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Abstract—In this paper, we consider the problem of routing
with two additive constraints in the hierarchical networks, such
as the Internet. In order for scalability, the supported QoS
information in the hierarchical networks has to be aggregated.
We propose a novel method for aggregating the QoS information.
To the best of our knowledge, our approach is the first study to
use the area-minimization optimization, the de facto optimization
problem of the QoS information aggregation. We use a set of real
numbers to approximate the supported QoS between different
domains. The size of the set is predefined so that advertisement
overhead and the space requirement will not grow exponentially
as the network size grows. The simulation results show that the
proposed method outperforms the existing methods.1

Index Terms—QoS routing, hierarchical networks, additive
constraints, QoS information aggregation.

I. INTRODUCTION
Supporting Quality-of-Service (QoS) in the Internet is a

big challenge due to the scalability problem. In the Internet,
nodes are hierarchically grouped into different domains. Each
node in a domain has no state information of other domains.
For computing the supported QoS between two different
domains, each border node has to advertise the supported QoS
information from itself to a destination to its border neighbors,
so that the border neighbors can obtain the supported QoS
to the same destination. We use the following example to
illustrate this problem.

Fig. 1 shows a simple network which contains five domains
and each domain contains two border nodes. Each border
node is connected with other border nodes in other domains
or in the same domain. The border node X.i means the
border node i in domain X . Now, we consider the process
of computing the supported QoS from S.2 to the domain T .
B.2 and C.2 are directly connected to domain T and they
advertise the supported QoS from itself to T to B.1 and C.1,
respectively. Secondly, B.1 and C.1 compute the supported
QoS from themselves to domain T and advertise them to A.2
and S.2, respectively. The process continues until S.2 receives
the supported QoS from A.1 to T and that from C.1 to T .
Based on the received QoS information, S.2 can compute the
supported QoS from itself to domain T .

In this work, we consider two independent additive con-
straints. The QoS parameter of link l is denoted by (cl, dl),

1This work is supported in part by the Cisco Research Initiative Award.

where cl and dl are the cost metric and delay metric of link l,
respectively. For a path p = {l1, l2, . . . , lh}, the QoS parameter
of p is (cp, dp), where cp =

∑h
i=1 cli and dp =

∑h
i=1 dli .

Each QoS parameter corresponds to a point on the cost-delay
plane. A path with the QoS parameter (cp, dp) can satisfy
the QoS requirement of a request (c, d), where c ≥ cp and
d ≥ dp. We call a request that can be supported by a path a
feasible request. Geometrically, any feasible request supported
by (cp, dp) has the QoS requirement falling into the upper right
quadrant of the point. If there are several paths going from
one node to the other, the feasible requests supported by these
paths form a staircase. Fig 2 shows an example to the feasible
region when there are four paths and the QoS parameter of
these paths are p1, p3, p5, and p7. However, it is not scalable
to advertise a staircase, which is defined by a set of points.
To solve the problem, an approximation of the supported
QoS region is advertised instead [15], [17]. This process of
approximation is called QoS information aggregation.

There have been a few works on the QoS information aggre-
gation. Generally, the works in [1], [3], [9], [13] just consider
one QoS metric. The logical link between any two border
nodes is selected as the “best” path by using the shortest-
path algorithm. The work in [19] studies the advertisement of
the QoS information between two different domains under the
condition of the inaccurate link state. Instead of using a single
value, it employs a statistical distribution to represent a single
metric of the path between any two border nodes. The work
in [5] uses a curve on the cost-delay plane to approximate the
staircase. However, the work gives a precedence to one of the
metrics and the information about the other metric is lost. It
also could not provide a polynomial-time routing algorithm
corresponding to this method. The work in [4] considers
multiple QoS parameters. the QoS parameter of each logical
link between any two borders is set to be the best one, that
is the minimum delay and cost metrics of all paths between
both the border nodes, while in [11], the QoS parameter of
each logical link between any two border nodes is set to be
the worst one, that is the maximum delay and cost metrics for
all the paths between two border nodes. In [7], it has been
shown that the best-case point or the worst-case point does
not work well. The work in [7] was the first to propose a
method to aggregate the supported QoS and the corresponding
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Fig. 1. A simple network.
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Fig. 2. The line segment approximation scheme.

polynomial-time routing algorithm. In [7], a line segment is
used to approximate the staircase, as illustrated in Fig. 2. The
works in [6], [14] study the distance-vector routing problem
with additive-concave and concave-concave metrics based on
the line segment aggregation method. However, the line seg-
ment approach used in [7] is computed by the method of least
squares, which does not correspond to the actual optimization
problem of the QoS information aggregation. The works in
[15], [16] also proposed several approaches for aggregating
the supported QoS. However, all the solutions are found by
the method of least squares, moreover, they did not give the
polynomial-time routing algorithm based on the proposed QoS
information aggregation mechanisms.

In this paper, we propose a novel method of representing
the aggregated state by H points where H is predefined by
the system, so that it is scalable for advertising the aggregated
supported QoS. To the best of our knowledge, we are the
first to study the area-minimization optimization, the de facto
optimization problem for the QoS information aggregation.
We evaluate the performance of our algorithm. The simula-
tion results show that our algorithm outperforms the existing
algorithm due to smaller distortion and fewer advertisement
overhead.

II. PROBLEM FORMULATION

As mentioned in the previous section, the supported QoS
forms a staircase. A line segment was proposed in [7] to
approximate this staircase. Since a line segment is just an
approximation of the supported QoS, it may introduce some
distortion. For example, in Fig. 2, ∆bcp3 is a feasible area
of the staircase but is not included in the feasible region
defined by the line segment l. In that area, the minimum
delay at a particular cost is overestimated by the line segment.
We thus call this region an overestimated area, denoted by
∆+(l). While for some cost constraints, the line segment
may underestimate the minimum delay value, so that some
infeasible regions may be included in the feasible region
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Fig. 3. An illustration for the aggregated supported QoS.

defined by the line segment, such as the triangle ∆abp2 in
Fig. 2. These regions are called underestimated areas, denoted
by ∆−(l). In order to minimize the approximation error, the
line segment should be computed such that the sum of the
overestimated areas and underestimated areas is minimized.
We call such optimization the area-minimization optimization.
The work in [14] also mentioned finding a line segment l
such that ∆+(l) + ∆−(l) is minimized. However, [14] did
not explain how to find such line segment. As a matter of
fact, finding a line segment with the area minimization is a
very difficult task, as discussed later. The work in [15] also
proposed the area minimization objective. However, this work
just presents several heuristic methods for aggregating the
supported QoS.

Although it might not be very difficult to get a line segment
to approximate a staircase for error minimization, the issue
becomes more complicated when we consider the supported
QoS across multiple domains. As described in [7] and [14],
when a line segment is used to represent the supported QoS of
a certain path from one border node to another, the aggregated
supported QoS of the paths between two nodes becomes
a polyline as illustrated in Fig. 3. Finding a line segment
to approximate this polyline with the minimum error is a
difficult task [21]. In this paper, we study another approach to
approximate the supported QoS information. Instead of using
a line segment, we employ an approximated staircase which
can be defined by a predefined number of points. There are
several advantages in using a staircase to approximate the
supported QoS information. First, the real supported QoS is
also defined by a set of points, and the current QoS routing
protocol without QoS information aggregation does not need
any changes. Second, in addition to propose a aggregation
mechanism to approximate the optimal supported QoS, we also
need to propose how to concatenate two different supported
QoSes and aggregate multiple different supported QoSes [14].
If the approximated supported QoS is defined by points, it is
very straight forward to add up the supported QoSes of two
subpaths and aggregate several different supported QoSes.

Assume that the actual supported QoS is defined by a
set of points RP = {rp1, rp2, . . . , rpn} and the approxi-
mated supported QoS is defined by a set of points AP =
{ap1, ap2, . . . , apH}. As it is very important to advertise the
minimum cost and minimum delay of the paths, we put
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ap1 = rp1 and apH = rpn. That is, we only have to find
the intermediate points on the approximate staircase, which
are ap2, . . . , apH−1.

Denote the feasible region defined by AP as Ra and that
by RP as Rr. Rr \Ra is the overestimated area. Ra \Rr is
the underestimated area. We want to find an AP such that the
sum of the overestimated areas and the underestimated areas
is minimized.

Suppose that H = 2. This means that the supported QoS
is just defined by the points rp1 and rpn. We let (ci, di) be
the coordinate of point rpi on RP . In this case, the actual
feasible region included in [c1, cn] × [dn, d1] is not included
in the region defined by AP . In fact, when there are only two
points in AP , it never contains underestimated area, which
means it doe not produce any infeasible region. For example,
in Fig. 4, there are five real representative points (or pareto
optimal points). The light gray region and the dark gray region
are the feasible region and the infeasible region included in
[c1, c5]× [d5, d1], respectively.

As rp1 and rpn are included in AP , the other points in
AP must have cost and delay values fall between rp1 and
rpn. That is, the approximated points must be located in the
region [c1, cn]× [d1, dn], which is the gray (light or dark) area
in Fig. 4.

III. THE METHOD OF APPROXIMATE STAIRCASE

We now describe how to find an approximated staircase with
the minimum approximation error in details. To facilitate our
discussion, we first define the concept of representativeness as
in [2].

Definition 1: An QoS parameter p is more representative
than another QoS parameter p′ if and only if

1) p.c 6= p′.c or p.d 6= p′.d, and;
2) p.c ≤ p′.c and p.d ≤ p′.d.
Given two points p1 and p2, if p1 is more representative

than p2, the feasible region defined by p2 is included in that
by p1.

Lemma 1: The optimal approximated points must be lo-
cated in the infeasible region spanned by [c1, cn] × [dn, d1],
where (c1, dn) and (cn, d1) are the minimum-cost and
minimum-delay points in RP , respectively.

Proof: Assume that an approximated point ap = (x, y)
in AP is located in the feasible region and it is not a point in

RP . Thus, we can find a representative point rp in RP which
is more representative than ap. rp does not induce infeasible
region, but defines larger feasible region than ap. Therefore,
If we replace ap with rp, the approximation error produced
by AP will be reduced.

For example, The dark gray region in Fig. 4 is the real
infeasible region included in the region [c1, c5]× [d5, d1]. The
approximated points must be located in this area. For the ease
of discussion, we first consider the case of H = 3. As rp1 and
rpn are already in AP , where rp1 = ap1 and rpn = ap3, we
only need to find an appropriate ap2.

A. Three points approximation

We let ap2 be (x, y). We further denote the overestimated
area introduced by AP as ∆+(x, y), and the underestimated
area introduced by AP as ∆−(x, y). We want to find the
optimal values of x and y such that ∆+(x, y) + ∆−(x, y) is
minimized. Since the approximation error depends on which
level of the staircase ap2 falls in, it is not easy to develop a
general formula for it. We thus use the idea of branch-and-
bound. That is, we divide the infeasible region in [c1, cn] ×
[dn, d1] into several rectangular regions. Then, we compute the
local optimal point in each region. The global optimal point
is the best point among the local optimal points.

Let the interval sets Sc = {[c1, c2], . . . , [cn−1, cn]} and
Sd = {[dn, dn−1], . . . , [d2, d1]}. We thus obtain a set
of regions S = Sc × Sd. Given any region Si,j =
[ci, ci+1] × [dj+1, dj ] in S, we compute a local optimal
point in Si,j , denoted by api,j for all i, j = 1, 2, . . . , n −
1. Note that, by Lemma 1, we do not need to con-
sider the regions that are located in the actual feasible
region. Therefore, we only have to consider Si,j , where
i ≤ j. For example, in Fig. 4, we only have to compute
the local optimal points corresponding to the ten regions
{S1,1,S1,2,S1,3,S1,4,S2,2,S2,3,S2,4,S3,3,S3,4,S4,4}. In or-
der to reduce the computational overhead, we introduce the
following lemma.

Lemma 2: The global optimal approximated representative
point must not be located in the regions S1,j and Si,n−1 for
all i, j = 1, 2, . . . , n− 1.

Proof: Due to space limitation, we only prove the lemma
for regions S1,j , where j = 1, 2, . . . , n − 1. Given any point
p1 = (c, d) in [c1, c2] × [dj+1, dj ], let p2 = (c2, d). Denote
the feasible region defined by p1 as R1 and that by p2 as
R2. We know that R1 \ R2 = [c1, c2]× [d, d1]. However, the
region [c, c2]× [d, d1] is the real infeasible region. Therefore,
the approximation error induced by p2 is smaller than that by
p1, and the global optimal point would never be in a region
with cost between c1 and c2.

By Lemma 2, we just need to compute the local optimal
point in the region Si,j for all i, j = 2, . . . , n − 2 such that
i ≤ j. We can easily compute that there are N = (n−2)(n−3)

2
regions in the real infeasible region defined by RP . For
example, in Fig. 4, we just need to consider the regions
{S2,2,S2,3,S3,3}, where n = 5.
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We first present a formula for the approximation error of a
point in Si,j , where i, j = 2, . . . , n−2 and i ≤ j. We then give
a solution to find the local optimal point in this region that
produces the smallest error. By computing the local optimal
points in Si,j for all i, j = 2, . . . , n− 2 and i ≤ j, we finally
select the one with the minimum error as the global optimal
point.

Given a point (x, y) in Si,j , we divide the real representative
points into three groups based on x and y.

1) A set of representative points with cost smaller than x.
As (x, y) is located in Si,j , RP1 = {rp1, . . . , rpi}.

2) A set of representative points with cost larger than x and
delay larger than y, i.e., RP2 = {rpi+1, . . . , rpj}.

3) A set of representative points with delay smaller than y,
i.e., RP3 = {rpj+1, . . . , rpn}.

For example, in Fig. 5, point (x, y) is located in the
region S3,5. We thus have RP1 = {rp1, rp2, rp3}, RP2 =
{rp4, rp5}, and RP3 = {rp6, rp7, rp8}. The approximated
staircase is formed by rp1, (x, y), and rp8. It is worth noting
that the feasible region provided by RP2 is included in the
feasible region defined by (x, y). That is, (x, y) underestimates
the delay in cost range of [x, cj+1]. On the other hand, (x, y)
overestimates the delay in ranges [c2, x] and [cj+1, cn].

We first compute the feasible region provided by RP1 =
{rp1, . . . , rpi} but not included by the point (x, y), which is
part of overestimated area. As illustrated in Fig. 5, we divide
this overestimated area into several subregions R1,q = [cq, x]×
[dq, dq−1] for all q = 2, . . . , i. For example, in Fig. 5, we have
R1,2 = [c2, x] × [d2, d1] and R1,3 = [c3, x] × [d3, d2]. The
formula for the overestimated areas, which are are included in
RP1 but not in (x, y), is as follows.

∆1
+(x, y) =

i∑
q=2

(dq−1 − dq)(x− cq). (1)

Similarly, we can divide the overestimated area in cost range
[cj+1, cn] into several subregions R2,q = [cq, cq+1]×[dq, y] for
all q = j+1, . . . , n−1. For each R2,q . For example, in Fig. 5,

we have R2,6 = [c6, c7]× [d6, y] and R2,7 = [c7, c8]× [d7, y].
The formula for the overestimated areas, which are included
in RP3 but not in (x, y), is

∆2
+(x, y) =

n−1∑

q=j+1

(cq+1 − cq)(y − dq). (2)

The total overestimated areas produced by (x, y) is

∆+(x, y) = ∆1
+(x, y) + ∆2

+(x, y). (3)

Based on a similar technique, we divide the underestimated
area into several regions R3,x = [x, ci+1]× [y, di] and R3,q =
[cq, cq+1] × [y, dq] for all q = i + 1, . . . , j. For example, in
Fig. 5, we have R3,x = [x, c4]×[y, d3], R3,4 = [c4, c5]×[y, d4],
and R3,5 = [c5, c6]× [y, d5]. Formula (4) gives the size of the
underestimated area.

∆−(x, y) = (ci+1 − x)(di − y)+∑j
k=i+1 (ck+1 − ck)(dk − y)

(4)

The total approximation error becomes

fo(x, y) = ∆+((x, y)) + ∆−((x, y)). (5)

We thus obtain a typical nonlinear programming problem
(NLP) as expressed as follows:

min fo(x, y)
s.t. ci ≤ x ≤ ci+1

dj+1 ≤ y ≤ dj

(6)

Since the Hessian matrix of fo(x, y) is positive definite,
we can use the Kuhn-Tucker method in [18] to compute the
optimal values of x and y. We must consider the following
cases:

1) ∂fo(x,y)
∂x = 0 and ∂fo(x,y)

∂y = 0
2) x = ci or ci+1 and y = dj or dj+1

3) f ′o(ci, y) = 0
4) f ′o(ci+1, y) = 0
5) f ′o(x, dj) = 0
6) f ′o(x, dj+1) = 0
In addition, we have{

∂fo(x,y)
∂x = d1 − 2di + y.

∂fo(x,y)
∂y = cn − 2cj+1 + x.

(7)

By (7), the process of computing the local optimal point in
the region [ci, ci+1]×[dj+1, dj ] is as follows. Let x = 2cj+1−
cn and y = 2di − d1. If ci ≤ x ≤ ci+1 and dj+1 ≤ y ≤ dj ,
we obtain the local optimal point. If x does not fall between
ci and ci+1, we let x be ci or ci+1. If y does not fall between
dj+1 and dj , we let y be dj or dj+1. Therefore, there are at
most four possible local optimal points. We thus select the one
with the minimum fo(x, y) as the local optimal point in Si,j .

We can see that the time for computing the local optimal
point in the region Si,j is constant. Since we need to compute
(n−2)(n−3)

2 local optimal points, the time complexity of com-
puting the global optimal point for a three-point approximated
staircase is O(n2), where n is the number of the optimal
representative points.
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B. Multiple points approximation

In this section, we consider the case that H > 3. We first
prove the following lemma about two consecutive approximate
points.

Lemma 3: Let ap and ap′ be two consecutive approximate
points where ap.c < ap′.c. If ap is in Si,j and ap′ is in Sk,l,
then k ≥ j + 1.

Proof: We prove by contradiction. Assume that k < j+1.
Define a point p0 = (cj+1, ap′.d). Define R1 as the supported
QoS defined by ap and ap′, and R2 as the supported QoS
defined by ap and p0. We thus have R1 \R2 = [ap′.c, cj+1]×
[ap′.d, ap.d]. Since ap.d < dj , R1 \ R2 is actually the
infeasible region. Therefore, the approximation error produced
by {ap, ap′} is greater than {ap, p0}.

For example, in Fig. 6, suppose that ap = p1 and ap′ = p2.
p1 and p2 are located in the regions [c2, c3] × [d5, d4] and
[c3, c4] × [d6, d5], respectively. In this case, we can find a
point p0 = (c5, p2.d). Denote R1 as the approximated feasible
region defined by p1 and p2, and R2 as the approximated
feasible region defined by p1 and p0. We thus compute
that R1 \ R2 = [p2.c, c5] × [p0.d, p1.d], which is actually
the infeasible region. That means the approximation error
produced by p1 and p2 are greater than that by p1 and p0.
Therefore, p1 and p2 cannot be contained simultaneously in
AP .

As we mentioned in the previous subsection, it is difficult
to obtain a general formulation representing the approximation
error produced by AP . By Lemma 3, each Si,j , where i, j =
2, . . . , n−2, contains at most one approximated point in AP .
We can randomly select H − 2 subregions in S and assume
that each subregion contains one approximated point. We then
compute a local optimal AP under this specific combination.
After trying all the possible combinations, we will obtain the
global optimal AP . Let N = (n−2)(n−3)

2 be the number of the
subregions, the number of combinations is

(
N
H−2

)
. Therefore,

we need to compute
(

N
H−2

)
local optimal APs in order to

get the global optimal approximated staircase. We are going
to discuss how to compute a local optimal AP with a given
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Fig. 7. An illustration for staircase approximation with multiple points.

combination.
Note that ap1 = rp1 and apH = rpn, we can say that ap1

is located in the region S1,1 = [c1, c2] × [d2, d1] and apH
is located in the region Sn−1,n−1 = [cn−1, cn] × [dn, dn−1].
We assume that apm is located in the region [cim

, cim+1] ×
[djm+1, djm

], where im, jm = 2, . . . , n−2 and m = 1, . . . ,H.
We have jm ≥ im by Lemma 1 and im+1 > jm by Lemma 3
for all m = 2, . . . ,H − 1. We also have i1 = j1 = 1 and
iH = jH = n− 1.

For example, in Fig. 7, RP contains nine points and AP
contains four points. We select the subregions S2,4 = [c2, c3]×
[d5, d4] and S6,7 = [c6, c7] × [d8, d7]. ap2 and ap3 are thus
located in S2,4 and S6,7, respectively. Based on this specific
combination, we have i2 = 2, j2 = 4, i3 = 6, and j3 = 7.

Let each point apm in AP be represented by (xm, ym),
where m = 1, . . . ,H. Given a specific combination, in order
to discuss how to compute the approximation error produced
by AP , we partition the region [c1, cn] × [dn, d1] based on
delay into a set of subregions Am = [c1, cn]× [ym, ym−1] for
all m = 2, . . . ,H. We then give the formula to compute the
approximation error in each subregion. The total error is the
sum of the error in each subregion. For example, in Fig. 7, we
divide [c1, c9]× [d9, d1] into three subregions A2 = [c1, c9]×
[y2, d1], A3 = [c1, c9]× [y3, y2], and A4 = [c1, c9]× [d9, y3].
Now, we are going to discuss how to compute the error in
each subregion Am.

The real representative points located in the region Am are
RPm = {rpjm−1+1, . . . , rpjm}. For example, in Fig. 7, let
m = 2, and we compute the approximation error in the region
A2 = [c1, c9] × [y2, d1]. Since j1 = 1 and j2 = 4, the set
of representative points located in the region A2 is RP2 =
{rp2, rp3, rp4}. The set of representative points in the region
A3 is RP3 = {rp5, rp6, rp7}. The set of representative point
in the region A4 is RP4 = {rp8}.

In order to compute the approximation error in Am, we di-
vide RPm into two subsets RPm,1 = {rpjm−1+1, . . . , rpim}
and RPm,2 = {rpim+1, . . . , rpjm

}. Each point in RPm,2 has
the cost value no smaller than cim+1 and the delay value no
smaller than djm

. The feasible region provided by RPm,2

must be included by (xm, ym). In Fig. 7, RP2,1 = {rp2} and
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RP2,2 = {rp3, rp4}. We also have RP3,1 = {rp5, rp6} and
RP3,2 = {rp7}. Since iH = jH, it holds that RPH,2 = ∅.
For example, in Fig. 7, RP4,1 = {rp8} and RP4,2 = ∅.

The overestimated region in the region Am, denoted by
∆m

+ , is the feasible region provided by RPm,1, but not
included by (xm, ym). The computation method is similar to
the computation of ∆1

+(x, y) in (1). We give the formula of
∆m

+ as follows:

∆m
+ = (ym−1 − djm−1+1)(xm − cjm−1+1)+∑im

t=jm−1+2(dt−1 − dt)(xm − ct).
(8)

The underestimated region in the region Am is denoted by
∆m
− . The computation of ∆m

− is similar to that of ∆−(x, y)
in (4). We give the formula of ∆m

− as follows:

∆m
− = (cim+1 − xm)(dim

− ym)+∑jm

t=im+1(ct+1 − ct)(dt − ym)
(9)

Since RPH,2 = ∅, it holds that ∆H
− = 0.

For example, in Fig. 7, let m = 2. We consider the
approximation error in the region [c1, c9] × [y2, d1]. Since
i2 = 2 and j1 = 1, by (8), we obtain ∆2

+ = (d1−d2)(x2−c2).
By (9), we obtain ∆2

− = (c3− x2)(d2− y2) + (c4− c3)(d3−
y2) + (c5 − c4)(d4 − y2). With the same method, we obtain
that ∆3

+ = (y2 − d5)(x3 − c5) + (d5 − d6)(x3 − c6) and
∆3
− = (c7 − x3)(d6 − y3) + (c8 − c7)(d7 − y3). We can also

obtain that ∆4
+ = (y3−d8)(c9−c8) and ∆4

− = 0. The shaded
areas in Fig. 7 are the total approximation error produced by
AP .

We thus obtain the nonlinear programming problem as
follows:

min fo =
∑H

m=2 ∆m
+ + ∆m

−
s.t. cim

≤ xm ≤ cim+1

djm+1 ≤ ym ≤ djm

m = 2, 3, . . . ,H− 1

(10)

fo is the function of the variables {(xm, ym),m =
2, . . . ,H− 1}. For all m = 2, . . . ,H− 1, we have

{
∂fo

∂xm
= ym−1 + ym − 2dim .

∂fo

∂ym
= xm+1 + xm − 2cjm+1.

(11)

By (11), we can easily verify that the Hessian matrix of fo is
positive definite, so that we can use the Kuhn-Tucker method
to find the optimal values of {(xm, ym),m = 2, . . . ,H− 1}.
We let ∂fo

∂xm
= 0 and ∂fo

∂ym
= 0 for all m = 2, . . . ,H− 1. We

thus get
{

xm = 2cjm+1 − xm+1

ym = 2dim
− ym−1

(12)

Since xH = cn and y1 = d1, we can easily compute the
values of xm and ym for all m = 2, . . . ,H−1 based on (12).

If cim
≤ xm ≤ cim+1 and djm+1 ≤ ym ≤ djm

for all
m = 2, . . . ,H − 1, we have obtained the optimal values of
AP .

If ∃m such that xm is located outside the range [cim
, cim+1],

we set xm be cim
or cim+1. We then compute the values of

xk for all k = m − 1,m − 2, . . . , 2 based on the value of
xm. This process continues until all the values of {xm,m =
2, . . . ,H− 1} satisfy the corresponding constraints.

With the same method, if ∃m such that ym is not located in
the range [djm+1, djm

], we set ym be djm
or djm+1. We then

compute the values of yk for all k = m + 1, . . . ,H− 1. This
process continues until all the values of {ym,m = 2, . . . ,H−
1} satisfy the corresponding constraints. Therefore, we will
maximally obtain 2H−1 possible local optimal APs, and we
select the one with the minimum fo.

Note that the time complexity of computing a local optimal
AP with a given specific combination is 2H−1. It is expensive
when H is very large. H also affects the space requirement
in advertisement. Therefore, we should limit H to be a small
value. In this case, we still consider that the time complexity
for computing a local optimal AP is constant. Therefore,
the time complexity for computing an optimal approximated
multiple points staircase is

(
N
H−2

)
= O(n2(H−2)).

C. Discussion

Define A(b) as the border neighbor set of border node
b. Each neighbor j of b advertises the supported QoS from
itself to a destination, which is approximated by at most H
representative points. Moreover, b has computed the supported
QoS from itself to j, which is also approximated by at most
H representative points. Therefore, the supported QoS from b
to a destination, via j, is approximated by at most H2 repre-
sentative points. Since H is predefined, we consider that the
supported QoS from b to a destination, via its neighbor j, can
be represented by a constant number of representative points.
Therefore, the total supported QoS from b to a destination is
thus approximated by O(|A(b)|) representative points. Thus,
the time complexity of our approach is O(|A(b)|2(H−2)).
Since H is a predefined small constant, our algorithm is
polynomial with respect to the network topology.

The aggregation method may underestimate the minimum
delay for some cost values, so that the algorithm induces some
infeasible region. Therefore, it is possible that our routing
protocol may accept some infeasible requests, but cannot find
a feasible physical path for them. In our routing protocol,
the request keeps track of the accumulated QoS metrics as
it transmitting across the network. When an intermediate
node detects that the accumulated delay or cost exceeds the
requirements, it will drop this request. We call such request a
crankbacked request.

Moreover, the underestimation situation may cause the
occurrence of the route oscillation, as referred to [6], [14].
The route oscillation makes our routing protocol diverge, we
thus apply the threshold checking and advertisement history
checking techniques [14] to suppress the advertisement. For
a newly computed QoS, if several similar QoSes (say, two)
have been advertised, this newly computed QoS will not be
advertised. The comparison of the two QoSes is as follows:



7

All the supported QoS contains the minimum cost repre-
sentative point and the minimum delay representative point.
If the newly computed minimum cost or the minimum delay
representative point is different than that of the old one, these
two QoSes are different. Otherwise, given a threshold t, if
for each newly computed representative point rpnew, there
exists a old representative point rpold such that |rpnew.c −
rpold.c| ≤ min(rpnew.c, rpold.c) · t and |rpnew.d− rpold.d| ≤
min(rpnew.d, rpold.d) · t, these two QoSes are similar.

Due to the route oscillation, there may exist loops in the
routing tables of some border nodes. Therefore, each request
also keeps track the path information it traversed. If an
intermediate node detects a loop, it will drop this request.

IV. SIMULATION

In this section, we present our simulation results and
compare the proposed topology QoS information aggregation
method, called SCAM, with the existing line segment method,
called LSAM. It is obvious that as the number of the approxi-
mated representative points increases, the approximation error
is smaller. However, the space requirement and the compu-
tational overhead increases. In our simulation, the supported
QoS is approximated with three points.

A. Simulation testbed

We evaluate the performance of the algorithms by using
a self-written C++ network simulator. The network topology
is generated by BRITE [10]. The intradomain topology is
generated based on the Waxman’s model, and the interdomain
topology is generated based on the Barabasi-Albert model.
All physical link metrics are asymmetric. Each link (i, j)
is associated with two randomly generated metrics, delay
and cost. These metrics are uniformly distributed, such that
ci,j ∼ uniform[1, 100] and di,j ∼ uniform[1, 300].

In the networks, each domain contains 50 nodes, the average
number of border nodes in each domain is four, and the
average number of interdomain links is about four times the
number of domains. We simulate asynchronous advertisement
exchange in interdomain routing and each advertisement trans-
mission delay is a random time unit selected in the range
(0.0, 2.0]. Each advertisement message contains the supported
QoS information from a border node to a destination domain.
The threshold value, t, for comparing two different QoS
parameters is set to be 5%. Given the lower bound and upper
bound of the cost constraint Cl and Cu, respectively, and the
lower bound and the upper bound of the delay constraint Dl

and Du, respectively, we call the area [Cl, Cu]× [Dl, Du] as
the QoS request space. We have generated ten requests for
each source-border-to-destination-domain pair with the cost
requirement creq ∼ uniform[Cl, Cu] and the delay require-
ment dreq ∼ uniform[Dl, Du]. We would like to investigate
the behavior of the interdomain routing protocols by changing
the QoS request space.

B. Evaluation metrics

Four performance metrics are used in our evaluation: suc-
cess ratio (SR), crankback ratio (CR), convergence speed, and
advertisement overhead.

Success ratio: There are two kinds of success ratios: ab-
solute success ratio and relative success ratio. The absolute
success ratio refers to the ratio of the connection requests
for which feasible paths are found to the total number of the
receiving connection requests. The relative success ratio is the
ratio of the absolute success ratio produced by the routing
protocol with topology aggregation to that by the routing
protocol without topology aggregation. Therefore, the smaller
∆+, the greater the relative success ratio.

Crankback ratio [7] is defined as the ratio of the number
of the crankbacked requests to the number of the accepted
requests. There are two kinds of crankbacked requests: (1) an
infeasible request accepted by the source node but is dropped
by an intermediate node and (2) a feasible request for which
the routing protocol cannot establish a feasible physical path.

Convergence speed refers to the time between the generation
of the first advertisement message and the receipt of the
last advertisement message in the network. Advertisement
overhead is represented by the total number of the messages
generated in the network.

C. Simulation results

In the simulation result figures, LSAM SR and SCAM SR
are the approximated absolute success ratios produced by the
algorithm LSAM and SCAM, respectively. LSAM RSR and
SCAM RSR are the relative success ratios delivered by LSAM
and SCAM, respectively. LSAM CR and SCAM CR are the
crankback ratios produced by LSAM and SCAM, respectively.

Given a source and a destination domain, define (cl, du)
and (cu, dl) as the QoS parameter of the minimum cost path
and the minimum delay path, respectively. We first set the
QoS request space to be [fmincl, fmaxcl] × [fmindl, fmaxdl].
We fix fmin and change fmax. The simulation results are
presented in Fig. 8. We then set the QoS request space to be
[fmincu, fmaxcu]× [fmindu, fmaxdu]. We fix fmax and change
fmin. The simulation results are shown in Fig. 9. From these
simulation results, we can see that the relative success ratio
produced by our algorithm is higher than that by LSAM and
the crankback ratio delivered by our algorithm is lower than
that by LSAM. In addition, we observe that the relative success
ratio produced by our algorithm is close to 1 and the crankback
ratio is less than 7%, no matter what the actual absolute
success ratio is. However, the performance of LSAM changes
obviously as the QoS request space changes. For instance,
in Fig. 9(a), when fmax = 0.9 and fmin ≤ 0.4, the success
ratio of LSAM is less than 70% and the crankback ratio is
about 20%. In Fig. 9(b), when fmax = 1, the crankback ratio
of LSAM is about 30%. Therefore, the performance of our
algorithm is more stable than that of LSAM with the changes
of the QoS request space.

We mentioned that the optimization objective of the QoS
information aggregation method is to minimize the sum of
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Domain Number LSAM SCAM

10 45.474 36.92

20 110.674 83.6538

30 213.993 140.87

40 352.316 216.567

50 477.139 288.428

TABLE I

CONVERGENCE SPEED (TIME UNITS).

Domain Number LSAM SCAM

10 2284.5 1963.3

20 15065.6 11883.9

30 45984 33727.8

40 99471.6 70034.4

50 175041 120219

TABLE II

ADVERTISEMENT OVERHEAD.

the overestimation area ∆+ and the underestimation area
∆−. We compute the area of the feasible region included
in [cl, cu] × [dl, du], denoted by ∆. ∆+

∆ is defined as the
overestimation area ratio (OR) and ∆−

∆ is defined as the
underestimation area ratio (UR). ∆++∆−

∆ is defined as the
approximation error (AE) produced by the aggregation al-
gorithms. Fig. 10 presents the approximation error produced
by LSAM and SCAM under different network topologies.
The simulation results show that the overestimation area ratio
produced by our approach is much smaller than that by LSAM
and the underestimation area ratio is a little higher than that
by LSAM. In conclusion, the approximation error produced
by our approach is much smaller than that by LSAM. We
also observe that the approximation errors produced by our
approach and LSAM changes slowly as the network size
increases, which demonstrates that the proposed aggregation
method is suitable for large-scale networks.

Table I shows the convergence speed of LSAM and SCAM,
and Table II shows the the number of the messages generated
in the computation process. We observe that our approach
converges faster than LSAM, and the number of the messages
generated by our approach is smaller than that by LSAM.
Although each message in our approach contains six numbers
while that in LSAM contains four numbers, we still can say
that our approach has smaller advertisement overhead than
LSAM, since it is well known that advertising more messages
consumes much more resources than increasing the message
size.

V. CONCLUSION

In this paper, we investigate a very challenging problem,
supporting QoS routing in the Internet. The challenge, scala-

bility, makes this problem very difficult to solve. Accordingly,
we propose a novel QoS information aggregation method.
In our approach, a set of approximated QoS parameters,
which has constant size, is used to approximate the supported
QoS, so that the advertisement message size and the storage
requirement is independent of the network size and topology.
By extensive simulations, we show that our approach can serve
the requests with the QoS requirements more efficiently than
the existing method. The approximation error produced by our
approach is much smaller than that of the existing method.
Moreover, the network size and the QoS request space do not
have much affect the performance of our algorithm, which
demonstrates that our algorithm is scalable and stable. On the
other hand, the proposed aggregation method can be extended
for aggregating the QoS information with additive-concave or
concave-concave constraints.
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(a) 10-domain networks with fmin = 1.0.
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(b) 10-domain networks with fmin = 1.1.
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(c) 10-domain networks with fmin = 1.2.

Fig. 8. The performance of the interdomain algorithms by changing fmax.
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(a) 10-domain networks with fmax = 0.9.
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(b) 10-domain networks with fmax = 1.0.
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(c) 10-domain networks with fmax = 1.1.

Fig. 9. The performance of the interdomain algorithms by changing fmin.
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(a) The underestimated error.
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(b) The overestimated error.
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Fig. 10. Comparing the performance of approximation error.
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