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Abstract. This paper presents an approach for the estimation of two-directional 
(2D)direction-of-arrival (DOA) using Acoustic Vector Sensor array based on greedy block 
coordinate descent(GBCD) algorithm, which can achieve faster convergence rate and better 
estimation accuracy. Moreover, a weighted form of block selection rule is proposed with the 
MUSIC prior. The identifiability of the presented approach is studied using computer simulations. 
It is demonstrated that the 2D DOAs of AVS can be realized using the approach, which has a 
superior resolution.  

Introduction 
      Two-dimensional (2D) direction of arrival (DOA) estimation with array sensors is essential 
for source localization in audio surveillance, auditory scene analysis, hearing aids etc. The most 
well-known classical DOA estimation methods include Capon’s method [1], MUSIC [2], ESPRIT 
[3], etc. The four-element Acoustic Vector Sensor (AVS) first presented in [4] for DOA estimation 
is an acoustic sensor that is capable of measuring acoustic pressure gradient as well as pressure as 
in a standard microphone. This combination makes it possible for the sensor to measure the 
complete sound field. Recently, along with the development of AVS technique, the Direction of 
Arrival (DOA) estimation based on AVS has been researched widely and deeply [5-8]. 
      By introducing Compressed Sensing (CS) [9] into DOA estimation field, we can obtain 
better performance than traditional angle estimation methods using the prior sparse information of 
target scene. In 2011, Fu applied CS to the DOA estimation of AVS [10], the echo signal received 
by an uniform linear array (ULA) is used for recovering target angle through OMP algorithm. But 
limited by the inherent error probability, OMP is not stable under noisy environment. Liang 
proposed an acoustic vector sensor array space time filtering approach for azimuth estimation with 

1l -norm optimization [11] and obtains superior resolution and accuracy to the conventional 
methods. However, the huge computational complexity of 1l -norm optimization restricts potential 
application. 
      Aiming at these problems, 2D DOA estimation for AVS based on GBCD algorithm is 
studied in this paper. In section 2, the acoustic vector sensor array signal model is introduced. 
Simulations are given in section 3 and summary in section 4. 

Signal Model 
Acoustic Vector Sensor Array Signal Model. An acoustic vector sensor consists of an acoustic 

pressure channel and three orthogonally oriented acoustic velocity channels, respectively receive 
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the acoustic pressure P and three components ),,( zyx vvv of the acoustic particle velocity on 
coordinate axes x, y, x. We assume there is a linear array with N vector sensors. The output of each 
AVS is a 4-dimensional vector which contains all the 4 components. We assume K far-field 
sources are in the surveillance region, impinging on this linear array from directions, 

where kφ and kθ represent the azimuth and the elevation angles of the kth signal respectively. We 

assume 22
πθπ

≤≤−
and πφπ ≤≤− . The measurement received at the array at time t can be 

modeled as [12] 
)()()( tetAxty +=                                                      (1) 

where )(ty and )(te are 14 ×N complex vectors, respectively, and )(tx is the 1×K  source vector. 
The KN ×4  array manifold A  can be expressed as 

     ][ ,......,1 kaaA =                                                        (2) 
Where kkk pda ⊗= , with 
            TkNjkj

k eed ],...,,1[ sin)1(sin2 θπθπ −=  
            T

kkkkkkp ]sin,sinsin,sincos,1[ θθφθφ=  
Here, ka is the 14 ×N steering vector of the array associated with a signal coming from the 
direction ),( kk θφ . kd denotes the phase delay of the kth signal at the N sensors with respect to the 
origin, kp is the steering vector of a single vector sensor located at the origin. 

Joint Sparse Signal Model of Acoustic Vector Sensor Array. Supposing we process L 
snapshots at a time, the echo vector, source vector and noise vector received at the lth snapshot can 

be represented by 
)(ly ,

)(ls and 
)(le  respectively, which independent from each other between 

different snapshots Ll ,...,1= ,we can get 
             ESyyY L +Φ== ]...[: )()1(                                             (3) 
             PMN

pMpMpp Rpdpdpdpd ×∈⊗⊗⊗⊗=Φ 4
111111 ],...,,...,,...,[  

where ]....[ )()1( LssS = is the source matrix,  ]...[ )()1( LeeE = is the noise matrix. 
Compared with the 1-D overcomplete dictionary, 2-D overcomplete dictionary is designed by 
expanding the overcomplete basis in 1-D way. Basing on the spatial sparsity, in each snapshot, 

)(ls has only few nonzero elements, and the targets haven’t moved cross resolution units during L 
snapshots, that means for any )(is  and )( js )( ji ≠ , the nonzero elements are at the same position, 
so there are only few rows in S which are nonzero, and (3) is called the joint row sparse signal 
model of acoustic vector sensor array. 

Singular Value Decomposition. In order to reduce the dimension of (3), we apply Singular 
Value Decomposition to the echo matrix 

       H
Ns

H VUUVUY Λ=Λ= ][                                              (4) 
where sU is the signal subspace matrix and NU is the noise subspace matrix. sU consists of the 
eigenvectors correspond to the former K large eigenvalues and NU consists of the eigenvectors 
correspond to the rest L-K small eigenvalues. Let HH

KLKKKkD ]0[ )(
1

−×
−
×L= , where KK×Λ represents 

the diagonal matrix constructed by the former K large eigenvalues, thus the signal subspace matrix 
can be represented as ks YVDU = . Let ss UY = , ks SVDS = , ks EVDE = , substituted into (3), 
there is the dimensional reduction representation 
           sss ESY +Φ=                                                        (5) 

Through comparing (5) with (3), we know that the dimension of echo signal is reduced from 
LP×3  to KP×3 . In practice, LK << , so the calculation of (5) is much faster. This fact motivates 
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the following 1,2l -norm minimization formulation for jointly sparse signal recovery [13]: 

      1,2
2 ||||||||

2
1min sFss SSY λ+F−                                            (6) 

Where F|||| •  denotes the matrix Frobenius norm, 
211,2 |||||||| ∑=

=
M

i
i

s sS is the 1,2l -norm of 

sS (recall that is is the i-th row of sS ), andλ is a regularization parameter. 
Greedy Block Coordinate Descent(GBCD) Algorithm. The objective function in (6) can be 

written as 
           )()()( sss SHSGSF +=                                                (7) 

Where 2
2

2 ||)()(||
2
1||||

2
1)( sRsFsss SBvecIYvecSYSG ⊗−=F−= , and

211,2 ||||||||)( ∑=
==

M

i
i

ss sSSH λλ . 

We first build the approximation of )( sSF , that is  

       )(||)(||
2
1))(()))((())(()( 2

sFssss
H

sss SHkSSkSSveckSGveckSGSF +−+−∇+=
βα  

             )(}||||||)(||
2
1{

1
2

2
2 kcskps

M

i

iii ++−=∑
=

λ
β

                            (8) 

Here, ))(()())(()()( ss
H

sss YkSkSkSGkSkP −ΦΦ−=∇−= ββ ; is and )(kpi are the i-th rows 

of sS and )(kP , respectively; 2||))((||
2

))(()( Fss kSGkSGkc ∇−=
β ; β is chosen to be 2

2||||
1

iΦ
=β  

where iΦ is any i-th column ofΦ . 
     We can update the )1( +kSs by a soft-thresholding operator 

            )||)(||,0max(
||)(||

)()1( 2
2

λβ−=+ kp
kp
kpks i

i

i
i                               (9) 

In order to maintain sparisity during the major iterations, we propose a greedy block selection 
rule which leads to a greedy block coordinate descent (GBCD) algorithm. Instead if sweeping 
through all the blocks in parallel, we only update the block that yields the greatest descent distance, 
namely 

       Miksksi ii ,...,1,||)()1(||maxarg 20 =−+=                                (10) 
Here 2||)()1(|| ksksd ii

i −+=∆ is the descent distance for the i-th block. The greedy block selection 
rule gives preference to sparsity and has faster convergence. Moreover, it guarantees global 
convergence. 

Based on the MUSIC prior, we choose the weight parameters M
iiw 1}{ = as 

       Mi
bU

w
i

H
n

i ,...,1,
||||

1

2

==                                              (11) 

 nU is noise subspace of the covariance matrix for received signal. Exploiting the orthogonality 
between the noise subspace and the array steering vectors, we can improve the accuracy of the 
GBCD algorithm without changing its global convergence. 

SIMULATION 
 In this section, we present simulation results illustrating the effectiveness of 2D-GBCD 

algorithm and 2D-weighted GBCD algorithm for acoustic vector sensor array. We will compare the 
DOA estimation performance of the proposed two algorithms with L1-SVD for acoustic vector 
sensor array, such as resolution analysis and error analysis. A 5-element ULA is used with the 
inter-element spacing being half of a wavelength. The snapshot is 150 and the SNR=0dB. It is 
assumed that the sources are corrupter by temporally and spatially uncorrelated white Gaussian 
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noise, which is measured with signal-to-noise ratio (SNR). In following experiments, the range of 
angles for DOA is )90,0( ° , and the grid is uniform with interval being °1 . The source number is 
assumed to be 2=K . The source signals impinge upon the acoustic vector-sensor array 
with )10,15(),( 11 °°=Φ ϕ , and )70,60(),( 22 °°=Φ ϕ , repectively. 
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 Fig 1. 2-D spatial spectra of GBCD            Fig 2. 2-D spatial spectra of weighted 
     algorithm for AVS array                   GBCD algorithm for AVS array  
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 Fig 3. RMSE of 2-D DOA estimation           Fig 4. RMSE of 2-D DOA estimation  

  versus number of snapshots                        versus SNR 
Through the above experiments, it shows that, we can achieve 2-D DOA estimation for acoustic 

vector sensor array based on spatial sparse sampling. For the figure 1 and figure 2, it is easy to 
know, the weighted GBCD algorithm for AVS have a better resolution than GBCD algorithm. For 
the figure 4, we know that W-GBCD algorithm has higher angle resolution than other two 
algorithms in all SNR and number of snapshots. 

Summary 
2D-DOA estimation approach of acoustic vector sensor array based on spatial sparse sampling is 

proposed. The joint sparse model along with singular value decomposition is utilized to enhance 
the adaptability to noisy situation and reduce dimension. Finally the high resolution DOA 
estimation is given by GBCD and weighted GBCD algorithms. Simulation results show that 
weighted GBCD algorithm has better angle resolution than other approaches in all SNR. The 
combination of Compressed Sensing and acoustic vector sensor shows great superiority, but how to 
speed up the recovery algorithms and reduce the sparsity constraints by AVS is worth further 
researching.  
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