
Active Hardware Metering for Intellectual Property
Protection and Security

Yousra M. Alkabani
Computer Science Dept.

Rice University, Houston, TX
yousra@rice.edu

Farinaz Koushanfar
Electrical and Computer Engineering Dept.

Rice University, Houston, TX
farinaz@rice.edu

Abstract

We introduce the first active hardware metering scheme
that aims to protect integrated circuits (IC) intellectual
property (IP) against piracy and runtime tampering. The
novel metering method simultaneously employs inherent
unclonable variability in modern manufacturing tech-
nology, and functionality preserving alternations of the
structural IC specifications. Active metering works by
enabling the designers to lock each IC and to remotely
disable it. The objectives are realized by adding new
states and transitions to the original finite state machine
(FSM) to create boosted finite state machines(BFSM) of
the pertinent design. A unique and unpredictable ID gen-
erated by an IC is utilized to place an BFSM into the
power-up state upon activation. The designer, knowing
the transition table, is the only one who can generate in-
put sequences required to bring the BFSM into the func-
tional initial (reset) state. To facilitate remote disabling
of ICs, black hole states are integrated within the BFSM.

We introduce nine types of potential attacks against
the proposed active metering method. We further de-
scribe a number of countermeasures that must be taken
to preserve the security of active metering against the po-
tential attacks. The implementation details of the method
with the objectives of being low-overhead, unclonable,
obfuscated, stable, while having a diverse set of keys
is presented. The active metering method was imple-
mented, synthesized and mapped on the standard bench-
mark circuits. Experimental evaluations illustrate that
the method has a low-overhead in terms of power, de-
lay, and area, while it is extremely resilient against the
considered attacks.

1 Introduction

In the dominant horizontal semiconductor business
model, piracy (illegal copying) and tampering of hard-
ware are omnipresent. In the horizontal business model,

hardware IP1 designed by the leading edge designers
are mostly manufactured in untrusted offshore countries
with lower labor and operational cost. This places the
designers in an unusual asymmetric relationship: the de-
signed IP is transparent to the manufacturers, but the
fabrication process, quantity and added circuitry to the
manufactured integrated circuits (ICs) by the foundry are
clandestine to the designers and IP providers.

The security threat, financial loss and economic im-
pacts of hardware piracy which have received far less
attention compared to software, is even more dramatic
than software [8, 31]. Software piracy has received more
attention compared to hardware also because it requires
low-cost resources that are available to the general pub-
lic. Protection of hardware is also crucially important
because the ICs are pervasively used in almost all elec-
tronic devices and the potentially adversarial fabrication
house has the full control over the hardware resources
being manufactured. It is estimated that the computer
hardware, computer peripherals, and embedded systems
are the dominant pirated IP components [31].

Several other issues make the IC protection problems
truly challenging: (i) very little is known about the cur-
rent and potential IC tampering attacks; (ii) numerous
attacking strategies exist, since tampering can be con-
ducted at many levels of abstraction of the synthesis pro-
cess; (iii) the most likely hardware adversaries are fi-
nancially strong foundries and foreign governments with
large economic resources and technological expertise;
(iv) the adversary has full access to the structural specifi-
cation of the design and most often also to the manufac-
turing test vectors; (v) the internal part of manufactured
ICs are intrinsically opaque. While it is possible to to-
mographically scan an IC, the dense metal interconnect
in 8 or more layers of modern manufacturing technol-
ogy greatly reduce the effectiveness of such expensive
inspections.

IC metering is a set of security protocols that enable
the design house to gain post-fabrication control by pas-

16th USENIX Security SymposiumUSENIX Association 291

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357191356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sive or active count of the produced ICs, their properties
and use, or by remote runtime disabling.

Our strategic goal is the development, implementa-
tion, and quantitative evaluation of symmetric mecha-
nisms and protocols for hardware protection procured
by untrusted synthesis, manufacturing, and/or testing fa-
cilities. The term symmetric emphasizes that both the
designers and the foundry will be protected by the new
methods. The symmetry is warranted by the unique vari-
abilities and the key exchange mechanism that is based
on the agreement of both parties for unlocking each IC.

Hardware metering is important from both commer-
cial and military point of views. For example, without
metering, a foundry can produce numerous copies of one
design without paying royalties, or, as another example,
the sensitive defense designs may become available to
adversaries. The passive hardware metering schemes
work by giving a unique ID to each chip [17, 20, 21]. The
first ever active hardware metering method introduced in
this paper, provides not just mechanisms for detection of
illegal copies, but more importantly, ensures that no man-
ufactured IC can be used without the explicit consent of
the designer.

The proposed methods employ two generic security
mechanisms: (1) uniqueness of each IC due to manufac-
turing variability; and (2) structural manipulation of the
design specification while preserving behavioral spec-
ification. While the first mechanism has been already
proposed and used for unique IC identification, the sec-
ond is novel. Even more novel is the integration of two
mechanisms, a task that requires a great deal of creativity
and formation of solutions to a spectrum of challenging
technology, synthesis and optimization problems, with a
greater impact than the sum of the powers of the individ-
ual techniques.

The integration to the functionality is performed by
interwinding the unique unclonable IDs for each chip
into the FSM of the design. The integrated control part
is denoted by BFSM, and is built by adding new states
and transitions to the original FSM, while preserving the
original functionality of the circuit. To bring the BFSM
into the functional initial (reset) state, knowledge of the
transition table is required. Since the designer is the
only one who knows this information, no one else can
generate a key with a finite amount of resources to un-
lock the IC. Using a combination of BFSM and newly
added black hole states, remote disabling of the ICs can
be made possible. We outline several possible attacks
against the introduced active hardware metering method
and provide mechanisms that neutralize the impact of
those attacks. For example, we show how addition of the
black hole states disable the random guessing attacks.

The remainder of the paper is as follows. After de-
scribing the background, flow and the state-of-the-art in

the next two sections, we represent the active metering
method in Section 4. In Section 5, we show a low-
overhead implementation and obfuscation of active me-
tering. Section 6 introduces potential attacks and the
countermeasures that needs to be taken to be resilient
against the attacks. We present experimental evaluation
of the prototype implementation on several standard de-
sign benchmarks in Section 7. We outline a number of
potential applications in Section 8 and conclude in Sec-
tion 9.

2 Preliminaries

In this section, we describe the necessary background re-
quired for understanding the active hardware metering
approach. The aim is to make the paper self-contained
for the readers who are not familiar with the hardware de-
sign and synthesis process. Next, we describe the global
flow of the active hardware metering approach.

2.1 Background

Manufacturing variability (MV). The intense indus-
trial miniaturization of CMOS devices has been driven
by the quest for increasing computational speed and de-
vice density, while lowering cost-per-function, as pre-
dicted by Moore’s law. CMOS variations result in high
variability in the delay and the currents of the VLSI cir-
cuits. The variations might be temporal or spatial. The
temporal variations may occur across nanoseconds to
years [24]. Spatial variation is due to lateral and verti-
cal differences from intended polygon dimensions and
film thicknesses . Spatial variation may be intra-die,
or inter-die [27]. Aside from device variations, the cir-
cuit response and its variability are correlated with cir-
cuit topology. We will utilize the spatial variations in our
benefit, while we address the problem of alleviating tem-
poral variability. Bernstein et al. provide a classification
of device variations (beyond 65nm) [4].

Design descriptions. We consider the case in which
the sequential design in question represents a fully syn-
chronous flow and that the description of its functionality
from an input/output (I/O) perspective is publicly avail-
able. We assume that the functionality is fully fixed, in
that the I/O behavior is fully specified. Therefore, we uti-
lize unique unclonable identification to embed a distinct
mark in the functionality of each IC, without altering the
functionality in terms of the normal I/O behavior of the
circuit. Our technique is applicable to the case where the
piece of IP is available in structural HDL description, or
in form of a netlist that may or may not be technology
dependent. The description uniquely defines the sequen-
tial circuit’s behavior and the state transition graph (see

16th USENIX Security Symposium USENIX Association292

q2 q4q3q1 q00 11 0001
Figure 1: Example of a STG with five states.The inputs
required for state-to-state transition are shown next to the
edges.

the next subsection) of the design.
During the design flow, the user will take such a de-

scription and if required, will map it to a specific technol-
ogy. Typically, logic level optimizations such as retiming
are performed at this stage. Most often, the circuit is used
as a part of a more complex design.

Finite state machine (FSM). FSM is a discrete dynam-
ical structure that translates sequences of input vectors
into sequences of output vectors. FSM can represent any
regular sequential function. It appears in different forms,
e.g. case statements in VHDL and Verilog HDL. The
FSM is defined by the tuple M=(Σ,∆,Q,q0,δ,λ), where
Σ 6= 0 and ∆ 6= 0 are a finite set of inputs and outputs
symbols respectively; Q={q0,q1,. . . }6= 0 is a finite set
of states while q0 is the ”reset” state; and the transition
function is denoted as δ(q, a) on the input a and the set
Q × Σ → Q, while the output function is denoted as λ
(q, a) on the set Q × Σ → ∆.

To represent the state transitions and output functions
of the FSM, we use the state transition graph (STG), with
nodes corresponding to states and edges defining the in-
put/output conditions for a state-to-state transition. An
example STG is shown in Figure 1, where there are five
states {q0, q1, q2, q3, q4}, q0 is the reset state, and there
is a one-bit input controlling the state-to-state transitions.
In the remainder of the paper, we use the terms STG and
FSM interchangeably to refer to the control part of the
design.

2.2 Global flow

As a motivational example for our problem, consider the
scenario in which a given hardware intellectual property
(IP) that belongs to its legitimate owner (Alice) is made
available to a fabrication house (Bob). Alice pays for and
demands NA ICs implementing its design. Bob, utilizes
the IP description to construct a mask that implements
the design. Bob employs the mask to make NA + NB

copies of the design, where the illegal NB copies do not
encounter much additional cost due to the availability of

Alice BobDesign Desc.FSM (STG)ExtractionBFSM (Added STG) Locked ICKey Calculation Unlock & activate
Manufac.Specs.FF ValuesKey FFs Readout Manufac.Process

Figure 2: The global flow of the active hardware meter-
ing approach.

the mask. Bob may sell the NB illegal copies and make
a lot of profit with negligible additional overhead.

The novel active metering helps Alice to protect her
design against piracy by manipulating the STG of the
original design, with the objective of creating a locked
state, that is unique for each of the ICs manufactured
from the design with a very high probability. Upon man-
ufacturing by Bob, each device will be uniquely locked
(i.e., rendered non-functional), unless Alice is contacted
by Bob to provide the particular key to unlock the IC.
The scheme gives the full control over the manufactured
parts and operational devices from the IP to Alice.

The global flow of the active hardware metering
method is shown in Figure 2. We now describe the fig-
ure step by step. Alice takes the high level design de-
scription and synthesizes it to get the FSM of the design.
Next, she constructs the BFSM by adding extra states.
After that, she sends the detailed manufacturable design
specifications to Bob who makes the mask and manufac-
tures multiple ICs implementing the design. The manu-
factured ICs are locked (nonfunctional) at this stage. For
each IC, Bob reads out the values in its flip flops (FFs)
and sends the values to Alice. FF values can be read
nondestructively, and the values are unique for each IC.
Alice, knowing the BFSM structure, computes a specific
key that can be used as input to that IC for unlocking
it. The key is then sent back to Bob who utilizes it to
activate the IC.

16th USENIX Security SymposiumUSENIX Association 293

3 Related work

We survey the related literature that has influenced and
inspired this work along four main lines of research:
variability-based ID generation, authentication and secu-
rity by variability-based IDs, intellectual property pro-
tection of VLSI designs, and invasive and noninvasive
hardware attacks.

A number of authors have proposed and implemented
the idea of addition of circuitry that exploits manufactur-
ing variability to generate unique random sequence (ID)
for each chip with the same mask [20, 21, 28]. The IDs
are unclonable and separated from the functionality and
do not provide a measure of trust, as they are easy to tam-
per and remove. Loftstrom et al. proposed a method for
mismatching the devices based on changing the threshold
of the circuits by placing the impurity of random dopant
atoms [20]. Maeda et al. proposed implementing the ran-
dom IDs on poly-crystalline silicon thin film transistors
[21]. The drawback of the two described approaches is
that they both need specialized process technology, and
are easily detectable. Very recently, Su et al. have pro-
posed a technique to generate random IDs by using the
threshold mismatches of two NOR gates that are posi-
tively feeding back each other [28]. We will exploit their
technique for the random ID generation.

A team of researchers has explored the idea of using
variability-induced delays for authentication and security
[9, 19, 29]. They use Physically Unclonable Functions
(PUFs) that map a set of challenges to a set of responses,
based on an intractably complex physical system. PUFs
are unique, since process variations cause significant de-
lay differences among ICs coming from the same mask.
For each IC, a database of challenge-response sets is
needed. Authentication occurs when the IC correctly
finds the output of one or more challenge inputs. PUF-
based methods solely utilize manufacturing variability
as their security mechanism. In contrast, our proposed
methods introduce a paradigm shift in hardware security
by adding new strong mechanisms: integration into cir-
cuit functionality at the behavioral synthesis level. Fur-
ther more, even though the active metering methods can
be utilized for authentication, its main target is address-
ing the hardware piracy problem.

Koushanfar et al. have introduced the first hardware
metering scheme that gives unique IDs to each IC [16].
The scheme was to make a small part of the design pro-
grammable so that one could upload different control
paths post fabrication. They further described how to
generate numerous different instances of the same con-
trol path with the same hardware [17]. They have also
provided probabilistic proofs for the number of identical
copies and probability of fraud for the proposed meter-
ing schemes [16, 17]. All metering schemes were pas-

sive. Indeed, no active metering scheme has been pro-
posed to date. The prior work in trusted IC domain also
includes introduction of several watermarking schemes
that integrate watermarks to the functionality of the de-
sign at the behavioral synthesis level [11–13, 15, 22, 23,
30, 32]. Watermarking is a fundamentally different prob-
lem when compared to metering. It addresses the prob-
lem of uniquely identifying each IP and not identifying
each IC, so the existence of the same mask does not af-
fect the watermarking results. Fingerprinting for unique
identification of programmable platforms has been pro-
posed [18], but the techniques are not applicable to ap-
plication specific designs (ASICs) due to the existence of
a unique mask. Qu and Potkonjak provide a comprehen-
sive survey of the watermarking, fingerprinting and other
hardware intellectual property protection methods [23].

Even though many strong cryptographical techniques
are available in hardware and software, their attack
resiliency has been only verified by classical crypto-
analysis methods. A class of attacks that is very chal-
lenging to address consists of physical techniques. Phys-
ical attacks take advantage of implementation-specific
characteristics of cryptographical devices to recover the
secret parameters. Koeune and Standaert provide a tu-
torial on physical security and side-channel effects [14].
The physical attacks are divided into invasive and non-
invasive [3]. Invasive attacks depackage the chip to get
direct access to its inside, e.g., probing. Noninvasive at-
tacks rely on outside measurements, e.g., from the pins
or by X-raying the chip, without physically tampering it.

There are multiple ways to attack an IC, including
probing, fault injection, timing, power analysis, and elec-
tromagnetic analysis. Invasive attacks are typically more
expensive than the noninvasive ones, since they need in-
dividual probing of each IC. Note that, according to the
well-established taxonomy of physical attacks, attacks
by the funded organizations (e.g., foundries) are the most
severe ones, since they have both the funding and tech-
nology resources [1–3].

4 Active hardware metering

In this section, we present the details of the active hard-
ware metering approach. Active metering is integrated
into the standard synthesis flow, and is low overhead,
generalizable, and resilient against attacks. By gener-
alizable, we mean that the lock can be implemented on
structures that are common to all designs. By attack-
resiliency, we mean the cryptographic notion of a lock:
that an attacker that does not have infinite computational
power should not be able to unlock the IC without the
knowledge of a key. To be generalizable, the method
proposed here aims at protecting the design by boost-
ing the design’s FSM (and creating a BFSM) common to

16th USENIX Security Symposium USENIX Association294

the widely used class of sequential designs. In this sec-
tion, we describe the BFSM construction and introduce
the locking mechanism. Implementation details are dis-
cussed in the next section.

4.1 Method

Random Unique Block (RUB). Perhaps the most im-
portant component of the proposed security mechanism
is the existence of the unclonable unique ID for each IC.
The IDs are a function of the variability present at each
chip and are therefore, specific to the chip. RUB is a
small circuitry added to the design, whose function is
to generate the unique ID. It is desirable that the RUBs
do not change and remain stable over time. Recently,
a few paradigms for designing unique identification cir-
cuitry was proposed [20, 21, 28]. The resulting IDs are
mostly stable, and we will later show how to extract a
nonvolatile ID from the RUB, even in presence of a few
unstable bits.
Addition of the BFSM. The key idea underlying the
proposed active metering scheme can be described in a
simple way. Assume that the original design contains m
distinct states. Further assume that the state of STG are
stored in k, 1-bit flip flops (FFs). The FFs represent a to-
tal of 2k states, out of which m states correspond to the
original design and (2k − m) states are dont cares. The
metering mechanism adds an extra part to the FSM of the
design. The added states are devised such that there are
a number of transitions from the states in the added STG
to the reset state q0 of the original design.

In our scheme, the power-up state of each IC is built to
be a function of the manufacturing variability and thus,
will be unique to each instance. Furthermore, we select
k such that 2k − m >> m. This selection ensures that
when the circuit is powered up, its initial state will be in
one of the added states in BFSM. Assume that the IC is
powered up in the added state qa0. During the standard
testing phase, the manufacturer can read the state of the
design, e.g., by scanning and reading the FF’s. However,
unless the foundry has the knowledge of the STG, finding
the sequence of inputs required for the correct transition
from the state qa0 to the reset state q0 is a problem of
exponential complexity. Essentially, there will be no way
of finding the sequence other than trying all the possible
combinations.

More formally, assume that the sequence of I pri-
mary inputs denoted as αI={a1, a2, . . . , aI} applied to
the state qa0 is one correct sequence of states that starts
from qa0 traverses I states denoted by QI={qa1, qa2, . . . ,
qa(I−1),q0}, i.e., q0=δ(qa0, α). Assuming that the input
is b bits and there are cycles in STG, finding the correct
input sequence that would result in I consecutive cor-
rect transitions is a problem with exponential complexity

…….…….…….………...…….Logic Block……. Random Bits…….……. FF………... FFI O b1bkS1 S4S2 S3S0S5 S6 S7 S31S29 S30S15….…. …. ….…. …. Original STGAdded STG
(a) RUB initially loading the STG’s FFs
(b) The original and enhanced STG

Figure 3: The boosted FSM (BFSM).

with respect to b and is thus, intractable.

As an example, consider the STG shown in Figure
3(b) that consists of the original STG that has five states
({q0,q1,q2,q3,q4}) with augmentation of twenty seven
added states ({q5,q6,. . . ,q31}). Edges are incorporated
to the added states to ensure that there are paths from
each of the added states to the reset state of the design.
The block shown in Figure 3(a) is a RUB.

The output of the RUB defines k random bits that will
be loaded into the FF’s of the augmented STG upon start-
up. Now, an uninformed user who does not have the in-
formation about the transition table (e.g., foundry), can
readout the data about the initial added state qa0, but this
information is not sufficient for finding the sequence of
primary input combinations to arrive at the reset state q0.
However, the person who has the information about the
structure of the STG, upon receiving the correct state,
would exactly know how to traverse from this locked
state to q0. In other words, the owner of the FSM de-
scription is the only entity who would have the key to
unlock the IC.

An interesting application of the proposed BFSM con-
struction method is in remote disabling. Alice will save
the RUBs and the keys for all the ICs that she has un-
locked. Using the chip IDs that are integrated within the
functionality, she can add mechanisms that enable her to
monitor the activities of the registered chips remotely, for
example, if they are connected to the Internet. She can
further add transitions from the original STG to untra-
versed states, to lock the IC in case it is needed. Remote
disabling has a lot of applications. For example, it can
be used for selective remote programming of the devices,
and royalty enforcement.

16th USENIX Security SymposiumUSENIX Association 295

4.2 Ensuring proper operation

The following issues and observations ensure proper op-
eration and low-overhead of active hw metering:

(i) Storing the input sequence (key) for traversal to
the initial state q0. During testing, once Bob scans out
the FF values and sends them to Alice, she provides the
key to Bob. He includes both the original RUB and the
key in the chip, for example, in a nonvolatile memory.
This data is utilized along with the unclonable RUB cir-
cuit, for transition to the reset state. Since the power-up
state is unique for each IC, sequence of inputs (key) that
traverse the power-up state to the reset state is also spe-
cific to each IC. One needs to store the key which per-
forms the traversal at the power-up state on each chip.
There are many ways to accomplish this. For exam-
ple, the designer could add a small programmable part
to the design which needs to be coded with the unique
sequence (key) before each IC is in operation. Coding
ensures protection of keys against other software attacks.
As an alternative, the sequence might not be included in
the memory and just used as a permanent password to
the IC.

(ii) Powering up in one of the added states. This
condition can be easily guaranteed by selecting a large
enough k. Assuming that all the states have an equal
probability, the probability of starting in one of the added
states is (2k − m)/2k. For a given m, we select k such
that the probability of not being in one of the added states
is smaller than a given probability. For example, for
m = 100 and k = 30, the probability of starting up
in an original state is less than 10−7.

(iii) Diversity of power-up states (unique IDs). k
should also be selected so that the probability of two ICs
having the same ID becomes very low. Assume that we
need to have d distinct ICs each with a unique ID. As-
suming that the IDs are completely random and indepen-
dent, we utilize the Birthday paradox to calculate this
probability and to make it low. Consider the probabil-
ity PICID(k, d) that no two ICs out of a group of d will
have matching IDs out of 2k equally possible IDs. Start
with an arbitrary chip’s ID. The probability that the sec-
ond chip’s ID is different is (2k − 1)/2k. Similarly, the
probability that the third IC’s ID is different from the first
two is [(2k−1)/2k].[(2k−2)/2k]. The same computation
can be extended through the 2k-th ID. More formally,

PICID(k, d) =
2k − 1

2k
.
2k − 2

2k
.

2k − (d − 1)
2k

=
2k!

(2k − d)!2dk
(1)

Thus, knowing d, the number of required distinct copies,

and setting a low value for PICID, we would be able to
find k that satisfies the above equation.

(iv) Overhead of the added STG. The number of states
increases exponentially with adding each new bit, and
thus, the scheme has a very low overhead. Note that,
in modern designs, the control path of the design (i.e.,
FSM) is less than 1% of the total area and hence, adding
a small overhead to the FSM does not significantly affect
the total area [7, 10]. In the next section, we will describe
a low-overhead implementation of the proposed method.

(v) Diversity of keys. There is a need to ensure that the
keys are distinct in all parts of their sequences, or there is
a very small shared subsequence between different keys.
This is granted by making multiple paths on the graph
from each of the states to the reset state. We will elabo-
rate more on this issue in the attack resiliency section.

5 Low overhead implementation and ob-
fuscation

In this section, we discuss the implementation details of
the RUB and the BFSM that are the required building
blocks for the active hardware metering approach. We
start by outlining the desired properties of each block,
and then we delve into its implementation details.

5.1 RUB implementation

A critical aspect of the proposed security and protection
mechanisms is the generation of random ID bits. There
are a number of properties that the RUB implementation
has to satisfy, including:

• Low overhead. The added parts must not introduce a
significant additional overhead in terms of delay, power
consumption and the area.

• Distribution of IDs and their correlations. To have
the maximal difference between any two ID numbers (the
maximal Hamming distances) the ID bits must be com-
pletely random. Thus, no correlation must be present
among the ID bits on the same die or across various dies.

• Indiscernibility. The IDs must be integrated within the
design, such that they cannot be discerned by studying
the layout of the circuit. For example, the IDs should not
be placed in a memory-like array, where the regularity of
the array and its connections to the FFs could be easily
detected.

• Stability. There is a need to stabilize the IDs over
the lifetime of an IC. This is particularly important since
studies have shown the temporal changes in CMOS pro-
cess variations due to many environmental and aging ef-

16th USENIX Security Symposium USENIX Association296

fects including, residual charges, self-heating, negative-
bias temperature instability, and hot electron effects [4].

For implementing the random IDs, we employed the
recent novel approach proposed by Su et al. [28]. They
have designed and tested a new CMOS random ID gen-
eration circuit that relies on digital latch threshold offset
voltages. Using cross coupling of gates, they report sig-
nificant improvement in readout speed and power con-
sumption over the existing designs.

Each ID bit is generated by cross-coupled NOR gates.
The latch sides are pulled low initially. At the high to
low clock transition, the state of each latch is determined
by the threshold voltage mismatch of the transistors. Es-
sentially, the approach relies on the positive feedback in-
herent in the latch configuration to amplify the mismatch.
This design removes the need for comparators, low offset
amplifiers, or extra dopants needed in previous random
ID generation methods [9, 20]. The nominal overhead
of the above proposed approach is two NOR gates per
bit. The authors have reported 96% stable IDs using this
method, while using dummy latches to protect the IDs.

Even though we use the random bit architecture de-
scribed above, our layout and implementation of random
bits are very different. To be indiscernible, we do not
place the coupled NOR gates in an array, and instead syn-
thesize them with the rest of the circuit and camouflage
them within the sea of gates. based on invariability of the
ID bits for an IC. In Subsection 6.2, we provide a mech-
anism that ensures the occasional errors in ID bits do not
affect the hardware metering approach.

5.2 BFSM implementation

The key design objectives and challenges of the BFSM
are as follows:

• Low overhead. The addition of the states to the orig-
inal FSM must have a low overhead in terms of area,
power, and delay. This is particularly challenging: as
we have computed in Subsection 4.2, even under the as-
sumption of having RUBs with Uniform distribution of
random bits, the number of added states must be expo-
nentially high to ensure a proper operation.

• Traversal path. There must be a path on the BFSM,
from each of the power-up states (except for the black
hole states that we will describe in Section 6.2) to the
reset state.

• States obfuscation. The states must be completely ob-
fuscated and interchanged to camouflage the added STG
and the original STG. Another level of obfuscation is dis-
abling the observability of the FFs, so that similar states
on two ICs do not exactly have the same code scanned
out from their FFs.

q3 q1q2q4 q0q5q6 q7 q3 q1q2q4 q0q5q6 q7 q3 q1q2q4 q0q5q6 q7(a) Ring counter (b) Reconnecting a state (c) Adding a few edges
Figure 4: Illustration of steps for building a sparse 3-bit
STG.

• Multiplicity of keys. It is highly desirable to construct
the paths on the added STG in such a way that there are
multiple paths from each power-up state to the reset state.
This will ensure that there are multiple keys for traversal.
Now, if the states are obfuscated such that a similar state
on two ICs has different codes, and each of them gets a
different key for traversal to the original STG, the state
similarities will not be apparent, even to a smart observer.

To achieve a low overhead, we have systematically de-
signed STG blocks that are capable of producing an ex-
ponential number of states with respect to their under-
lying hardware resources. The blocks are designed such
that there are multiple paths from each of the added states
to the reset state and thus, the multiplicity of the keys is
satisfied. Our first attempt was to synthesize the added
blocks of STG and the original STG together. However,
because the synthesis software automatically optimizes
the interwoven architecture, it most often ended up with
a combined STG that was much larger than the sum of
its components. Thus, we decided to first separately syn-
thesize the original and the added STG before we merge
them. Next, we employed obfuscation methods that con-
stantly alter the values of the FFs, even those that are not
used in state assignment in the current STG. As we will
see in attack resiliency section, the introduced obfusca-
tion method has the side-benefit that the adversary cannot
exactly distinguish a similar state on two different ICs.

The added STG can be designed to be low overhead;
there are exponentially many states for each added FF, ig-
noring the overhead of the STG edges. However, in real
situations, the transitions (edges) require logic. Thus, the
added STG is constrained to be sparse to satisfy a low
overhead. We have built this block in a modular way. We
describe one of our modules here and then discuss sys-
tematically interconnecting the modules to have a multi-
bit added STG that has a low overhead.

The first module is a 3-bit added STG. In Figure 4, we
show three steps for building this module. We start by
a ring counter as shown in Graph 4(a). Next, we pick
a few states and reconnect them to break the regularity.
A small example is illustrated in Graph 4(b), where the
state q1 is reconnected, such that still there will be a path
from each state to any other state. Finally, we add a few
transitions (edges) to the STG, like the example shown

16th USENIX Security SymposiumUSENIX Association 297

in Graph 4(c); here the states q1 and q4 are reconnected,
while the edges { q4 → q1, q7 → q3, q7 → q7, q2 → q2

} are added.
The example is just an illustration. Many other con-

figurations are possible. The various combinations have
different post-synthesis overhead. To ensure a low-
overhead, we exhaustively searched the synthesized 3-
bit structure with various sparse edge configurations like
the example above, and selected the configurations with
the lowest overhead as our 3-bit modules. As it is ap-
parent from the structure, many low-overhead configu-
rations are possible and we do not need to use the same
module multiple times.

After that, we picked the low overhead modules and
started to add edges to interconnect them, such that the
connectivity property is satisfied, and the interconnected
configuration still has low overhead. Furthermore, we
need multiple interconnecting paths that can produce
multiple keys. This is again done via a modular random-
ized edge addition and searching the space of the syn-
thesized circuits to find the best multi-bit configurations.
Note that, the synthesis program performs state-encoding
for the interconnected modules. We have noticed that the
distance of the codes assigned to the states does not have
a correlation with the proximity of the states. Therefore,
even for two RUBs that are only different in 1-bit, typ-
ically the power-up states are not close-by on the added
STG.

In our experiment, we have tested our approach on 12,
15, and 18-bit added STGs. Now, the original STG has
to be glued to the added part. This is done by an ob-
fuscation scheme that ensures the states of FFs that are
associated with the original STG keep pseudorandomly
changing, even when we traverse the states of the added
STGs. Thus, for an observer who studies the values of
the interleaved FFs, the activity study would not yield
an informative conclusion that can help separating the
original and the added states. A simple example for this
obfuscation is depicted in Figure 5. In this figure, a small
original STG with five states is presented. The cloud
shown below the original STG indicates the added states.

There are multiple state transitions from the added
states to the original state. However, we only show one
arrow on the plot not to make it more crowded. In this ex-
ample, we use the three don’t cares of the design for ob-
fuscation purposes. There are 3 don’t care states that we
use to form three new dummy states q∗5, q∗6, and q∗7,
illustrated in grey color. The glue logic attaches the in-
puts and the states of the added STG to the dummy STG.
Thus, by carefully designing, one can alter the bits on
the dummy STG by changing the input and the states of
the added STG without touching the original FSM. If the
design does not have sufficient don’t cares, we can add a
couple of FFs for the dummy states and use the same

q3 q1q2q0q4 q*5 q*6q*7Glue LogicOriginal STG Obfuscation states

 Added STG
Figure 5: Obfuscation of the original STG.

paradigm. The important requirement for the dummy
states is that as a group they should present both 1 and
0 digits in all FFs. The original STG is also connected
to the dummy STG and can utilize it as a black hole (de-
scribed more thoroughly in Subsection 6.2), if there is a
need to halt the IC.

6 Attack resiliency

This section first identifies several types of potential at-
tacks on the active hardware metering approach. Next,
we outline a number of mechanisms that must be added
to the basic active metering scheme to ensure its re-
siliency against the suggested attacks.

The adversary (Bob) may attempt to perform a set of
invasive or noninvasive attacks on the proposed active
metering scheme. Bob may do so by measuring and
probing one instance, or by statistically studying a col-
lection of instances. In this section, we first identify and
describe the attacks. Next, we propose efficient coun-
termeasures that can be taken to neutralize the effect of
potential adversarial acts.

We assume that Bob knows all the concepts of the
proposed hardware metering scheme, has the complete
knowledge of the design at all levels of abstraction pro-
vided to the foundry (e.g., logic synthesis level netlist,
and physical design GDS-II file, but no behavioral spec-
ification), can simultaneously observe all signals (data)
on all interconnects and flip-flops (FFs), and can mea-
sure, with no error, all timing characteristics of all gates
in the ICs.

6.1 Description of attacks
The starting point for development and evaluation of the
metering schemes is identification and specification of
several types of potential attacks:

(i) Brute-force attack. Bob aims to place the pertinent
IC into the initial state by systematically applying the

16th USENIX Security Symposium USENIX Association298

input sequences to the BFSM. The systematic applica-
tion may be a randomized strategy, or may be based on
scanning the FFs. Brute-force attack works by randomly
changing the inputs in hope of arriving at the reset state.
Scanning works by reading out the FF values for a few
ICs and storing them. The FFs in the current IC are then
monitored for the existence of a common state with the
stored ones. In case a state that was read in the previous
ICs is reached, Bob uses the same key for traversal to the
reset state.

(ii) Reverse engineering of FSM. Bob may try to scan
the FFs to extract the STG. The attempt would be to re-
move the added STG from the BFSM, to separate the
original and the added states.

(iii) Combinational redundancy removal. Bob may
use the combinational redundancy removal, a procedure
that attempts to remove the combinational logic that is
not necessary for the correct behavior of the circuit. The
proposed techniques of this class often take into account
the set of reachable states of the FSM under examination
[25]. Note that, the attacks that were described so far can
greatly benefit from the ability to simultaneously moni-
tor the multitude of signals/values on the IC using laser
reading.

(iv) RUB emulation. The goal of this attack is to create a
reconfigurable implementation capable of realizing hard-
ware that has the identical functional and timing charac-
teristics to a RUB for which a legal key is already re-
ceived.

(v) Initial power-up state capturing and replaying
(CAR). Bob knows the initial power-up state of an un-
locked IC. He can use invasive methods to load the FFs
of other ICs to the same power-up state as the unlocked
IC and then utilize the same key to decode the new locks.
Note that, unless invasive methods are used, the only way
for Bob to alter the values in the FFs is to change the
states using the input pins. Without the knowledge of the
STG, the change of state can only be done as described
in the first attack. This attack and the next two belong to
the class of replay attacks.

(vi) Initial reset state CAR. Bob scans the FF of an un-
locked IC and reads the code of the reset state. Next, he
employs invasive methods to load the FFs of other ICs to
unlock them.

(vii) Control signals CAR. In this attack, Bob attempts
to bypass the FSM by learning the control signals and
attempting to emulate them. Bob may completely bypass
FSM by creating a new FSM that provides control signals
to all functional units, and control logic (e.g. MUX’s and
FFs) in the datapath.

q1 q4q2 q3q0q5 q6 q7 q31q29 q30q15….…. …. ….…. …. Original STGAdded STGBlackhole STGh1 h4h2 h3
Figure 6: Example of a black hole FSM.

(viii) Creation of identical ICs using selective IC re-
lease. Bob only releases the ICs with similar character-
istics to Alice in the hope of finding the keys by correla-
tions. This attack is probably the most expensive because
it involves only a small percentage of manufactured ICs
by the untrusted foundry. Only the ICs that have simi-
lar RUBs are reported. Hence, if the attack is successful,
the design house supplies many keys for ICs with sim-
ilar RUBs; the birthday paradox shows that one of the
keys with relatively high likelihood can be used on the
unreported ICs. Note that, the way for Bob to determine
closeness of characteristics is by looking at the distances
of the initial power-up states.

(ix) Differential FF activity measurement. Bob may
start to investigate the differential activities of the FFs of
the unlocked designs for the same input, and then try to
eliminate the FFs that have different values.

6.2 Countermeasures

We propose a number of mechanisms to augment the
basic active metering scheme and preserve its security
against the above attacks. Two important observations
are that FSMs in modern industrial design are always a
very small part the overall design, well below 1%, and
that STG recovery is a computationally intractable prob-
lem [7, 10, 22]:

• Creating black holes FSMs. Alice may create a black
holes FSM inside the BFSM that makes the exit impos-
sible. Black holes are the states that cannot be exited
regardless of the used input sequence. Their design is
very simple as shown in Figure 6, where the black states
do not have a route back to the other states. Furthermore,
a designer can plan the black hole states to be perma-
nent if it is desirable: a small part may be added, so that
restarting the IC would not take it out of the black hole
states. This measure essentially eliminates the effective-
ness of the first two attacks, because no random input
sequence leads to the initial state of the functional FSM:

16th USENIX Security SymposiumUSENIX Association 299

once the black hole sub-FSM is entered, there is no way
out. A special case is creation of trapdoor black (gray)
holes FSMs that are designed in such a way that only
long specific sequence of input signals known just to the
designer can bring control out of this FSM and into the
initial functional state of the overall FSM. An issue that
needs to be carefully addressed here is preventing the IC
from powering-up in one of the black-hole states. This
can be easily ensured by adding extra logic to the black
hole parts that would disconnect the black hole states
from the power-up states.

• Merging the functional BFSM with the test and
other FSMs, (e.g. ones that can be used for debugging
and authentication). In a typical design, the functional
control circuits are not the only FSMs around. Alice,
with the the objective to make identification of her func-
tional FSM more difficult, can further intricate the BFSM
by co-synthesizing them with others. This augmenta-
tion makes the first two and the three CAR attacks less
effective. In particular, this merger would distract the
ability to simultaneously monitor the multitude of sig-
nals/values on the IC using laser reading.

• Similar FF activity for the unlocked ICs. The de-
signs would be made such that once an IC exits the
locked states and is in its functional states, all its FFs
have a deterministic behavior that is the same for all ICs.
Thus, the differential FF activity screening would not
yield any useful information.

• Creation of specialized functional FSMs (SFFSMs).
Alice can make the security much tighter by integrating
the RUBs not just to assign the initial power-up state, but
to alter the structure of the BFSM and make it a SFFSM.
Using this method, the reset state for FSM of each IC is
a function of its RUB. Each SFFSM operates correctly
only if it received a specific stream of signals from the
RUBs. Since there are exponentially many states with
respect to the number of FFs in FSM, we map a set of
blocks that share an identical subset of RUB outputs into
a single SFFSM. This countermeasure makes the first
two attacks (i.e., brute-force attack and FSM reverse en-
gineering) much more difficult and the first two CAR
attacks (i.e., initial control signal CAR and initial reset
state CAR) almost impossible.

A simple example of this method is presented in Fig-
ure 7. On this figure, the added STG is shown by the
cloud on left, and the original STG is plotted in the right
cloud. The original STG has only 3 states: a reset state
two other states. Here, the original STG is replicated
twice: One replication is denoted by SFFSM’ and the
other one is denoted by SFFSM”. The scheme adds logic
to the added STG, so based on the bits in the RUB, it will
be categorized into three classes. Each of the classes will

Additional States Original FSMq2q1q’0q”2q”1q"0 SSFSM”
q’2q’1q’0 SSFSM’RUB Group 1?RUB Group 2?

RUB Group 3?
Figure 7: A simplified SFFSM.

transition to one of the reset states in one of the clouds:
original FSM, SFFSM’ or SFFSM”. This scheme will
cause confusion in FFs scanning methods that aim at
loading the reset state of an unlocked IC in the FFs of
a locked chip. Note that, the replicated states need not
all be unique, and maybe shared among the replicas to
reduce the overhead.

The example is very small, but one can add the RUB-
dependent states at various stages to ensure that the at-
tacker is not able to break the system. A combination
of the SFFSM method and the state obfuscation and en-
coding would ensure a full security of the design against
the CAR attacks. Furthermore, using similar methods,
the RUBs can be also added to the obfuscation scheme
based on the dummy variables like the example presented
in Figure 5, so that the same inputs would have different
random obfuscation patterns.

Another use of SFFSM is for addressing the effect of
temporal changes in RUB. Recall that the actual appli-
cation of the new hardware metering scheme to indus-
trial designs requires mechanisms that ensure resiliency
against time-dependent permanent changes of transistors
as well as gate-level and transient changes due to the en-
vironmental conditions such as temperature and supply
voltage fluctuations [4].

The exact reconstruction of the first power-up state of
IC (the particular one for which the designer released the
key) for the purpose of defeating the variabilities is triv-
ial: Bob can just load the captured and saved outputs of
the first power-up RUB for which he has obtained the
key. This mechanism makes the design susceptible to
reuse attacks, where Bob can reuse the key and the ini-
tial RUB for an unlocked IC to decipher another locked
IC. However, if Alice included SFFSM in her design, she
would be resilient against this attack. The only technical
issue that remains to be addressed is to ensure that the
SFFSM receives the correct data from the physical RUB,
exactly the same as the one that was first received and for

16th USENIX Security Symposium USENIX Association300

which the key is available. Otherwise, the stored key will
fail.

In presence of temporal variations, ensuring that each
SFFSM receives the correct data from RUB requires
error-correction mechanisms. One solution is to em-
ploy standard error-correction codes (ECCs). An alterna-
tive hardware solution that encounters a lower overhead
compared to ECC is to create the specifications of each
SFFSM in such a way that it transitions into the correct
next states, even when one or up to a specified number of
the inputs from the RUB are altered by the environmental
conditions. Using the hamming distances of the RUBs,
we can group them into similar SFFSMs and synthesize
the results such that the error correction mechanisms are
inherently present. This mechanism is particularly effec-
tive for longer RUBs that are required for present indus-
trial designs. Note that, because the minterms for the
combinational logic that implements transitions are now
not smaller than for non-resilient versions of the SFFSM,
the hardware overhead is often zero or negative at the
expense of the lower resiliency against brute force at-
tacks [5]. However, since the probability of brute force
attack can be made arbitrarily small with very low over-
head (i.e., by using the black holes), this is a favorable
trade-off.

• Resiliency against combinational redundancy re-
moval. To overcome this attack, Alice must ensure the
inapplicability of the attack to typical large circuits and
the capability of this method to remove the added states.
In general, computing a set of reachable states, can only
be done for relatively small circuits, even when the im-
plicit enumeration techniques are used. Thus, the method
is only applicable to small circuits of small sizes.

• Statistical characterization of gates. Alice can go
one step further and attempt to derive the gate-level char-
acteristics of the manufactured ICs by measuring the in-
put/output signals and exploiting the controllability and
observability into the design. Essentially, knowing the
circuit diagram, she would be able to write a linear sys-
tems of equations that can be solved for obtaining the
approximate gate-level delay and power characteristics
of the gates. She may even go further to use the extracted
data to find the distribution of variations across the dif-
ferent chips (e.g., by using methods such as expectation
maximization(EM)). Now, if the variations do not have
enough fluctuations, then she will get suspicious and can
halt the unlocking. This computation would ensure that
the selective IC release would not be successful.

• Obfuscation of state activities and encodings. The
implementation of the BFSM presented in the previous
section renders it impossible to tell the difference be-
tween the original FSM FFs and the added states FFs.

This is because all of the FFs are changing all the time.
Therefore, even though two states of BFSM in two ICs
might be identical, the attacks based on scanning the
FFs would not notice that, since a subset of the bits
will be different. In other word, the FFs not used in
the added FSM are randomly changing. Another ob-
fuscation method that has already been implemented is
that the states in the added STG are not in order and are
coded out of sequence by the synthesis tool. Thus, even
though there might be a direct transition (edge) between
two states, the methods based on FFs readings would not
notice the proximity of the two states, since there code
words are distant from each other.

Note that, the attacks that were described earlier, even
the ones that are computationally very expensive, will
not be able to unlock the ICs, if the countermeasures de-
scribed above are in place.

7 Experimental evaluations

To test the applicability of the method described earlier,
we implemented the active hardware metering on stan-
dard benchmark designs. In this section, we present the
experimental setup, followed by the overhead of imple-
menting BFSM on the considered benchmarks. After
that, we show quantitative analysis of the effectiveness
of the brute force attacks. We further show how the addi-
tion of black holes can make the scheme resilient against
this attack with a minimal overhead. Note that, many
of the attacks described earlier are assuming structural
countermeasures that are hard to quantify and evaluate.

7.1 Experiment setup
We used extended set of sequential benchmarks from the
ISCAS’89 to evaluate the impact of the active hardware
metering method [6]. Even though the ISCAS’89 bench-
marks are the latest comprehensive set of the gate-level
designs, they are dated compared to the complex circuits
in design, production and use today. Recall that follow-
ing the Moore’s law, the size and complexity of the cir-
cuits doubles approximately every 18 months. We use
the larger benchmarks from the set, and we project the
results to more complex circuits. Our projections show
that the power, area, and delay overheads diminish as we
increase the size and complexity. Simultaneously, the
locking complexity and resiliency against the attacks ex-
ponentially improves, due the multiplicity of states. We
synthesize the benchmarks using the Berkeley SIS tool
[26], that given a STG or a logic-level description of a se-
quential circuit produces an optimized netlist in the target
technology (cell library) while preserving the sequential
input-output behavior. We have written a C program that
modifies the benchmarks by adding the extra states. The

16th USENIX Security SymposiumUSENIX Association 301

program calls SIS to obtain the specifications of the syn-
thesized and mapped original and modified STGs. When
evaluating the overhead results, the important observa-
tion is that FSMs (i.e., the control circuitry) in modern
industrial design are always a very small part of the over-
all design, well bellow 1% [7, 10]. Thus, even doubling
the overhead, will have a minimal impact on the overall
circuit that is mostly occupied by memory, testing pins,
and data path circuitry.

7.2 Overhead of active hardware metering

Our first set of experiments study the overhead of the in-
troduced scheme in terms of area, power, and delay. It
is worth noting here that our ultimate goal is to integrate
the active hardware metering method in the design flow.
Thus we have considered testing the approach on manu-
factured ICs. However, the prohibitive cost of manufac-
turing a circuit in aggressive technologies (the quote we
got for fabricating a circuit in 65nm was $500K) limits
our experiments to synthesizing the benchmarks. Table 1
presents the results for the area overhead. Because of
the relatively small size of the circuits, we added STGs
with 12 FFs and 15 FFs overhead to the original STGs.
The first column shows the name of the circuit from the
ISCAS’89 benchmark. The second column shows the
number of inputs to the circuit. The third column shows
the number of outputs to the circuits. Both the number
of inputs and the number of outputs do not change af-
ter adding the extra states. The fourth column shows the
number of FFs in the original circuit. The fifth column
shows the area of the original circuit. Then we show both
the new area and the percentage overhead after adding 12
FFs and 15 FFs for the extra states. It can be seen that the
percentage area overhead is decreasing as the circuit size
increases. Thus, for larger circuit sizes, the area overhead
will be even less insignificant.

Table 2 shows the delay and power overheads. The
first column contains the benchmark names. The second
and third columns show the delay and power estimates of
the original circuits. These are followed by both the de-
lay and the percentage delay overhead, and the power and
the percentage power overhead for adding both 12 FFs
and 15 FFs STGs respectively. The delay overheads are
universally small. With the exception of s27 that is too
small to be considered practical, it is interesting to see
that even other small benchmarks encountered no delay
overhead after the addition of the new STG. For the small
benchmarks that are not realistic compared to the current
complex designs, the power increases significantly. As
the circuit size increases, the percentage power overhead
decreases.

Next, we make a small model of the percentage of area
and power overhead versus size of the circuit to extrapo-

late to more complex designs. The size of the added STG
is fixed to 15 FFs. Figures 8(a) and 8(b) show the over-
head data vs. size along with the fitted polynomial mod-
els, for power and area respectively. The plots suggest
that as the circuit size increases, the percentage of power
and area overheads both decrease. Note that, for more
complex designs, it is required to add significantly more
than 15 FFs. Even if adding a STG with 100 FFs would
add six times the overhead of the 15 FFs case in absolute
terms, the overhead would be negligible, while there will
be 285 extra states added to the design. Thus, for current
and future circuit technologies, the BFSM would have a
minimal impact on the performance in terms of power,
area, and delay (i.e., it will most likely stay less than 1%
of the overall design).

7.3 Resiliency against the brute force at-
tack

Most of the attacks described in Section 6 can be en-
countered by devising intelligent design strategies, as de-
scribed in Subsection 6.2. The only attack that we quan-
titatively study here is the brute force attack. We model
this attack by randomly guessing the values on the graph
until arriving at the functional reset state of the original
FSM.

We simulated the brute force attack on BFSMs with
12, 15, and 18 FFs, varying the inputs from 3 to 8. In this
experiment, we set an upper bound of 1,000,000 guesses;
if the reset state is not reached after this many trials,
the original STG is considered unreachable (denoted by
N/R) and the brute force attack is reported unsuccessful.

Table 3 shows the average number of guesses needed
to unlock the BFSM over a 10,000 simulation runs. The
first three rows show added STGs with 12, 15, and 18
FFs respectively. The next two rows show the results for
STGs with 12 and 15 FFs, after adding 1 and 2 black
holes respectively. Although the number of inputs does
not affect the overhead, it impacts the resiliency against
the brute force attack: the table illustrates that the brute
force attacks are less successful if we use more than 3
different inputs. Also, as the size of the added STG in-
creases, more guesses are necessary to unlock the circuit.
By adding one black hole to the smaller FSMs, they per-
form better than the larger FSMs. Adding one or two
black holes makes the original STG unreachable for the
brute force attack. It is worth noting here that STGs with
12 and 15 FFs are really small, as they have a total of
4,096 and 32,768 states respectively. If the active meter-
ing scheme was to be implemented on current industrial
strength designs, the added circuit would have at least a
100 FFs that would create 2100 ∼ 1030 states. It would
be impossible for a brute force attack to find a key. Fur-
thermore, addition of a few black holes will further make

16th USENIX Security Symposium USENIX Association302

Original Details 12 FFs 15 FFs
Circuit In Out FFs Area Area % Area %

s27 4 1 3 18 224 11.44 278 14.44
s298 3 6 14 244 454 0.86 508 1.08
s344 9 11 15 269 480 0.78 534 0.99
s444 3 6 21 352 554 0.57 609 0.73
s526 3 6 21 445 648 0.46 702 0.58
s641 35 23 17 539 743 0.38 797 0.48
s713 35 23 17 591 793 0.34 847 0.43
s953 16 23 29 743 947 0.27 1001 0.35
s832 18 19 5 769 971 0.26 1025 0.33

s1238 14 14 18 1041 1264 0.21 1318 0.27
s1423 17 5 74 1164 1382 0.19 1436 0.23
s9234 36 39 135 7971 8174 0.03 8228 0.03
s13207 31 121 453 11248 11450 0.02 11504 0.02
s38417 28 106 1463 32246 32448 0.01 32502 0.01

Table 1: Area overhead of active metering for various benchmarks.

Original Details 12 FFs 15 FFs
Circuit Delay Power Delay % Power % Delay % Power %

s27 6.60 134.00 14.40 1.18 1418.70 9.59 14.40 1.18 1696.70 11.66
s298 15.00 1167.20 15.00 0.00 2468.60 1.11 15.00 0.00 2746.60 1.35
s344 27.00 1030.00 27.00 0.00 2325.90 1.26 27.00 0.00 2603.90 1.53
s444 17.60 1550.80 17.60 0.00 2815.20 0.82 17.60 0.00 3152.30 1.03
s526 15.20 2065.70 15.20 0.00 3334.30 0.61 15.20 0.00 3664.70 0.77
s641 97.60 1560.60 97.60 0.00 2832.10 0.81 97.60 0.00 3162.40 1.03
s713 100.00 1670.70 100.00 0.00 2935.00 0.76 100.00 0.00 3265.40 0.95
s953 23.60 1816.50 23.60 0.00 3084.20 0.70 23.60 0.00 3414.60 0.88
s832 28.80 2849.60 28.80 0.00 4114.00 0.44 28.80 0.00 4444.40 0.56

s1238 34.40 2709.40 34.40 0.00 4034.00 0.49 34.40 0.00 4312.00 0.59
s1423 92.40 4882.70 92.40 0.00 6226.30 0.28 92.40 0.00 6504.30 0.33
s5378 32.20 12459.40 32.20 0.00 13515.00 0.08 32.20 0.00 14057.50 0.13
s9234 75.80 19385.50 75.80 0.00 20653.30 0.07 75.80 0.00 20983.70 0.08

s13207 85.60 37874.00 85.60 0.00 39138.40 0.03 85.60 0.00 39402.00 0.04
s38417 69.40 112706.80 69.40 0.00 113869.00 0.01 69.40 0.00 114147.00 0.01

Table 2: Delay and power overhead of active metering for various benchmarks.

the system resilient against the brute force attack.

Table 4 shows area and power overheads for adding a
black hole with 2 states to added STGs with 12 and 15
FFs respectively. The overhead of adding a black hole
does not exceed 5% even for very small benchmarks. For
larger circuits it is unnoticeable. Note that, we often add
more than one black hole to the design, to warrant the
impossibility of the brute force attacks.

To evaluate the diversity of keys, we studied the num-
ber of cycles in the added STGs. For this STG, we form
a new graph STG*, that has the same nodes as STG, but
reverses the edges. Note that, simultaneously reversing
all the edges will not affect the number of cycles in the
graph. Since each state on STG has a path to the reset
state, the directed acyclic graph (DAG) rooted at the orig-
inal reset state in STG* will have a path to all states. We
find a DAG of STG* by using the Dijkstra’s shortest path

algorithm. Next, we add the STG* edges to the DAG and
see if they form a cycle and combine the cycles into one
node; we iteratively continue until the cycles are gone.
This approximate method is used to count the number of
cycles. Using the method, we roughly guess that the STG
with 12 FFs had more than 40 cycles that enables the use
to build exponentially many keys for traversal from a cer-
tain state. The large number of keys can be easily gener-
ated by a combination of cycling and switching between
the cycles of the STG.

8 Potential applications

Active hardware metering provides strong anti-piracy
mechanisms for hardware IP cores as well as remote-
disabling mechanisms for the manufactured parts. Re-
mote disabling can be accomplished if a malicious activ-

16th USENIX Security SymposiumUSENIX Association 303

0 1 2 3
x 104

0

0.2

0.4

0.6

0.8

1

Area

%
po

we
r o

ve
rh

ea
d

%power
Fitted %power

(a) % Power overhead vs. size.

0 1 2 3
x 104

0

0.2

0.4

0.6

0.8

1

Area

%
ar

ea
 o

ve
rh

ea
d %area

Fitted %area

(b) % Area overhead vs. size.

Figure 8: Percentage of (a) power; and (b) area; overheads vs. size after adding a1 5 FFs STG.

Number of inputs
bits 3 4 5 6 7 8
12 74385 82708 78939 83156 77028 82490
15 560976 610373 602157 557776 592681 596260
18 933680 932501 938583 918312 N/R N/R

12 + bh 998000 999000 N/R N/R N/R N/R
15 + bh N/R N/R N/R N/R N/R N/R

12 + 2 bh N/R N/R N/R N/R N/R N/R
12 + 2 bh N/R N/R N/R N/R N/R N/R

Table 3: Average number of attempts needed for the brute force attack to unlock the added STG.

ity is detected. For example, a designer can add an extra
part to the circuit that detects say, the brute force attack
where too many invalid inputs are being entered. As an-
other example, the strange activity patterns of the chip
may be detected from a network. Upon detecting such a
situation, a built-in disabling function would be invoked
that transitions the IC into a non-functional state. If this
state is a black hole, the IC cannot be used.

Generally speaking, combinations of the two em-
ployed security mechanisms, variability-based unique-
ness of each IC, and structural manipulation of FSM
while preserving the original behavioral specification,
provide powerful basis for creating many security and
DRM protocols. A few of the many possibilities are:
(i) use of a combination of unique functionality and
RUB for remote authentication and disablement of smart
cards; (ii) certification that a computation was executed
on a specified IC in a distributed environment; and (iii)
creation of techniques to produce software than can only
run on a specific IC, thereby preventing software piracy.

Furthermore, the introduced method has the potential
for a broad impact on the IC industry and military use
of hardware. As an example, new royalty enforcement
systems can be enabled: design reuse has emerged as a
dominant strategy, where different IP cores are often sup-
plied by different vendors. The final integrator pays each

IP supplier royalties that are proportional to the number
of manufactured ICs. All that is needed for royalty en-
forcement is that each supplier uses its own active meter-
ing scheme inside its IP.

9 Conclusion

We propose the first active hardware metering scheme
that symmetrically protects the IP designer and the
foundry by providing a key-exchange mechanism.
The active metering method utilizes the unclonable
variability-based ID of each silicon circuit (RUB) to
uniquely lock the IC at the fabrication house. The FSM
of the design is enhanced to include many added states,
designed such that the RUB-based state is one of the ran-
dom states with a very high probability. The state addi-
tion was done in such a way that it would not affect the
functionality of the original design. The key to the locked
IC can only be provided by the designer who knows the
state transition graph of the design. We have illustrated
the addition of black hole states to the BFSM which can
be utilized for remote control and disabling of the ICs.
Black hole states are also useful in making the protec-
tion scheme highly resilient against the brute force at-
tacks. We presented a low overhead implementation for
the hardware metering scheme, identified a comprehen-

16th USENIX Security Symposium USENIX Association304

12 FFs 15 FFs
Circuit % Area % Power % Area % Power

s27 0.05 0.04 0.04 0.03
s298 0.02 0.02 0.02 0.02
s344 0.04 0.02 0.03 0.02
s444 0.03 0.02 0.02 0.02
s526 0.01 0.02 0.01 0.02
s641 0.02 0.02 0.02 0.02
s713 0.01 0.02 0.01 0.02
s953 0.02 0.02 0.02 0.02
s832 0.02 0.01 0.02 0.01
s1238 0.01 0.01 0.01 0.01
s1423 0.01 0.01 0.01 0.01
s5378 0.00 0.00 0.00 0.00
s9234 0.00 0.00 0.00 0.00

s13207 0.00 0.00 0.00 0.00
s38417 0.00 0.00 0.00 0.00

Table 4: Percentage of area and power overheads after
adding one blackhole.

sive set of possible attacks, and provided mechanisms
that make the scheme much more resilient against the at-
tacks. Experimental evaluations of the proposed meter-
ing method on standard benchmark circuits illustrate the
low overhead and the applicability of the approach on
industrial-size designs and its resiliency against different
attacks.

10 Acknowledgement

This work is supported by the Defense Advanced Re-
search Projects Agency (DARPA)/MTO Trust in Inte-
grated Circuits and Young Faculty Awards (YFA) under
grant award W911NF-07-1-0198.

References

[1] D.G. Abraham, G.M. Dolan, G.P. Double, and J.V.
Stevens. Transaction security system. IBM Systems
Journal, 30(2):206–229, 1991.

[2] R. Anderson and M. Kuhn. Tamper resistance -
a cautionary note. In USENIX Workshop on Elec-
tronic Commerce, pages 1–11, 1996.

[3] R.J. Anderson. Security Engineering: A guide to
building dependable distributed systems. John Wi-
ley and Sons, 2001.

[4] K. Bernstein, D.J. Frank, A.E. Gattiker, W. Haen-
sch, B.L. Ji, S.R. Nassif, E.J. Nowak, D.J. Pearson,
and N.J. Rohrer. High-performance CMOS vari-
ability in the 65-nm regime and beyond. IBM Jour-
nal of Research and Development, 50(4/5):433–
450, 2006.

[5] R.K. Brayton, G. Hachtel, C. McMullen, and
A. Sangiovanni-Vincentelli. Logic Minimization
Algorithms for VLSI Synthesis. Kluwer Academic
Publishers, 1984.

[6] F. Brgles, D. Bryan, and K. Kozminski. Combina-
tional profiles of sequential benchmark circuits. In
International Symposium of Circuits and Systems,
pages 1929–1934, 1989.

[7] A.P. Chandrakasan, M. Potkonjak, R. Mehra,
J. Rabaey, and R.W. Brodersen. Optimizing power
using transformations. IEEE Trans. CAD of Inte-
grated Circuits and Systems, 14(1):12–31, 1995.

[8] Defense Science Board (DSB) study on
High Performance Microchip Supply.
http://www.acq.osd.mil/dsb/reports/2005-02-
HPMS Report Final.pdf, 2005.

[9] B. Gassend, D. Lim, D. Clarke, M. van Dijk, and
S. Devadas. Concurrency and Computation: Prac-
tice and Experience, volume 16, chapter Identifica-
tion and authentication of integrated circuits, pages
1077–1098. John Wiley & Sons, 2004.

[10] J.L. Hennessy and D.A. Patterson. Computer ar-
chitecture: a quantitative approach. Morgan Kauf-
mann Publishers, 1996.

[11] A. Kahng, J. Lach, W. Mangione-Smith, S. Man-
tik, I. Markov, M. Potkonjak, P. Tucker, H. Wang,
and G. Wolfe. Watermarking techniques for intel-
lectual property protection. In Design Automation
Conference (DAC), pages 776–781, 1998.

[12] D. Kirovski, Y.-Y. Hwang, M. Potkonjak, and
J. Cong. Intellectual property protection by water-
marking combinational logic synthesis solutions. In
International Conference on Computer Aided De-
sign (ICCAD), pages 194–198, 1998.

[13] D. Kirovski and M. Potkonjak. Local watermarks:
methodology and application to behavioral synthe-
sis. IEEE Trans. CAD, 22(9):1277–1283, 2003.

[14] F. Koeune and F. Standaert. A tutorial on physical
security and side-channel attacks. In Foundations
of Security Analysis and Design (FOSAD), pages
78–108, 2004.

[15] F. Koushanfar, I. Hong, and M. Potkonjak. Be-
havioral synthesis techniques for intellectual prop-
erty protection. ACM Trans. Design Automation of
Electronic Systems, 10(3):523–545, 2005.

[16] F. Koushanfar and G. Qu. Hardware metering. In
Design Automation Conference (DAC), pages 490–
493, 2001.

16th USENIX Security SymposiumUSENIX Association 305

[17] F. Koushanfar, G. Qu, and M. Potkonjak. Intel-
lectual property metering. In Information Hiding
Workshop (IHW), pages 81–95, 2001.

[18] J. Lach, W.H. Mangione-Smith, and M. Potkonjak.
Fingerprinting digital circuits on programmable
hardware. In Information Hiding Workshop (IHW),
pages 16–32, 1998.

[19] J.W. Lee, L. Daihyun, B. Gassend, G.E. Suh,
M. van Dijk, and S. Devadas. A technique to build
a secret key in integrated circuits for identification
and authentication applications. In Symposium of
VLSI Circuits, pages 176–179, 2004.

[20] K. Lofstrom, W.R. Daasch, and D. Taylor. IC iden-
tification circuits using device mismatch. In Inter-
national Solid State Circuits Conference (ISSCC),
pages 372–373, 2000.

[21] S. Maeda, H. Kuriyama, T. Ipposhi, S. Maegawa,
Y. Inoue, M. Inuishi, N. Kotani, and T. Nishimura.
An artificial fingerprint device (AFD): a study of
identification number applications utilizing charac-
teristics variation of polycrystalline silicon TFTs.
IEEE Trans. Electron Devices, 50(6):1451–1458,
2003.

[22] A. Oliveira. Techniques for the creation of digi-
tal watermarks in sequential circuit designs. IEEE
Trans. CAD of Integrated Circuits and Systems,
20(9):1101–1117, 2001.

[23] G. Qu and M. Potkonjak. Intellectual Property Pro-
tection in VLSI Design. Kluwer Academic Pub-
lisher, 2003.

[24] S. Roy and A. Asenov. Where do the dopants go?
Science, 309(5733):388–390, 2005.

[25] H. Savoj and R.K. Brayton. On the optimization
power of retiming and resynthesis transformations.
In Design Automation Conference (DAC), pages
297–301, 1990.

[26] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P.R. Stephan,
R.K. Brayton, and A.L. Sangiovanni-Vincentelli.
SIS: A system for sequential circuit synthesis.
Technical Report UCB/ERL M92/41, EECS De-
partment, University of California, Berkeley, 1992.

[27] A. Srivastava, D. Sylvester, and D. Blaauw. Statis-
tical Analysis and Optimization for VLSI: Timing
and Power. Series on Integrated Circuits and Sys-
tems. Springer, 2005.

[28] Y. Su, J. Holleman, and B. Otis. A 1.6J/bit sta-
ble chip ID generating circuit using process varia-
tions. In International Solid State Circuits Confer-
ence (ISSCC), page to appear, 2007.

[29] G.E. Suh, C.W. O’Donnell, I. Sachdev, and S. De-
vadas. Design and implementation of the aegis
single-chip secure processor using physical random
functions. In International Symposium on Com-
puter Architecture (ISCA), pages 25–36, 2005.

[30] I. Torunoglu and E. Charbon. Watermarking-based
copyright protection of sequential functions. IEEE
Journal of Solid-State Circuits (JSSC), 35(3):434–
440, 2000.

[31] VSI Alliance - Intellectual Property Protec-
tion Development Working Group, “White Paper:
The Value and Management of Intellectual Assets”.
http://vsi.org/documents/datasheets/TOC IPPWP210.pdf,
2002.

[32] J.L. Wong, R. Majumdar, and M. Potkonjak. Fair
watermarking using combinatorial isolation lem-
mas. IEEE Trans. CAD, 23(11):1566–1574, 2004.

Notes
1In this paper, the term IP is used to refer to the integrated circuits

design specifications that is available to the fabrication house.

16th USENIX Security Symposium USENIX Association306

