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Abstract: A map M is a combinatorial representation of a grambedded on a surface and creates a
tessellation on that surface. The map operatioast@yological transformations of a given map. A poter
program, CVNET, was made for generating maps oeiings representing fullerenes/ hyper structurgsnap
operations. In this paper are presented algoriflemmap operations, which analyze the original grapd then
generate the new ones. Some examples of genetggstoby map operations are illustrated at the end

INTRODUCTION

The Fullerenes are molecules composed entirelpidifon of valence 3, in the form of a
hollow sphere, ellipsoid, tube or their derivati@ml combinationswith different coverings.
A classical fullerene called also buckyball hassayalo-spherical shape made up entirely of
12 pentagons and various numbers of hexagons @-ijua), as results from the Euler’s
formulas (see below). Cylindrical fullerenes call@tbon nanotubes are constructed mostly

from hexagorls but they often contain defects as non hexagasigypns (Figure 1 b).
Ceo classical fullerene (a) Armchair Polyhex Nanotu@i®s

Figure 1
A buckyball fullerene (a) and a nanotube (b)

A graph is said to bembeddedn a surfaceS when it is drawn or§ so that no two edges
intersect. A graph is planar if it can be embedded in a plaeap Mis a combinatorial
representation of a graph embedded on a suffand creates a tessellation on that surface.
Themap operationsre geometrical and topological transformationa given map. Like the
graph notations, we denote in a map: the number of vertices,— the number of edgek;-
the number of faces amb-the vertex degree. There are some basic relatoasra:

D dv, => sf, =2e
where vy is the number of vertices of degrdeandfs the number of facewith s edges,
respectively. The two relations are joined in théeEs formuld':

v-e+f=x(M)=21-9)
wherey is theEuler's characteristicandg the genubof the graphi(e., g = 0 for a planar or
spherical graph and 1 for a toroidal graph). Pesitiegativey values indicate positive/
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negative curvature of a map or lattice. This foransluseful for checking the consistency of an
assumed structure. For example, thgf@lerene has vertices of degree/s360, edges=90

and faces of size 5 and%12,f;=20. For molecular modeling, the fullerenes are repriesen
by molecular graphs embedded in surfaces or condsy maps. Thus the surfaces are covered with
diverse patterns by the polygons or faces of thepsmabtaining hyper structures. As
proposed"™. Some of them are obtained by map operations orjobying fullerenes
fragment§.

A computer program, CVNET with options for map operations was made. A feapm
operations implemented in the CVNET program aresgmied in the following section.
Section Algorithms used for Map Operations desecridied presents some of the algorithms
used by the CVNET program.

MATERIAL AND METHODS

The Map Operationscan be classified in simple, composite, generdliaad others
operation$’. Dualization Duof a map is built as follows: locate a point i ttentre of each
face and join two such points if their correspogdiaces share a common edge. The new
map is called thalual Du(M). The following relations exist between the eletseof the
initial and resulting map

DuU(M): v=f0; e=€. f=vg
where subscript index “0” mark the correspondintapeeters in the parent map.
Cube Dual(Cube) = Octahedron CubeoctahedraviefCube)

Figure 2
Results of the Dual and Medial operations on thbeCu

Medial Me" puts the new vertices as the midpoints of theimaigedges and join two
vertices if and only if the original edges spanaagle on a face in the original map. The
resulting parameters are:

Me(M) V:eo; e:260; f:f0+V0

Figure 2 illustrates Dual and Medial operationstiom Cube. Others simple operations

are Truncation, Stellation R apping, and £

The composite operatioris can be obtained by sequences of some simple apesat
The vertex multiplication factan = v/vy for a composed or generalized operation that ean b
denoted byd,b)*", applied on a 3-valent map can be counted by thidi@rg’s relatiofl":

m=(a® +ab+b?);a=b;a+b>0
TheQuadrupling @ and theCapra C&" operations on the Cube are illustrated in the

Figure 3. The multiplication factors for trivalemiaps arem(2,0) = 4 andm(2,1) =7,
respectively. Capra is a chiral operation (hasvamants) and generates chiral objects.

576



Q(Cube) (a) Ca(Cube) (b)

Figure 3
Quadrupling (a) and Capra (b) operations on theeCub ’
Other chiral operations are someneralized operation$noted by &,b), wherea # b and
az 0. The (3,1) generalizamperation (Figure 4) has the multiplication facter9+3+1=13.
(3,1), (Cube) (3,1), (Cube)

Figure 4
(3,1) operation has two variants, resulting irrahbbjects.

The @b) operations, whera = b or a = 0, generates achiral objects. Some of the
generalized operations can be obtained by sucesssfaomposite operations.

Supra-Coverings’ o

A perfect Clar structuféd”™™" PC is a disjoint set of faces, built up on alltioers inM,
whose boundaries form a regular 2-valent spannitgraph. A PC structure is associated
with a Fries structur&, which is a spanning subgraph of the initial stnoe from which the
edges from PC structure have been eliminated. valemnt polyhedral graph, like that of
fullerenes, has a PC structure if and only if i laaFries structuté LeapfrogLe is the only
operation that provides PC results. Figure 5 pitsdeerfect Clar and Fries structures @f:C

Le(Ceo) = Le(Le(Go) = (3,0) (Go) Le(Ceo) =Cigo, Fries structure Q(Ce0) = Q(LE&(C20)) = Coso
= Cygq PC structure (a) (b) Pcor flowers (c)

I=S \
0o G5
L LY _

Perfect Clar PC (a) and Fries structures gf®); Perfect Coranulenic PCor structure gf4&c)

By extension, a coranulenic systewas considered (Figure 5 c). A Perfect Coranulenic
structure PCor is a disjoint set of (supra) facegedng all vertices in the molecular graph.
The operation sequends(Q(M)) = Q(Le(M)), that is equivalent to the (2,2) generalized
operation, provide a PCor structure. The PCor toains superimposes over PC, thus, any

577




PCor is necessarily a PC. The PC and PCor strudumepected to contribute to the stability
of the whole molecule. Others operations, like @aisjoint Azulenic operation and
Rotated Disjoint Azulenic operation generates attkands of “flowers”.
Algorithmsused for Map Operations
CageVersatile .Net CVNET software program, writierC#, under .NET Framework,
is a program that has options for map operatiorts ihgenerates closed or open lattices
covering nanostructures. The input and output fdes in HyperChem — .hin format and
contain the representation of labelled gr&phs
First, the program finds the rings or the facethefinput graph and then it realizes the
map operations on every face. To find the facea imap, the program uses a recursive
algorithm to detect all the cycles of the graphhwéngth less or equal to a input parameter.
In this respect, the program uses the table olimdtween vertices from the input file. Then
the program selects the cyclesfases in ascending order of their size, under the doorli
thatany edge shares maximum 2 faddsxt, the algorithm of map operations works ia th
following steps, for every face or cycle:
1. Put the vertices of the resulting map at their dowates, calculated function of the
coordinates of the vertices from the initial mag, dévery old face.
2. Link the vertices located inside of an old face.
3. Link the vertices located in different old facas.chse of chiral resulting objects, the old
faces are visited by adjacency, so that the priopkes are accomplished (Figure 6).

E QO O n
o o
o o
E O O n
Step 1. Step 2. Step 3. Link the above linked vertices with the
Put the new vertices Link the inner vertices external or border vertices
The algorithm steps of the Capra operation on arggiace Figure 6

We detail below the general algorithm that cre#ftesnew map on the basis of the old
faces, used at composite, generalised and otheigler operations. The varialdes a three-
dimensional array, containing the faces of the lgrap the array, c[i,0,0] is the number of
faces contained in the vectdi], which begins at the vertexnv = ([i,j,0] is the number of
vertices of the facei,j], while c[i,j,1] ... c[i,j,nV] is the list of vertices of the faagi,j]. The
variablen stores the number of vertices in the input mamil&ry like ¢, m stores the list of
edges of the initial molecular graph and some aatdit new vertices, used within operations;
m[i,j] represents an edge with the end-pointsnjnj,1] andm[i,j2]. The variablecip is an
array that will store the resulting graph, withtiegs, their coordinates and the links between
vertices.

fori:=1ton
for j := 1 to [i,0,0]

nv := cli,j,0];

coord_center(c[i,j], cc); / the arragwill store the 3D coordinates (x,y,z) of the cerkthe face

fork:=1tonv
v_next := (k mod nv) +1; // the vertex followivertex no. k in the face

/ladd the new vertices that are inside tiee fand between the center and the vertices c[iglk],v_next]
add_vertices_inside(cli,j,K], c[i,j,v_next], ccpdi

endfor k
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fork:=1tonv
v_next := (k mod nv) +1; //link the verticesatlare between the vertices cfi,j,k], c[i,j,v_next]
link_vertices_inside(cli,j,K], c[i,j,v_next], cip)
endfor k
endfor j
endfor i
fori:=1ton
for j := 1 to m[i,0]
add_vertices(m,i,j,cip); // adds the resthaf border vertices that are close to the edgg] m|i
endfor j [/l and lirtkeim if possible
endfor i /lin case of chiral operation, visie faces by adjacency and link the border vestice
Il otherwise the algorithm stops here.
nc := 0; c[i,j,nv+2] :=0; // nc numbers theitésl faces; all the faces are marked with “0”nas -visited.

do while nc < nci I/l do while exists a face nidited; nci is the number of faces in the origigadph.
fori:=1ton /I take all the faces in theag c
forj:=1 to cli,0]
nv = cli,j,0];

if (nc = 0) or ((c[i,j,nv+2] =0) and (AlregVisited(c,i,j,m)) then

I/l if it is the first face or the curramvisited face shares an edge with an alreadiedisace

nc:=nc + 1; /I visit the face i.e. lithe border vertices from different faces

c[ij,nv+2] := 10;  // mark the face dsited

/I the border vertices from the adjacent visitazkfaan link in 2 ways
link := verify_linking_mode(c,i,j,m);
for k :=1to nv
add_border _links(link,c,i,j,k,m,cip); // add links the border vertices from the current face
endfor k
endif
endfor j
endfor i
loop
WriteF(cip); [/l writes the array cip into thatput file.

For map operations that generates supra-coveriitmsers”, the program has options
to generate the whole map or/and only the “flowesg’ucture and eventually also the
complementary structure. After generating the whstieicture, it is optimized to get a
rounded shape, and then coordinates of the whialetste can be transferred to the structure
of “flowers” to get the same shape. For any objeatan be checked if it has a Perfect Clar
PC or Perfect Coranulenic PCor structure.

RESULTS AND DISCUSIONS

A large variety of objects of different genuses amaverings can be obtained by

successions of map operations. In the followingrég are presented some examples.
(2,2) operation on a structure starting from teddrons (2,2)@p(Ca(Cyp))) g=6

Disjoint Corannulenic Structures (PCor) obtaineddmnes openingdp), starting from DodecahedrongJ-igure 7
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(2,2) (Le(Op(Ca(Tetrahedron)))) S (S(Op(Ca(Cube)))) (S (Sz(Czo)))

F{C‘“\Q‘\ 85

S 7S
O \,H_J ﬂ?

r""‘\ L L) A

Figure 8
Other objects obtained by map operations

The program works on any faces sizes and vertiegge@. There is an option to

consider all the cycles that have the length lessqual the input parameter, not only the
faces. Full objects can be generated in this way.

CONCLUSIONS

Various molecular graphs/maps/hyper structured) diverse tiling and genuses, were

generated by CVNET computer program for map opmnatiThey were optimised and were
further topological analysed from stability poiritveew.
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