of R such
that P1 ⊆ M1. Since P1 + P2 = R, it follows that the ideal M1 ∩ P2 is
not irreducible. As I ⊆M1∩P2, we obtain that I = P1∩P2 = M1∩P2.
Since P1 6⊇ P2, it follows that P1 ⊇ M1 and so P1 = M1 is a maximal
ideal of R. Similarly it can be shown that P2 is a maximal ideal of R.
Thus I = M1 ∩M2 for some distinct maximal ideals M1,M2 of R.
(ii)⇒ (i) If I = M1 ∩M2 for some distinct maximal ideals M1,M2 of
R, then it is clear that I is not irreducible. It is verified in the proof
of (ii) ⇒ (iii) of Proposition 3.2 that M1 and M2 are the only proper
ideals J of R such that I ⊂ J . Since M1 and M2 are both irreducible,
we obtain that I is a maximal non-irreducible ideal of R. �

Let I be a proper ideal of a ring R such that I 6=
√
I. We next

attempt to characterize such ideals I in order that I is a maximal non-
irreducible ideal of R. We do not know the precise characterization of
such ideals. However, we have the following partial results.

Lemma 5.2. Let I be a proper ideal of a ring R such that I 6=
√
I. If

I is a maximal non-irreducible ideal of R, then
√
I is a prime ideal of

R and moreover, R/I is quasilocal.

Proof. Let C be the colletion of all prime ideals P of R such that P is
minimal over I. We assert that C is singleton. Let P,Q ∈ C. Since
I 6=
√
I, it is clear that I ⊂ P ∩Q. As I is a maximal non-irreducible

ideal of R, it follows that P ∩Q is irreducible. Hence either P ⊆ Q or
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Q ⊆ P . Therefore, P = Q. This shows that there is only one prime
ideal P of R such that P is minimal over I. Thus

√
I = P is a prime

ideal of R.
We next show that R/I is quasilocal. Let M,N be maximal ideals

of R such that I ⊆M ∩N . Since I 6=
√
I, it follows that I ⊂M ∩N .

As M ∩ N is irreducible, we obtain that either M ⊆ N or N ⊆ M .
Hence M = N . This shows that R/I is quasilocal. �

Lemma 5.3. Let (T,N) be a quasilocal ring such that (0) 6=
√

(0) and
(0) is a maximal non-irreducible ideal of T . Then dimT/N(N/N2) ≤ 2.

Proof. Suppose that dimT/N(N/N2) ≥ 3. Let {a, b, c} ⊆ N be such
that {a+N2, b+N2, c+N2} is linearly independent over T/N . Consider
the ideals J1 = Ta + Tc and J2 = Tb + Tc. By the choice of a, b, c,
it is clear that J1 6⊆ J2, J2 6⊆ J1 and so J1 ∩ J2 is not an irreducible
ideal of T . Moreover, as c ∈ J1 ∩ J2, it follows that J1 ∩ J2 6= (0). This
contradicts the hypothesis that (0) is a maximal non-irreducible ideal
of T . Therefore, dimT/N(N/N2) ≤ 2. �

Lemma 5.4. Let (T,N) be a quasilocal ring such that (0) 6=
√

(0) and
dimT/N(N/N2) = 2. Then the following statements are equivalent:
(i) (0) is a maximal non-irreucible ideal of T .
(ii) N2 = (0).

Proof. By hypothesis, dimT/N(N/N2) = 2. Let {a, b} ⊆ N be such
that {a + N2, b + N2} is a basis of N/N2 as a vector space over T/N .
(i) ⇒ (ii) Consider the ideals J1 = N2 + Ta and J2 = N2 + Tb. By
the choice of the elements a, b, it is clear that J1 6⊆ J2 and J2 6⊆ J1.
Hence the ideal J1 ∩ J2 is not irreducible. Since (0) is a maximal non-
irreducible ideal of T , it follows that J1 ∩ J2 = (0). As N2 ⊆ J1 ∩ J2,
we obtain that N2 = (0).
(ii)⇒ (i) It follows from N2 = (0) and from the choice of the elements
a, b that Ta 6⊆ Tb , Tb 6⊆ Ta, and Ta∩ Tb = (0). This implies that (0)
is not an irreducible ideal of T . Let J be any nonzero proper ideal of
T . Then either dimT/N(J) = 1 or 2. If dimT/N(J) = 2, then J = N
is irreducible. Suppose that dimT/N(J) = 1. Let A,B be proper ideals
of T such that J = A ∩ B. If J 6= A and J 6= B, then we get that
A = B = N and so J = N . This is a contradiction. Hence either
J = A or J = B. This shows that J is irreucible. Hence (0) is a
maximal non-irreducible ideal of T . �
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