Journal of Algebra and Related Topics
Vol. 3, No 1, (2015), pp 51-61

A NOTE ON MAXIMAL NON-PRIME IDEALS

S. VISWESWARAN* AND ANIRUDHDHA PARMAR

Abstract

The rings considered in this article are commutative with identity $1 \neq 0$. We say that a proper ideal I of a ring R is a maximal non-prime ideal if I is not a prime ideal of R but any proper ideal A of R with $I \subseteq A$ and $I \neq A$ is a prime ideal. That is, among all the proper ideals of R, I is maximal with respect to the property of being not a prime ideal. The concept of maximal non-maximal ideal and maximal non-primary ideal of a ring can be similarly defined. The aim of this article is to characterize ideals I of a ring R such that I is a maximal non-prime (respectively, a maximal non-maximal, a maximal non-primary) ideal of R.

1. Introduction

The rings considered in this article are nonzero commutative with identity. If R is a subring of a ring T with identity 1 , then we assume that $1 \in R$. If a set A is a subset of a set B and $A \neq B$, we denote it symbolically using the notation $A \subset B$. Let P be a property of rings. Let R be a subring of a ring T. Recall from [4] that R is a maximal nonP, if R does not have P, whereas each subring S of T with $R \subset S$ has property P. The concept of maximal non-Noetherian subring of a ring T was investigated in [3]. There are other interesting research articles which appeared in the literature focussing on maximal non- P subring of a ring T (see for example, $[2,4]$). Let R be a non-zero commutative ring with identity. A proper ideal I of a ring R is said to be a maximal non-prime ideal of R if the following conditions hold: $(i) I$ is not a

[^0]prime ideal of R and (ii) If A is any proper ideal of R such that A contains I properly, then A is a prime ideal of R. Similarly, we can define the concept of a maximal non-maximal (respectively, a maximal non-primary) ideal of R. Motivated by the above mentioned works on maximal non- P subrings, in this article, we focus our attempt on characterizing maximal non-prime (respectively, maximal non-maximal , maximal non-primary) ideals of a ring R. Let I be a proper radical ideal of a ring R. It is proved in Proposition 3.2 that I is a maximal non-primary ideal of R if and only if I is a maximal non-prime ideal of R if and only if I is a maximal non-maximal ideal of R if and only if $I=M_{1} \cap M_{2}$ for some distinct maximal ideals M_{1}, M_{2} of R. Let I be a proper ideal of R such that $I \neq \sqrt{I}$. It is shown in Proposition 4.1 that I is a maximal non-prime ideal of R if and only if I is a maximal non-maximal ideal of R if and only if $\sqrt{I}=M$ is a maximal ideal of R with $M^{2} \subseteq I$, and $M=R x+I$ for any $x \in M \backslash I$. Moreover, it is proved in Proposition 4.2 that I is a maximal non-primary ideal of R if and only if $\sqrt{I}=P$ is a prime ideal of R such that R / I is a quasilocal one-dimensional ring and P / I is a minimal ideal of R / I.

By a quasilocal ring we mean a ring which admits only one maximal ideal. A Noetherian quasilocal ring is referred to as a local ring.. By dimension of a ring R, we mean its Krull dimension and we use the abbreviation $\operatorname{dim} R$ to denote the dimension of a ring R. We denote the nilradical of a ring R by $\operatorname{nil}(R)$. A ring R is said to be reduced if $\operatorname{nil}(R)=(0)$.

2. Some preliminary results

As mentioned in the introduction the rings considered in this article are commutative with identity $1 \neq 0$. We begin with the following lemma.

Lemma 2.1. Let R be a ring. If P_{1}, P_{2} are incomparable prime ideals of R under inclusion, then $P_{1} \cap P_{2}$ is not a primary ideal of R.

Proof. Let $I=P_{1} \cap P_{2}$. Since P_{1} and P_{2} are incomparable under inclusion, there exist $a \in P_{1} \backslash P_{2}$ and $b \in P_{2} \backslash P_{1}$. Note that $a b \in I$. By the choice of a, b, it is clear that $a \notin I$ and no power of $b \in I$. This proves that $I=P_{1} \cap P_{2}$ is not a primary ideal of R.

Lemma 2.2. Let R be a reduced ring which is not an integral domain. If every nonzero proper ideal of R is primary, then R has exactly two prime ideals and both of them are maximal ideals of R.

Proof. Since R is reduced but not an integral domain, it follows that R has at least two minimal prime ideals. Let P_{1}, P_{2} be distinct minimal prime ideals of R. Now we obtain from Lemma 2.1 and the hypotesis that $P_{1} \cap P_{2}=(0)$. We prove that P_{1}, P_{2} are maximal ideals of R. Let M be a maximal ideal of R such that $P_{1} \subseteq M$. We claim that $M=P_{1}$. Suppose that $P_{1} \neq M$. Then $M \nsubseteq P_{1} \cup P_{2}$. Let $a \in M \backslash\left(P_{1} \cup P_{2}\right)$ and $b \in P_{2} \backslash P_{1}$. As $a b \notin P_{1}$, it follows that $a b \neq 0$. Hence Rab is a primary ideal of R. Note that $R a b \subseteq P_{2}$. Hence it follows from the choice of a that no power of $a \in R a b$. Therefore, $b \in R a b$. This implies that $b=r a b$ for some $r \in R$ and so $b(1-r a)=0$. As $b \notin P_{1}$, it follows that $1-r a \in P_{1} \subset M$. From $a \in M$, we obtain that $1=1-r a+r a \in M$. This is a contradiction. Therefore, $P_{1}=M$ is a maximal ideal of R. Similarly, it follows that P_{2} is a maximal ideal of R. From $P_{1} \cap P_{2}=(0)$, we get that R has exactly two prime ideals which are P_{1} and P_{2} and moreover, both are maximal ideals of R.

Lemma 2.3. Let R be a ring such that every nonzero proper ideal of R is primary. Then $\operatorname{dim} R \leq 1$. Moreover, if R is not a reduced ring, then R is necessarily quasilocal.

Proof. Suppose that $\operatorname{dim} R>1$. Then there exists a chain of prime ideals $P_{1} \subset P_{2} \subset P_{3}$ of R. Let $a \in P_{2} \backslash P_{1}$ and $b \in P_{3} \backslash P_{2}$. Since $a b \notin P_{1}$, it is clear that $a b \neq 0$ and hence $R a b \neq(0)$. Observe that $R a b \subseteq P_{2}$. By hypothesis, $R a b$ is a primary ideal of R. From the choice of the element b, it is clear that no power of b can belong to Rab. Hence $a \in R a b$. This implies that $a=r a b$ for some $r \in R$ and so $a(1-r b)=0$. Since $a \notin P_{1}$, it follows that $1-r b \in P_{1} \subset P_{3}$. From $b \in P_{3}$, we obtain that $1=1-r b+r b \in P_{3}$. This is a contradiction. Therefore, $\operatorname{dim} R \leq 1$.

We next prove the moreover assertion. Suppose that R is not quasilocal. Then there exist at least two distinct maximal ideals M_{1}, M_{2} of R. As we are assuming that R is not a reduced ring, it follows that $M_{1} \cap M_{2} \neq(0)$. Hence by hypothesis, $M_{1} \cap M_{2}$ is a primary ideal of R. This contradicts Lemma 2.1. Therefore, R is necessarily quasilocal.

Lemma 2.4. Let R be a ring which is not reduced. Suppose that (0) is not a primary ideal of R. If every nonzero proper ideal of R is primary, then nil (R) is a minimal prime ideal of R. Indeed, nil (R) is a minimal ideal of R.

Proof. We know from Lemma 2.3 that R is necessarily quasilocal. Let M be the unique maximal ideal of R. Since R is not reduced, $\operatorname{nil}(R) \neq$ (0). Hence $\operatorname{nil}(R)$ is a primary ideal of R and so it follows from [1,

Proposition 4.1] that $\sqrt{\operatorname{nil(}(R)}=\operatorname{nil}(R)$ is a prime ideal of R. Since $\operatorname{nil}(R) \subseteq P$ for any prime ideal of R, it follows that $\operatorname{nil}(R)$ is a minimal prime ideal of R. As (0) is not a primary ideal of R, it follows from [1, Proposition 4.2] that $\sqrt{(0)}$ is not a maximal ideal of R. Thus $\operatorname{nil}(R) \subset M$. We prove that for any nonzero $a \in \operatorname{nil}(R), \operatorname{nil}(R)=R a$. First we verify that for any $b \in \operatorname{nil}(R) \backslash(0)$ and for any $m \in M \backslash \operatorname{nil}(R)$, $b m=0$. Suppose that $b m \neq 0$. By hypothesis, $R b m$ is a primary ideal of R. In fact $R b m$ is a $\operatorname{nil}(R)$-primary ideal of R. Since no power of $m \in \operatorname{nil}(R)$, we obtain that $b \in R b m$. This implies that $b=r b m$ for some $r \in R$. Thus $b(1-r m)=0$. As $1-r m$ is a unit in R, it follows that $b=0$. This is a contradiction. Hence for any nonzero $b \in \operatorname{nil}(R)$ and $m \in M \backslash \operatorname{nil}(R), b m=0$. Let $x \in \operatorname{nil}(R)$. We assert that $x \in R a$. This is clear if $x=0$. If $x \neq 0$, then $x m=0 \in R a$. Now $R a$ is a $\operatorname{nil}(R)$-primary ideal of R and no power of $m \in \operatorname{nil}(R)$. Hence it follows that $x \in R a$. This proves that for any nonzero $a \in \operatorname{nil}(R)$, $\operatorname{nil}(R)=R a$. This shows that $\operatorname{nil}(R)$ is a minimal ideal of R.

Lemma 2.5. Let R be a quasilocal ring with M as its unique maximal ideal. Suppose that R is not reduced and $\operatorname{nil}(R)$ is a prime ideal of R with $\operatorname{nil}(R) \neq M$. If nil (R) is a minimal ideal of R, then (0) is not a primary ideal of R.

Proof. Let $a \in \operatorname{nil}(R), a \neq 0$. Let $b \in M \backslash \operatorname{nil}(R)$. Since $\operatorname{nil}(R)$ is a simple R-module, it follows that $M(n i l(R))=(0)$ and so $a b=0$. Now $a \neq 0$ and as $b \notin \operatorname{nil}(R)$, it follows that $b^{n} \neq 0$ for all $n \geq 1$. This proves that (0) is not a primary ideal of R.
Lemma 2.6. Let R be a ring which is not reduced. If every nonzero proper ideal of R is a prime ideal of R, then R is quasilocal with nil (R) as its unique maximal ideal and $(\operatorname{nil}(R))^{2}=(0)$. Moreover, for any $x \in \operatorname{nil}(R) \backslash\{0\}, \operatorname{nil}(R)=R x$.
Proof. Since any prime ideal is primary, it follows from Lemma 2.3 that R is necessarily quasilocal. Let M be the unique maximal ideal of R. We prove that $M=\operatorname{nil}(R)$. Let $m \in M$. We assert that $m^{2}=0$. Suppose that $m^{2} \neq 0$. Then $R m^{2}$ is a prime ideal of R. Therefore, $m \in R m^{2}$. This implies that $m=r m^{2}$ for some $r \in R$ and so $m(1-r m)=0$. From $1-r m$ is a unit in R, it follows that $m=0$. This is a contradiction. Thus for any $m \in M, m^{2}=0$ and so $M=\operatorname{nil}(R)$. Hence M is the only prime ideal of R. Let $a, b \in M$. We show that $a b=0$. This is clear if either $a=0$ or $b=0$. Suppose that $a \neq 0$ and $b \neq 0$. Then $R a, R b$ are prime ideals of R. Therefore, $R a=R b=M$. This implies that $a=u b$ for some unit $u \in R$. It follows from $b^{2}=0$ that $a b=0$. This proves that $M^{2}=(\operatorname{nil}(R))^{2}=(0)$.

We next prove the moreover part. Let $x \in \operatorname{nil}(R) \backslash\{0\}$. Then $R x$ is a prime ideal of R. From the fact that $\operatorname{nil}(R)$ is the only prime ideal of R, it follows that $\operatorname{nil}(R)=R x$.

3. RADICAL NON-MAXIMAL PRIME IDEALS

The aim of this section is to determine proper radical ideals I of a ring R such that I is a maximal non-prime ideal. We start with the following lemma.

Lemma 3.1. Let D be an integral domain which is not a field. Then it admits nonzero proper ideals which are not prime ideals.

Proof. Let $d \in D$ be a nonzero nonunit. Then for any $n \geq 2, D d^{n}$ is a proper nonzero ideal of D which is not a prime ideal of D.

Proposition 3.2. Let R be a ring and I be a proper radical ideal of R. Then the following statements are equivalent:
(i) I is a maximal non-primary ideal of R.
(ii) $I=M_{1} \cap M_{2}$ for some distinct maximal ideals M_{1}, M_{2} of R.
(iii) I is a maximal non-maximal ideal of R.
(iv) I is a maximal non-prime ideal of R.

Proof. $(i) \Rightarrow(i i)$ Note that R / I is a reduced ring and as I is not primary, it follows that I is not a prime ideal of R and so R / I is not an integral domain. Since I is a maximal non-primary ideal of R, it follows that every nonzero proper ideal of R / I is primary. Hence we obtain from Lemma 2.2 that there exist distinct maximal ideals M_{1}, M_{2} of R such that $I=M_{1} \cap M_{2 \mid}$.
(ii) \Rightarrow (iii) We know from Lemma 2.1 that $I=M_{1} \cap M_{2}$ is not a primary ideal and hence it is not a maximal ideal of R. Let A be any proper ideal of R such that $M_{1} \cap M_{2} \subset A$. Then either $A \nsubseteq M_{1}$ or $A \nsubseteq M_{2}$. Without loss of generality we may assume that $A \nsubseteq M_{1}$. Then $A+M_{1}=R$. Hence $1=a+x$ for some $a \in A$ and $x \in M_{1}$. Now for any $y \in M_{2}, y=a y+x y \in A+M_{1} M_{2}=A$. This proves that $M_{2} \subseteq A$ and so $A=M_{2}$. Thus the only proper ideals A of R which contain I properly are M_{1} and M_{2} and both are maximal ideals of R. Therefore, we obtain that I is a maximal non-maximal ideal of R.
(iii) $\Rightarrow(i v)$ Let A be a proper ideal of R with $I \subset A$. Then by (iii) A is a maximal ideal of R. Hence A is a prime ideal of R. We claim that I is not a prime ideal of R. Suppose that I is a prime ideal of R. Since R / I is not a field, it follows from Lemma 3.1 that R / I admits nonzero proper ideals which are not maximal ideals. This contradicts (iii). Therefore, I is not a prime ideal of R. This shows that I is a maximal non-prime ideal of R.
$(i v) \Rightarrow(i)$ Let A be any proper ideal of R with $I \subset A$. Then by (iv) A is a prime ideal and hence is a primary ideal of R. Since I is a radical ideal of R and is not a prime ideal of R, we get that I is not a primary ideal of R. This proves that I is a maximal non-primary ideal of R.

4. Non-Radical maximal non-Prime ideals

The aim of this section is to determine ideals I of a ring R such that $I \neq \sqrt{I}$ and I is a maximal non-prime ideal of R.

Proposition 4.1. Let I be a proper ideal of a ring R such that $I \neq \sqrt{I}$. Then the following statements are equivalent:
(i) I is a maximal non-prime ideal of R.
(ii) \sqrt{I} is a maximal ideal of $R,(\sqrt{I})^{2} \subseteq I$, and $\sqrt{I}=R x+I$ for any $x \in \sqrt{I} \backslash I$.
(iii) I is a maximal non-maximal ideal of R.

Proof. $(i) \Rightarrow(i i)$ Note that R / I is a non-reduced ring in which any non-zero proper ideal is a prime ideal. Hence we obtain from Lemma 2.6 that R / I is a quasilocal ring with \sqrt{I} / I as its unique maximal ideal, $(\sqrt{I} / I)^{2}=I / I$, and moreover, $\sqrt{I} / I=R / I(x+I)$ for any $x \in \sqrt{I} \backslash I$. Therefore, \sqrt{I} is a maximal ideal of $R,(\sqrt{I})^{2} \subseteq I$, and $\sqrt{I}=R x+I$ for any $x \in \sqrt{I} \backslash I$.
(ii) \Rightarrow (iii) Since $I \subset \sqrt{I}$, it follows that I is not a maximal ideal of R. Let A be any proper ideal of R such that $I \subset A$. From $(\sqrt{I})^{2} \subseteq I \subset A$, it follows that $\sqrt{I} \subseteq \sqrt{A}$. Since \sqrt{I} is a maximal ideal of R, we obtain $\sqrt{I}=\sqrt{A}$. Let $a \in A \backslash I$. Then $a \in \sqrt{I}$. Hence $\sqrt{I}=R a+I \subseteq A$ and so $A=\sqrt{I}$ is a maximal ideal of R. This proves that I is a maximal non-maximal ideal of R.
$($ iii $) \Rightarrow(i)$ As $I \subset \sqrt{I}$, it follows that I is not a prime ideal of R. Let A be any proper ideal of R with $I \subset A$. Then A is a maximal ideal and hence is a prime ideal of R. This shows that I is a maximal non-prime ideal of R.

We next proceed to characterize proper ideals I of a ring R such that $I \neq \sqrt{I}$ and I is a maximal non-primary ideal of R.

Proposition 4.2. Let I be a proper ideal of a ring R such that $I \neq \sqrt{I}$. Then the following statements are equivalent:
(i) I is a maximal non-primary ideal of R.
(ii) \sqrt{I} is a prime ideal of $R, R / I$ is quasilocal, $\operatorname{dim}(R / I)=1$, and \sqrt{I} / I is a simple R / I-module.

Proof. $(i) \Rightarrow(i i)$ As $I \neq \sqrt{I}$ and I is a maximal non-primary ideal of R, it follows that I is not a primary ideal of R, whereas \sqrt{I} is a primary ideal of R. Hence $\sqrt{\sqrt{I}}=\sqrt{I}$ is a prime ideal of R. Let us denote \sqrt{I} by P. Note that R / I is not a reduced ring, the zero-ideal of R / I is not primary but each proper nonzero ideal of R / I is primary. Hence we obtain from Lemma 2.3 that R / I is quasilocal, $\operatorname{dim}(R / I) \leq 1$, and moreover, it follows from Lemma 2.4 that P / I is a minimal ideal of R / I (that is, P / I is a simple R / I-module). Let M / I denote the unique maximal ideal of R / I. Since I is not a primary ideal of R, it follows from [1, Proposition 4.2] that \sqrt{I} is not a maximal ideal of R. Therefore, $P / I \subset M / I$ and so $\operatorname{dim}(R / I)=1$.
(ii) $\Rightarrow(i)$ Note that the ring R / I satisfies the hypotheses of Lemma 2.5. Hence it follows from Lemma 2.5 that the zero-ideal of R / I is not a primary ideal. Hence I is not a primary ideal of R. Let A be any proper ideal of R such that $I \subset A$. We consider two cases:
Case(1) $A \subseteq \sqrt{I}$
In this case A / I is a nonzero ideal of R / I and $A / I \subseteq \sqrt{I} / I$. As \sqrt{I} / I is a minimal ideal of R / I, we obtain that $A / I=\sqrt{I} / I$ and so $A=\sqrt{I}$ is a prime ideal of R. Hence A is a primary ideal of R.
Case(2) $A \nsubseteq \sqrt{I}$
Let us denote the unique maximal ideal of R / I by M / I. Note that M is the only prime ideal of R containing A. Hence it follows that $\sqrt{A}=M$. Since M is a maximal ideal of R, we obtain from [1, Proposition 4.2] that A is a primary ideal of R.

This proves that I is a maximal non-primary ideal of R.
Recall from [1, p.52] that a proper ideal I of a ring R is said to be decomposable if I admits a primary decomposition (that is, I can be expressed as the intersection of a finite number of primary ideals of R). The following proposition characterizes decomposable ideals I of a ring R such that $I \neq \sqrt{I}$ and I is a maximal non-primary ideal.

Proposition 4.3. Let I be a proper ideal of a ring R such that $I \neq \sqrt{I}$ and I is decomposable. The following statements are equivalent:
(i) I is a maximal non-primary ideal of R.
(ii) \sqrt{I} is a prime ideal of $R,(R / I, M / I)$ is quasilocal, $\operatorname{dim}(R / I)=1$, $I=\sqrt{I} \cap q$, where q is a M-primary ideal of $R, q \neq M$, and \sqrt{I} / I is a simple R / I-module.

Proof. $(i) \Rightarrow(i i)$ It follows from $(i) \Rightarrow(i i)$ of Proposition 4.2 that \sqrt{I} is a prime ideal of $R, R / I$ is quasilocal, $\operatorname{dim}(R / I)=1$, and \sqrt{I} / I is a simple R / I-module. Let M / I denote the unique maximal ideal of R / I.

We are assuming that I is decomposable. Let $I=q_{1} \cap \cdots \cap q_{n}$ be an irredundant primary decomposition of I in R with q_{i} is a P_{i}-primary ideal of R for each $i \in\{1, \ldots, n\}$. Since I is not a primary ideal of R, it follows that $n \geq 2$. Note that $\sqrt{I}=\cap_{i=1}^{n} P_{i}$. As \sqrt{I} is a prime ideal of R, it follows that $\sqrt{I}=P_{i}$ for some $i \in\{1,2, \ldots, n\}$. Without loss of generality we may assume that $\sqrt{I}=P_{1}$. Since $P_{i} \neq P_{j}$ for all distinct $i, j \in\{1,2, \ldots, n\}$, it follows that $P_{1} \subset P_{j}$ for all $j \in\{2, \ldots, n\}$. As P_{1} / I and M / I are the only prime ideals of R / I, it follows that $n=2$ and $P_{2}=M$. Note that $I \subseteq P_{1} \cap q_{2}$. We assert that $I=P_{1} \cap q_{2}$. Since $q_{1} \nsubseteq q_{2}$, it follows that $P_{1} \nsubseteq q_{2}$. Let $x \in P_{1} \backslash q_{2}$ and let $y \in q_{2} \backslash P_{1}$. Observe that $x y \in P_{1} \cap q_{2}$ but no power of y belongs to $P_{1} \cap q_{2}$ and $x \notin P_{1} \cap q_{2}$. Hence $P_{1} \cap q_{2}$ is not a primary ideal of R. As we are assuming that I is a maximal non-primary ideal of R, it follows that $I=P_{1} \cap q_{2}$. Since $I \neq \sqrt{I}$, it follows that $q_{2} \neq M$.
$(i i) \Rightarrow(i)$ This follows immediately from $(i i) \Rightarrow(i)$ of Proposition 4.2.

Example 4.4. Let $R=K[[X, Y]]$ be the power series ring in two variables X, Y over a field K. It is well-known that R is a local ring with $M=R X+R Y$ as its unique maximal ideal. Let $I=R X^{2}+R X Y$. Observe that $I=R X \cap M^{2}$. Note that $\sqrt{I}=R X$ is a prime ideal of $R, M^{2} \neq M$ is a M-primary ideal of $R, \operatorname{dim}(R / I)=1$, and $R X / I$ is a simple R / I-module. Hence it follows from $(i i) \Rightarrow(i)$ of Proposition 4.3 that I is a maximal non-primary ideal of R.

5. Maximal Non-Irreducible ideals

Recall that an ideal I of a ring R is irreducible, if I is not the intersection of any ideals I_{1}, I_{2} of R with $I \subset I_{i}$ for each $i \in\{1,2\}$. The aim of this section is to determine proper ideals I of a ring R such that I is a maximal non-irreducible ideal of R. We first characterize proper radical ideals I of R such that I is a maximal non-irreducible ideal of R.

Proposition 5.1. Let I be a proper radical ideal of a ring R. Then the following statements are equivalent:
(i) I is a maximal non-irreducible ideal of R.
(ii) $I=M_{1} \cap M_{2}$ for some distinct maximal ideals M_{1}, M_{2} of R.

Proof. $(i) \Rightarrow(i i)$ Since I is a proper radical ideal of R, it follows from [1, Proposition 1.14] that I is the intersection of all the prime ideals P of R such that $P \supseteq I$. Let C be the collection of all prime ideals P of R such that P is minimal over I. Observe that we obtain from [5, Theorem 10] that I is the intersection of all members of C. Since I is not irreducible
and any prime ideal is irreducible, we get that C contains at least two elements. Let $P_{1}, P_{2} \in C$ be distinct. We assert that $C=\left\{P_{1}, P_{2}\right\}$. Suppose that there exists $P_{3} \in C$ such that $P_{3} \notin\left\{P_{1}, P_{2}\right\}$. Then it is clear that $I \subset P_{2} \cap P_{3}$ and $P_{2} \cap P_{3}$ is non-irreducible. This is in contradiction to the assumption that I is a maximal non-irreducible ideal of R. Therefore, $C=\left\{P_{1}, P_{2}\right\}$ and so $I=P_{1} \cap P_{2}$. We next show that P_{1} and P_{2} are maximal ideals of R. Towards showing it, we first prove that $P_{1}+P_{2}=R$. Suppose that $P_{1}+P_{2} \neq R$. Let M be a maximal ideal of R such that $P_{1}+P_{2} \subseteq M$. Since P_{1} and P_{2} are not comparable under the inclusion relation, there exist $a \in P_{1} \backslash P_{2}$ and $b \in P_{2} \backslash P_{1}$. Consider the ideals $J_{1}=I+R a+R b^{2}$ and $J_{2}=I+R a^{2}+R b$ of R. It is clear that $I \subseteq J_{1} \cap J_{2}$. As $a^{2} \in\left(J_{1} \cap J_{2}\right) \backslash I$, it follows that $I \subset J_{1} \cap J_{2}$. Since I is a maximal non-irreducible ideal of R, we obtain that $J_{1} \cap J_{2}$ is irreducible. Therefore, either $J_{1} \subseteq J_{2}$ or $J_{2} \subseteq J_{1}$. If $J_{1} \subseteq J_{2}$, then $a=x+r a^{2}+s b$ for some $x \in I=P_{1} \cap P_{2}$ and $r, s \in R$. This implies that $a(1-r a)=x+s b \in P_{2}$. As $a \notin P_{2}$, we obtain that $1-r a \in P_{2}$. Therefore, $1=r a+1-r a \in P_{1}+P_{2} \subseteq M$. This is a contradiction. Observe that we get a similar contradiction if $J_{2} \subseteq J_{1}$. Hence $P_{1}+P_{2}=R$. Let M_{1} be a maximal ideal of R such that $P_{1} \subseteq M_{1}$. Since $P_{1}+P_{2}=R$, it follows that the ideal $M_{1} \cap P_{2}$ is not irreducible. As $I \subseteq M_{1} \cap P_{2}$, we obtain that $I=P_{1} \cap P_{2}=M_{1} \cap P_{2}$. Since $P_{1} \nsupseteq P_{2}$, it follows that $P_{1} \supseteq M_{1}$ and so $P_{1}=M_{1}$ is a maximal ideal of R. Similarly it can be shown that P_{2} is a maximal ideal of R. Thus $I=M_{1} \cap M_{2}$ for some distinct maximal ideals M_{1}, M_{2} of R. (ii) $\Rightarrow(i)$ If $I=M_{1} \cap M_{2}$ for some distinct maximal ideals M_{1}, M_{2} of R, then it is clear that I is not irreducible. It is verified in the proof of $(i i) \Rightarrow(i i i)$ of Proposition 3.2 that M_{1} and M_{2} are the only proper ideals J of R such that $I \subset J$. Since M_{1} and M_{2} are both irreducible, we obtain that I is a maximal non-irreducible ideal of R.

Let I be a proper ideal of a ring R such that $I \neq \sqrt{I}$. We next attempt to characterize such ideals I in order that I is a maximal nonirreducible ideal of R. We do not know the precise characterization of such ideals. However, we have the following partial results.

Lemma 5.2. Let I be a proper ideal of a ring R such that $I \neq \sqrt{I}$. If I is a maximal non-irreducible ideal of R, then \sqrt{I} is a prime ideal of R and moreover, R / I is quasilocal.

Proof. Let C be the colletion of all prime ideals P of R such that P is minimal over I. We assert that C is singleton. Let $P, Q \in C$. Since $I \neq \sqrt{I}$, it is clear that $I \subset P \cap Q$. As I is a maximal non-irreducible ideal of R, it follows that $P \cap Q$ is irreducible. Hence either $P \subseteq Q$ or
$Q \subseteq P$. Therefore, $P=Q$. This shows that there is only one prime ideal P of R such that P is minimal over I. Thus $\sqrt{I}=P$ is a prime ideal of R.

We next show that R / I is quasilocal. Let M, N be maximal ideals of R such that $I \subseteq M \cap N$. Since $I \neq \sqrt{I}$, it follows that $I \subset M \cap N$. As $M \cap N$ is irreducible, we obtain that either $M \subseteq N$ or $N \subseteq M$. Hence $M=N$. This shows that R / I is quasilocal.

Lemma 5.3. Let (T, N) be a quasilocal ring such that $(0) \neq \sqrt{(0)}$ and (0) is a maximal non-irreducible ideal of T. Then $\operatorname{dim}_{T / N}\left(N / N^{2}\right) \leq 2$.

Proof. Suppose that $\operatorname{dim}_{T / N}\left(N / N^{2}\right) \geq 3$. Let $\{a, b, c\} \subseteq N$ be such that $\left\{a+N^{2}, b+N^{2}, c+N^{2}\right\}$ is linearly independent over T / N. Consider the ideals $J_{1}=T a+T c$ and $J_{2}=T b+T c$. By the choice of a, b, c, it is clear that $J_{1} \nsubseteq J_{2}, J_{2} \nsubseteq J_{1}$ and so $J_{1} \cap J_{2}$ is not an irreducible ideal of T. Moreover, as $c \in J_{1} \cap J_{2}$, it follows that $J_{1} \cap J_{2} \neq(0)$. This contradicts the hypothesis that (0) is a maximal non-irreducible ideal of T. Therefore, $\operatorname{dim}_{T / N}\left(N / N^{2}\right) \leq 2$.

Lemma 5.4. Let (T, N) be a quasilocal ring such that $(0) \neq \sqrt{(0)}$ and $\operatorname{dim}_{T / N}\left(N / N^{2}\right)=2$. Then the following statements are equivalent:
(i) (0) is a maximal non-irreucible ideal of T.
(ii) $N^{2}=(0)$.

Proof. By hypothesis, $\operatorname{dim}_{T / N}\left(N / N^{2}\right)=2$. Let $\{a, b\} \subseteq N$ be such that $\left\{a+N^{2}, b+N^{2}\right\}$ is a basis of N / N^{2} as a vector space over T / N. (i) $\Rightarrow(i i)$ Consider the ideals $J_{1}=N^{2}+T a$ and $J_{2}=N^{2}+T b$. By the choice of the elements a, b, it is clear that $J_{1} \nsubseteq J_{2}$ and $J_{2} \nsubseteq J_{1}$. Hence the ideal $J_{1} \cap J_{2}$ is not irreducible. Since (0) is a maximal nonirreducible ideal of T, it follows that $J_{1} \cap J_{2}=(0)$. As $N^{2} \subseteq J_{1} \cap J_{2}$, we obtain that $N^{2}=(0)$.
$(i i) \Rightarrow(i)$ It follows from $N^{2}=(0)$ and from the choice of the elements a, b that $T a \nsubseteq T b, T b \nsubseteq T a$, and $T a \cap T b=(0)$. This implies that (0) is not an irreducible ideal of T. Let J be any nonzero proper ideal of T. Then either $\operatorname{dim}_{T / N}(J)=1$ or 2 . If $\operatorname{dim}_{T / N}(J)=2$, then $J=N$ is irreducible. Suppose that $\operatorname{dim}_{T / N}(J)=1$. Let A, B be proper ideals of T such that $J=A \cap B$. If $J \neq A$ and $J \neq B$, then we get that $A=B=N$ and so $J=N$. This is a contradiction. Hence either $J=A$ or $J=B$. This shows that J is irreucible. Hence (0) is a maximal non-irreducible ideal of T.

Acknowledgements

We are very much thankful to the referee for a very careful reading of this paper and valuable suggestions. We are also very much thankful to Professor H. Ansari-Toroghy for his support.

References

[1] M.F. Atiyah and I.G. Macdonald, Introduction to commutative algebra. Addison-Wesley, 1969.
[2] A. Ayache, D. E. Dobbs, and O. Echi, On maximal non-ACCP subrings, J. Algebra Appl. (5)6 (2007), 873-894.
[3] A. Ayache and N. Jarboui, Maximal non-Noetherian subring of a domain, J. Algebra 248 (2002), 806-823.
[4] A. Ayache, M. Ben Nasr, and N. Jarboui, PID pairs of rings and maximal non-PID subrings, Math. Z. 260 (2011), 635-647.
[5] I. Kaplansky, Commutative Rings. The University of Chicago Press, Chicago, 1974.

S. Visweswaran

Department of Mathematics, Saurashtra University, P.O. Box No. 360005 Rajkot, India.
Email: s_visweswaran2006@yahoo.co.in

Anirudhdha Parmar

Department of Mathematics, Saurashtra University, P.O. Box No. 360005 Rajkot, India.
Email: anirudh.maths@gmail.com

[^0]: MSC(2010): Primary 13A15; Secondary 13C05.
 Keywords: Maximal non-prime ideal, maximal non-maximal ideal, maximal non-primary ideal, maximal non-irreducible ideal.
 Received: 12 June 2015, Accepted: 15 July 2015.
 *Corresponding author .

