
Reprint: Tosho Kodama, Tosiyasu L. Kunii, Yoichi Seki, "An Example of a Tracking Function Using the Cellular Data System",
Proceedings of the 9th WSEAS International Conference on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and
DATA BASES (AIKED'10), Murray Edwards College, University of Cambridge, UK, February 20-22, 2010 , pp. 372-377.

An Example of a Tracking Function Using the Cellular Data System

TOSHIO KODAMA1, TOSIYASU L. KUNII2, YOICHI SEKI3
1 CDS Business Dept., Advanced Computer Systems, Inc. and Maeda Corporation, Tokyo, JAPAN

kodama@lab.acs-jp.com, https://www.cellulardatasystem.com/e/index.html
2 Morpho, Inc., The University of Tokyo, Tokyo, JAPAN

kunii@ieee.org, kunii@acm.org, http://www.kunii.net/
3Software Consultant, Tokyo, JAPAN

gamataki61@mail.hinocatv.ne.jp

Abstract: In the era of cloud computing, where data and data dependencies constantly change, a mechanism
within system development that can correspond to those changes in user requirements is needed. The
Incrementally Modular Abstraction Hierarchy (IMAH) offers the most appropriate mathematical background to
model dynamically changing information worlds by descending from the abstract level to the specific, while
preserving invariants. In this paper, we have applied the Cellular Data System (CDS), based on IMAH, to the
development of core logic for a budget tracking function, and verified that using CDS makes the data modeling
simpler.

Key-Words: incrementally modular abstraction hierarchy, formula expression, topological space, tracking
function

1 Introduction
Cyberworlds are more complicated and fluid than any
other previous worlds in human history, and are
constantly evolving and expanding. One of the
features of cyberworlds is that data and its
dependencies are constantly changing within them.
For example, millions of users communicate with each
other on the Web using mobile devices, which are
considered one of the main elements of cyberworlds.
At the same time, user requirements for cyberworlds
also change and become more complicated as
cyberworlds change. If a user analyzes data in
business applications correctly under a dynamically
changing situation using the existing technology, the
schema designs of databases and application programs
have to be modified whenever schemas or user
requirements for output change. That leads to
combinatorial explosion. To solve the problem, we
need a more powerful mathematical foundation than
what current computer science enjoys. As a possible
candidate, we have introduced the Incrementally
Modular Abstraction Hierarchy (IMAH), built by one
of the authors (T. L. Kunii). IMAH seems to be the
most suitable for reflecting cyberworlds, because it
can model the architecture and the changes in
cyberworlds and real worlds from a general level to a
specific one, preserving invariants while preventing
combinatorial explosion [1]. In our research, one of

the authors (Y. Seki) has proposed an algebraic system
called Formula Expression as one of finite automaton,
and another (T. Kodama) has designed how to express
the spaces and the maps on each level of IMAH and
actually implemented IMAH as a data processing
system using Formula Expression [6]. We call the
system the Cellular Data System (CDS). CDS has
already been applied to the development of several
business application systems as a flexible system
development tool. In this paper, we have applied an
attaching function to file permission management. The
attaching map was defined on the adjunction level of
IMAH [1] and the attaching function is based on the
map; terms as topological spaces are attached by
common factors found through the attaching function.
If the function is used with the condition formula
search that is the main data search function of CDS
(2.3), it becomes a very effective means of analyzing
data in cyberworlds without losing consistency in the
entire system, since a user can get the data desired
without changing application programs. In addition,
we put emphasis on practical use by taking up an
example of the development of a file permission
information management system. First, we explain
IMAH and Formula Expression briefly (Section 2).
Next, we demonstrate the effectiveness of CDS by
developing core logic of a budget tracking function
system (Section 3). Related works are mentioned
(Section 4), and, finally, we conclude (Section 5).

Reprint: Tosho Kodama, Tosiyasu L. Kunii, Yoichi Seki, "An Example of a Tracking Function Using the Cellular Data System",
Proceedings of the 9th WSEAS International Conference on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and
DATA BASES (AIKED'10), Murray Edwards College, University of Cambridge, UK, February 20-22, 2010 , pp. 372-377.

2 The Cellular Data System

2.1 Incrementally Modular Abstraction

Hierarchy
The following list constitutes the Incrementally
Modular Abstraction Hierarchy to be used for defining
the architecture of cyberworlds and their modeling:

1. the homotopy (including fiber bundles) level
2. the set theoretical level
3. the topological space level
4. the adjunction space level
5. the cellular space level
6. the presentation (including geometry) level
7. the view (also called projection) level
In modeling cyberworlds in cyberspaces, we

define general properties of cyberworlds at the higher
level and add more specific properties step by step
while climbing down the incrementally modular
abstraction hierarchy. The properties defined at the
homotopy level are invariants of continuous changes
of functions. The properties that do not change by
continuous modifications in time and space are
expressed at this level. At the set theoretical level, the
elements of a cyberspace are defined, and a collection
of elements constitutes a set with logical operations.
When we define a function in a cyberspace, we need
domains that guarantee continuity, such that neighbors
are mapped to a nearby place. Therefore, a topology is
introduced into a cyberspace through the concept of
neighborhood. Cyberworlds are dynamic. Sometimes
cyberspaces are attached each other, an exclusive
union of two cyberspaces where attached areas of two
cyberspaces are equivalent. It may happen that an
attached space is obtained. These attached spaces can
be regarded as a set of equivalent spaces called a
quotient space, which is another invariant. At the
cellular structured level, an inductive dimension is
introduced into each cyberspace. At the presentation
level, each space is represented in a form which may
be imagined before designing cyberworlds. At the
view level, the cyberworlds are projected onto view
screens.

2.2 The definition of Formula Expression
Formula Expression in the alphabet is the result of
finite times application of the following (1)-(7).

(1) a (a∈Σ) is Formula Expression
(2) unit element ε is Formula Expression
(3) zero element φ is Formula Expression

(4) when r and s are Formula Expression, addition
of r+s is also Formula Expression

(5) when r and s are Formula Expression,
multiplication of r×s is also Formula
Expression

(6) when r is Formula Expression, (r) is also
Formula Expression

(7) when r is Formula Expression, {r} is also
Formula Expression

Strength of combination is the order of (4) and (5). If
there is no confusion, ×, (), {} can be abbreviated. +
means disjoint union and is expressed as specifically
and × is also expressed as Π. In short, you can say " a
formula consists of an addition of terms, a term
consists of a multiplication of factors, and if the () or
{} bracket is added to a formula, it becomes
recursively the factor". In Formula Expression, five
maps (the expansion map, the bind map, the division
map, the attachment map, the homotopy preservation
map) are defined [9].

2.3 A Condition Formula Search
A function for specifying conditions defining a
condition formula by Formula Expression is
supported in CDS. This is one of the main functions.
A formula created from these is called a condition
formula. "!" is a special factor which means negation.
Recursivity by () in Formula Expression is supported
so that the recursive search condition of a user is
expressed by a condition formula. A condition
formula processing map f is a map that gets a disjoint
union of terms that satisfies a condition formula from
a formula. When condition formula processing is
considered, the concept of a remainder of spaces is
inevitable. A remainder acquisition map g is a map
that has a term that doesn’t include a specified factor.
Fig 1 shows each image by the condition formula
processing map f.

2.4 Implementation
This application was developed using Java Servlet and
Tomcat 5.0 as a Web server. The specifications of the
server were:

OS: Red Hat Enterprise Linux 5
CPU: Intel Core2 Duo (1.8GHz)
RAM: 4GB
Web server: Apache 2.2.2
AP server: Tomcat 5.5.4
JAVA: JDK1.5.015
RDB: mysql5.1

Reprint: Tosho Kodama, Tosiyasu L. Kunii, Yoichi Seki, "An Example of a Tracking Function Using the Cellular Data System",
Proceedings of the 9th WSEAS International Conference on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and
DATA BASES (AIKED'10), Murray Edwards College, University of Cambridge, UK, February 20-22, 2010 , pp. 372-377.

HD: 240GB
The specifications of the client machine were:
OS: Windows XP
CPU: Intel Core2 Duo (3.00GHz)
RAM: 4GB

A quotient acquisition map is the main function of a
condition formula processing map. In this algorithm,
the absolute position of the specified factor by the
function of the language and the term including the
factor are acquired first. Next, the nearest brackets of
the term are acquired and, because the term becomes a
factor, a recursive operation is done. Details are
abbreviated due to the restriction on the number of
pages.

3 A Tracking Function as an
Application

3.1 Outline
We have developed a business application of the core
logic for budget flow tracking using CDS. In this
system, the budget is managed under the assumption
that the budget flows from upstream to downstream,
while user records business data in slips that have
different attributes, relating them each other using a
pointer attribute (Fig 2). In this section, we simplify all
data without losing generality. Firstly, we design a
formula for a cellular space of slips and processing to
obtain pointer information of the slips. Secondly, we

use the maps when we output the data according to
user requirements.

3.2 The design of space and processing
We design a formula for the cellular space as follows:

1. A term for a slip as a cellular space

slipi{PT+Σattributej}(Σidk{upper slip idk+Σvaluej})

slipi: a factor which expresses a slip name
PT: a factor which expresses a pointer attribute
upper slip idk: a factor which expresses id of an

upper slip.

A formula for slips is expressed as a disjoint union of
terms for a slip.

2. Processing to obtain pointer information from the

formula
A formula for pointer information as a topological
space is obtained through the condition formula
processing map (2.3) from the formula for slips.

f(formula for slips, ‘PT’)
= Σslipi×PT(Σ(idk×upper slip idk))

3.3 Data input/output
Here, budget slip data is to be managed. Assume that
the budget flows through four steps from upstream to
downstream: plan, order, delivery, and payment. Slips
are made in each step, where the id value of a slip
higher up is given the pointer attribute “PT”, as seen in
Fig 3 and Fig 4. If a user wants to input slip data,
he/she creates formula 3.3-1 according to the space
design.

Fig 2 flow of budgets slips

Fig 1 Images by the condition formula processing
map f

Reprint: Tosho Kodama, Tosiyasu L. Kunii, Yoichi Seki, "An Example of a Tracking Function Using the Cellular Data System",
Proceedings of the 9th WSEAS International Conference on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and
DATA BASES (AIKED'10), Murray Edwards College, University of Cambridge, UK, February 20-22, 2010 , pp. 372-377.

formula 3.3-1:
Plan{PT+PlanName+Budget}(plan1{ε+ProjectA+1
00})+Order{PT+OrderName+UnitPrice+Amount+
Price+Company+Date}(order1{plan1+o1+15+2+30
+c1+date1}+order2{plan1+o2+30+2+60+c2+date
2})+Delivery{PT+ProductName+Company+Price+
Date}(delivery1{order1+d1+c3+10+date3}+deliver
y2{order1+d2+c4+15+date4}+delivery3{order2+d
3+c5+40+date5})+Payment{PT+PaymentName+C
ompany+UnitPrice+Date}(payment1({delivery1+p
1-1+ company4+5+date6}+{delivery2+p1-2+comp
any2+5+date7})+payment2({delivery2+p2-1+c5+5
+date7}+{delivery3+p2-2+c4+40+date8}))

If a user wants to answer the question “What is the
budget flow in the slips?”, firstly he/she gets the
image of formula 3.3-1 by the factor “PT” through the
map f according to the processing design. From the

results, you will obtain the budget flow shown in Fig
5.

f (formula3.3-1,‘PT’)
=Plan×PT(plan1{ProjectA})+Order×PT(order1{plan

1}+order2{plan1})+Delivery×PT(delivery1{order1}
+delivery2{order1}+delivery3{order2})+Payment×
PT(payment1({delivery1}+{delivery2})+payment2
({delivery2+delivery3}))

={Plan+Order+Delivery+Payment}PT{plan1+(order
1×plan1+order2×plan1)+(delivery1×order1+deliver
y2×order1+delivery3×order2)+(payment1(delivery1
+delivery2)+payment2(delivery2+delivery3))}

(formula 3.3-2)

Next, if a user wants to answer the question “How
much has not yet been delivered in the slip for
order1?”, firstly he/she gets the image of formula
3.3-2 and the factor “order1” through the map f.

f (formula 3.3-2, “order1”)
=Order×PT(order1×plan1+(delivery1+delivery2)orde

r1)

From the result, you can see that the budget of order1
flows from plan1 and flows to delivery1 and delivery2.
And secondly, he/she gets the image of formula 3.3-1,
by “order1×Price”, “delivery1×Price” and
“delivery2×Price” through the map f respectively.

f (formula 3.3-1, “order1×Price”)
=Order×Price×order1×30

f (formula 3.3-1, “delivery1×Price”)
=Order×Price×delivery1×10

f (formula 3.3-1, “delivery2×Price”)
=Order×Price×delivery2×15

From these, you can see that prices of order1,
delivery1, delievry2 are 30, 10 and 15 respectively,

Fig 3 Attributes of the slips in each step

Fig 5 Budget flow within a company

Fig 4 The slips during each step

Reprint: Tosho Kodama, Tosiyasu L. Kunii, Yoichi Seki, "An Example of a Tracking Function Using the Cellular Data System",
Proceedings of the 9th WSEAS International Conference on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and
DATA BASES (AIKED'10), Murray Edwards College, University of Cambridge, UK, February 20-22, 2010 , pp. 372-377.

and that the price of the order1 which has not yet been
delivered is 5 (=30-10-15) by simple calculations.

3.4 Considerations
In existing business application development of a
budget flow tracking function under the assumption
that the format of slips often changes and budget flows
unexpectedly, it is generally difficult and costly to
develop and maintain the system. On the other hand, if
CDS is employed instead, the design of data structure
as formulas is more adaptable to changes (such as in
slip format or budget flow) and the design of the
tracking function of business objects becomes quite
simple using the map, if you design the cellular space
and design the processing of necessary information
from the created formula, and it therefore becomes
simple and economical to develop and maintain the
function. In other words, the business objects and their
relations, and business logic are described directly and
simply by CDS and the data that a user wants are
outputted in parts from the inputted data through the
maps of CDS.

4 Related works
The distinctive features of our research are the
application of the concept of topological processing,
which deals with a subset as an element, and that the
cellular space extends the topological space, as seen in
Section 2. The conceptual model in [2] is based on an
ER model, where tree structure is applied. The
approach in [3] aims at grouping data of a graph
structure where each node has attributes. The ER
model, graph structure and tree structure are expressed
as special cases of topological space, and a node with
attributes is expressed as one case of the cellular space.
These models are included in the function of CDS.
Many works dealing with XML schema have been
done. The approach in [4] aims at introducing simple
formalism into XML schema definition for its
complexity. An equivalence relation of elements is
supported in CDS, so that complexity and redundancy
in schema definition are avoided if CDS is employed,
and a homotopy preservation function is introduced
into CDS in the model for preserving information. As
a result, the problems described in [4] do not need to
be considered in CDS. Some works of inductive data
processing have been done recently. CDS can also be
considered as an inductive systems. The goal of
research on the inductive database system of [7] is to

develop a methodology for integrating a wide range of
knowledge generation operators with a relational
database and a knowledge base. The main
achievement in [8] is a new inductive query language
extending SQL, with the goal of supporting the whole
knowledge discovery process, from pre-processing via
data mining to post-processing. If you use the methods
in [7], [8], the attributes according to users’ interests
have to be designed in advance. Therefore it is
difficult to cope with changes in users’ interests. If you
use CDS, a formula for a topological space without an
attribute as a dimension in database design can be
created so that the attributes of objects don’t need to be
designed in advance.

5 Conclusions
In this paper, we have applied CDS to the
development of the core logic of the budget flow
tracking function in a company. If you use CDS during
development, application programs can become
simple because of its flexibility at the time of
modeling. The point we should emphasize is that the
quality of the system using CDS is closely related to
how the formulas for space are designed according to
IMAH [1]. The design of formulas is fully various,
because Formula Expression is very simple in
describing business objects and their relations.
Therefore, the creativity of the system developer
designing the formulas becomes more important when
he/she uses CDS.

References:
[1] T. L. Kunii and H. S. Kunii, “A Cellular Model for

Information Systems on the Web - Integrating Local
and Global Information”, In Proceedings of DANTE'99,
Kyoto, Japan, IEEE Computer Society Press, pp.19-24,
1999.

[2] Anand S. Kamble, “A conceptual model for
multidimensional data”, In Proceedings of APCC’08,
Tokyo, Japan, Australian Computer Society, Inc.,
pp.29-38, 2008.

[3] Alexandr Savinov, “Grouping and Aggregation in the
Concept-Oriented Data Model”, In Proceedings of
SAC’06, Dijon, France, ACM press, pp.482-486, 2006.

[4] Wim Martens, Frank Neven, Thomas Schwentick, Geert
Jan Bex, “Expressiveness and complexity of XML
Schema”, ACM Transactions on Database System,
pp.770-813, 2006.

[5] Denilson Barbosa, Juliana Freire, Alberto O.
Mendelzon, “Designing Information-Preserving
Mapping Schemes for XML”, In Proceedings of

Reprint: Tosho Kodama, Tosiyasu L. Kunii, Yoichi Seki, "An Example of a Tracking Function Using the Cellular Data System",
Proceedings of the 9th WSEAS International Conference on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and
DATA BASES (AIKED'10), Murray Edwards College, University of Cambridge, UK, February 20-22, 2010 , pp. 372-377.

VLDB’04, Trondheim, Norway, VLDB Endowment,
pp.109-120, 2004.

[6] Toshio Kodama, Tosiyasu L. Kunii, Yoichi Seki, “A
New Method for Developing Business Applications:
The Cellular Data System”, In Proceedings of CW’06,
Lausanne, Switzerland, IEEE Computer Society Press,
pp.64-74, 2006.

[7] Kenneth A. Kaufman1, Ryszard S. Michalsk, Jarroslaw
Pietrzykowski, and Janusz Wojtusiak, “An Integrated
Multi-task Inductive Database VINLEN: Initial
Implementation”, Knowledge Discovery in Inductive
Database, LNCS 4747, pp.116-133, Springer-Verlag
Berlin Heidelberg, 2007.

[8] S. Kramer,V. Aufschild, A. Hapfelmeier, A. Jarasch, K.
Kessler, S. Reckow, J. Wicker and L. Richter “Inductive
Databases in the Relational Model: The Data as the
Bridge”, Knowledge Discovery in Inductive Database,
LNCS 3933, pp.124-138, Springer-Verlag Berlin
Heidelberg, 2006.

