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The most usual self-consistent reaction field (SCRF) continuum models for the description of solvation within
the quantum mechanical (QM) framework are reviewed, trying to emphasize their common roots as well as the
inherent approximations assumed in the calculation of the free energy of solvation. Particular attention is also
paid to the specific features involved in the development of current state-of-the-art QM SCRF continuum
models. This is used to discuss the need to maintain a close correspondence between each SCRF formalism and
the specific details entailing its parametrization, as well as the need to be cautious in analyzing the balance
between electrostatic and non-electrostatic contributions to the solvation free energy between different SCRF
models. Finally, special emphasis is given to the post-processing of the free energy of solvation to derive
parameters providing a compact picture of the ability of a molecule to interact with different solvents, which can
be of particular interest in biopharmaceutical studies.

Introduction

An overview of theoretical studies over the last decades shows
the extraordinary evolution experienced by quantum mechan-
ical methods in their application to the study of chemical sys-
tems.1 The research effort put into this field has crystallized in a
series of elaborate methods, which have impelled quantum
mechanical chemistry to approach the limit of ‘‘ experimental ’’
accuracy in the gas phase. The Nobel Prize awarded to Kohn
and Pople in 1998 is a clear recognition of the impact of quan-
tum theory in the chemical scenario. In the beginning of the
21st century there is no doubt that quantum chemistry consti-
tutes an extremely powerful tool to understand the structural
and reactive properties of molecules in the gas phase.
The study of chemical systems in condensed phases is, how-

ever, far more difficult.2 The main limitation consists of the
enormous number of molecules that must be considered in a
dynamic way to represent the assembly of chemical (solute,
solvent) entities which constitutes the solution state. Such a
complexity has given rise to a wide variety of computational
approaches,3 which include methods based on (i) the elabora-
tion of physical functions; (ii) computer simulation of classical
liquids, where any property of the system is obtained from an
ensemble of configurations representative of the solute–solvent
system; (iii) a supermolecule description of the solution, which
provides limited, but detailed information about specific
solute–solvent interactions, (iv) the combination of quantum
mechanical treatments of the solute with statistically averaged
descriptions of discrete solvent molecules, and (v) continuum
models, where the attention is mainly focused on one compo-
nent of the system, the solute, whereas the solvent is treated in
a very simplified way as a polarizable medium.
In the last decades there has been an evolution towards more

elaborate methods for the study of condensed phases. Com-
bined strategies using the diverse methods mentioned above

for the solvent molecules in conjunction with classical or quan-
tum mechanical treatments of the solute have given rise to a
plethora of methods, which are under continuous progress.
A comprehensive analysis of the evolution experienced by
these methods has been given in several reviews,3 which pro-
vide a critical evaluation of their suitability for the study of
chemical and biochemical systems.
This paper gives an overview of the current status and of the

perspectives of theoretical treatments of solvent effects based
on continuum solvation models where the solute is treated
quantum mechanically. It is worth stressing that our aim is
not to give a detailed description of the physical and mathema-
tical formalisms that underlie the different continuum models
examined here, since this issue has been covered in preceding
reviews.4 Rather, our goal is to stress the features that have
contributed to make continuum methods successful, to exam-
ine the factors that limit their reliability and to point out
potential areas where those methods can be useful to our
understanding of (bio)molecular systems in solution.

The basic continuum model

Continuum solvation models rely on the definition of an effec-
tive Hamiltonian for the solute M, ĤM (eqn. (1)), which can be
expressed as the addition of the usual electronic Hamiltonian
in vacuo, Ĥ0

M, and an interaction potential, V̂int . Within the
Born–Oppenheimer approximation, the Hamiltonian of the
solute depends on the coordinates of the electrons, q, and para-
metrically on the coordinates of nuclei, Q. The interaction
potential also depends on the solvent coordinates, collectively
denoted by X, so that V̂int ¼ V̂int(q,Q,X).

ĤHMðq;Q;XÞ ¼ ĤH0
Mðq;QÞ þ V̂ int ð1Þ

Following Ben-Naim’s definition of a solvation process,5 the
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embedding of a solute into a given solvent can be defined as the
process in which a particle of the solute is transferred from a
fixed position in the gas phase into a fixed position in solution
at constant temperature, pressure, and solvent composition.
Under these conditions, the Gibbs free energy of solvation,
DGsol , can be related to the reversible work necessary to build
up the solute M in the solvent S at equal number densities in
the gas phase and in solution. Such a work includes direct
solute–solvent interactions as well as the contributions due
to internal changes in the solute and solvent upon solvation
(eqn. (2)).

DGsol ¼ WðM=SÞ þ RT ln
qrotqvibð Þgas
qrotqvibð Þson

� �
ð2Þ

whereW(M/S) stands for the coupling work of the solute M in
the solvent S, and qrot , qvib denote the partition function for
rotation and vibration of M.
The preceding definition omits the contribution due to the

so-called ‘‘ liberation free energy’’ (eqn. (3)), which arises from
the differences in momentum partition functions, LM , of the
solute in the gas phase and in solution.

DGlib ¼ �RT ln
LM;gas

LM;son

� �
ð3Þ

The coupling work between M and S can be determined by the
charging parameter method (eqn. (4)),6 where the transition
from the states corresponding to the isolated solute+pure sol-
vent to the solute immersed in the solvent (denoted by indexes
0 and 1, respectively) is performed by means of a charging
parameter, l, so that the interaction between solute and
solvent is progressively turned on as l varies from 0 to 1.

W ðM=SÞ ¼
Z1
0

dl
Z

dO rSðlÞVintðq;Q;XÞgSðX; lÞ½ � ð4Þ

where gS(X;l) denotes the thermally averaged distribu-
tion function of the infinite assembly of solvent molecules
corresponding to the interaction potential lV̂int(q,Q,X).
The partition of the reversible work W(M/S) into several

contributions,7 typically cavitation, dispersion, repulsion and
electrostatic components, allows solving eqn. (4) from conse-
cutive integrations that involve different charging parameters:
(i) a length-dependent parameter for cavitation, a parameter
related to (ii) the electron transition density for dispersion,
or (iii) the electron overlap for repulsion, and a parameter
associated to (iv) the electric charge for electrostatics. We
should note that such partitioning is convenient from a practi-
cal point of view, but it is not strictly rigorous because it
neglects the mutual coupling between the components of the
solute–solvent interaction potential. In other words, due to
its nature of state function, the free energy computed directly
or in several independent integrations is the same, but this is
not true for its components.
Since only the total free energy of solvation is experimen-

tally measurable, to assess the magnitude of the coupling
between the different terms is difficult. The development of
theoretical formalisms that consider explicitly the mutual cou-
pling between the different contributions appears to be the
only valuable approach to determine the reliability of the par-
titioning scheme.8,9 Though the computational cost of the cal-
culations still limits the range of applicability of these studies,
it can be assumed that the most important fraction of the sol-
vent reorganization effects arises from cavitation and electro-
statics, especially for polar solvents. Since cavitation contains
the largest portion of the repulsion term, the coupling between
repulsion and electrostatics is expected to be small. It can also
be considered that dispersion is weakly coupled to electro-
statics, at least for neutral solutes and polar solvents. Under

these assumptions, the separate treatment of electrostatics
and non-electrostatics terms in continuum models might be
justified. Particularly, the basic continuum model involves a
simplified form of the interaction potential, V̂int , which is
reduced to the electrostatic component, whereas non-electro-
static terms are generally determined by using a variety of
formalisms that mainly exploit geometrical parameters of the
solute and general properties of solvent.
Based on the preceding discussion, eqn. (1) typically deals

only with the electrostatic problem of the solvation of a solute
in a given solvent, which is treated as a linear isotropic
polarizable medium characterized by suitable macroscopic
properties, such as the permittivity of the bulk solvent. Never-
theless, the perturbation created upon inclusion of the solute
makes that the solvent molecules surrounding the solute exhi-
bit properties clearly different from those of the bulk solvent.
Since the accurate representation of the differential response
of the solvent molecules located closer to the solute in a con-
tinuum model is not straightforward, most methods consider
a simple bulk-like electrostatic component, correcting short-
range effects in some effective way, either by modulating the
location of the boundary between solute and solvent or by
adjustment of the non-electrostatic contributions.

The non-electrostatic problem in continuum
methods

Cavitation

This term accounts for the work spent in creating a cavity of
appropriate volume and shape to accommodate the solute into
the bulk solvent. Once the cavity is formed, the other terms-
dispersion, repulsion and electrostatics- are switched on by
means of the charging parameter method (see above).
Different formalisms have been proposed for the calculation

of the cavitation free energy based on the shape and size of the
solute and on solvent properties, such as the surface tension,
the isothermal compressibility, or the molecular radius and
number density.10 A specially elaborate formulation of the
cavitation free energy is Pierotti’s scaled particle theory.11 In
this formalism, the molecules are assumed to behave as hard
spheres and the cavitation free energy is expanded in powers
of the radius of the sphere which excludes the centers of
solvent molecules (eqn. (5)). The coefficients K are expressed
in terms of properties of the solvent and of the solution (eqns.
(6a)–(6d)), such as molecular radius (RS) and number density
of the solvent (ns), pressure (P) and temperature (T ).

DGcav ¼ K0 þ K1RMS þ K2R
2
MS þ K3R

3
MS ð5Þ

K0 ¼ RT � lnð1� yÞ þ 9

2

y

1� y

� �2
" #

� 4pR3
SP

3
ð6aÞ

K1 ¼ � 3RT

RS

y

1� y
þ 3

y

1� y

� �2
" #

þ 4pR2
SP ð6bÞ

K2 ¼
3RT

RS

y

1� y
þ 3

2

y

1� y

� �2
" #

� 4pRSP ð6cÞ

K3 ¼
4pP
3

ð6dÞ

where y ¼ 4pR3
SnS/3, and RMS is the sum of the radii of

solvent and solute, i.e. RMS ¼ RM+RS .
Pierotti’s formalism is expected to work reasonably well for

solvents and solutes of small, spherical size. However, the suit-
ability of the method for solvents having nonspherical shape is
more delicate, it being then necessary to define an effective
radius for the solvent molecules. For instance, in the case of
n-octanol an effective radius of 6.8 Å was derived from an
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accurate parametrization based on solubility data of rare gases
in this solvent.12 The extension of Pierotti’s formalism to
solutes having complex shape can be done following Claverie’s
equation (see eqn. (7)),13 where the free energy of cavitation
computed for each atom in the molecule is weighted by a fac-
tor proportional to the solvent-exposed surface of that atom.

DGcav ¼
X
i

Si

4pR2
i

DGcavðRiÞ ð7Þ

Dispersion–repulsion

In methods based on a discrete treatment of molecules these
contributions are typically evaluated from pair potentials
expressed as truncated expansions in powers of 1/r that relate
suitable chemical fragments (atoms, bonds, chemical groups)
of solute and solvent molecules. For a solute (M) surrounded
by solvent (S) molecules, the average dispersion–repulsion
energy can be determined from eqn. (8), where NS is the num-
ber of fragments of type s in the solvent molecule, ns is the
macroscopic density of the solvent, and gms is a correlation
function between chemical fragments m and s.

Edis�rep

� �
¼ nS

X
s2S

NS

X
m2M

Z
UmsðrmsÞgmsðrmsÞdr3ms ð8Þ

where

Ums ¼
X
k

ams;kr
�k
ms ð9Þ

with k denoting the different terms considered in the trun-
cated expansion, and ams,k being the coefficients of the series
expansion.
For each solute fragment m, an exclusion volume where no s

solvent units exist can be defined. The union of all the exclu-
sion areas around the solute defines a cavity with a surface
s, which allows the reformulation of eqn. (8) in terms of
surface integrals (eqn. (10)) by means of auxiliary functions
Ams(rms) (eqn. (11)). Different approximations have been con-
sidered to solve eqn. (11), such as the replacement of the func-
tions gms(rms) by factors calibrated for a given solute,14a or
the adoption of explicit, but simple forms for gms(rms), such
as the so called ‘‘uniform approximation’’,14b where gms(rms)
is 0 or 1 depending on whether the distance rms lies or not
within the solute cavity.

Edis�rep

� �
¼ nS

X
s2S

NS

X
m2M

Z
s
Amsnsds ð10Þ

where ns is the outer normal to the surface at position s.

~HHAmsðrmsÞ ¼ UmsgmsðrmsÞ ð11Þ

Simpler expressions to the calculation of the dispersion–
repulsion contribution rely on the assumption of a linear
dependence with the molecular surface (eqn. (12)). In fact,
previous studies have shown a linear relationship between the
dispersion–repulsion values computed from eqn. (10) in the
‘‘uniform approximation’’ approach and the van der Waals
surface (and volume) for hydrocarbons.15a Moreover, linear
relationships have also been found for the solvation free
energy of hydrocarbons and the solvent-accessible surface 15b.

DGdis�rep ¼
X
k

xkAk ð12Þ

where Ak denotes the contribution of a given atom to the
surface of the cavity and xk is the surface tension of atom k.
The simplified expression given by eqn. (12) takes advantage

of the fact that dispersion forces decay as r�6, which facilitates
the contribution of a given atom to be less dependent on the
nature and spatial distribution of nearby atoms. It must be

noted, nevertheless, that models based on a simple surface area
dependence might not be totally adequate for large solutes,
where buried atoms (i.e., those not directly accessible to the
solvent) can play a relevant contribution to the dispersion
interaction. In these cases addition of a term related to the
solvent excluded volume appears to be necessary.16

It is also worth to distinguish between the microscopic
atomic surface tensions used in continuum models and the
macroscopic surface tension of the solvent. The parameters
xk are typically derived by fitting to experimental free energies
of solvation (see below). Therefore, besides dispersion–
repulsion contacts between solute and solvent, they have to
effectively account for any systematic inaccuracy in the elec-
trostatic treatment as well as for other effects ascribed to the
interaction of the solute with the solvent molecules in the
first-solvation shell.

The electrostatic problem in continuum methods

Within the framework of the linear response approximation,
the QM treatment of the solute embedded in a continuum is
formally represented by the Schrödinger equation given in
eqn. (13), where the perturbation operator added to the solute
Hamiltonian, V̂ele , couples the electrostatic response of the sol-
vent, characterized by the macroscopic dielectric constant e, to
the charge distribution of the solute, rM , and E is the electro-
nic energy of the solute plus the electrostatic contribution to
the free energy of solvation. The factor 1

2 in eqn. (13) accounts
for the work spent in polarizing the solvent, which amounts to
half the solute–solvent interaction energy.

ĤH0
Mðq;QÞþ 1

2
V̂Vele q;Q;rM; eð Þ

� �
Cðq;QÞ ¼EðQÞCðq;QÞ ð13Þ

The electrostatic free energy can be determined by substract-
ing the energy of the solute in vacuo, E�, to the electrostatic
free energy of the solute in solution, Gele(eqn. (14a)), which
can be obtained by a variational calculation of the functional
given in eqn. (14b), where both the wavefunction of the solute
and the reaction field, which are mutually dependent, are
simultaneously optimized.

DGele ¼ Gele � E0 ð14aÞ

with

Gele ¼ Cðq;QÞ ĤH 0 þ 1

2
V̂Vele q;Q; rM; eð Þ

����
����Cðq;QÞ

� 	
ð14bÞ

At the Hartree–Fock level, this can be accomplished by a mod-
ified Fock matrix, whose elements are altered, in comparison
to those appropriate for the solute in vacuo, by the addition
of the V̂ele contribution to the monoelectronic term (eqn. (15)).

Fmn ¼ F0
mn þ hmjV̂ elejni ð15Þ

Different methods have been reported in the literature to
describe the solvent reaction field, and therefore to solve the
electrostatic problem. Here we limit ourselves to point out
the most remarkable features of the underlying formalisms
and address the reader to specialized reviews for an in-depth
explanation of the methods.

Multipolar expansion methods (MPE)

In this approach both the solute charge distribution and the
solvent reaction field are expressed as truncated multipolar
expansions. This definition encompasses models originally pro-
posed by Born, Kirkwood, Bell and Onsager.18 The Born mod-
el18a involves a monopole in a spherical cavity, which was
further ellaborated by Kirkwood to account for ionic strength
effects.18b Bell’s18c model describes the solvation free energy of
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Pu
bl

is
he

d 
on

 0
4 

A
ug

us
t 2

00
3.

 D
ow

nl
oa

de
d 

by
 P

en
ns

yl
va

ni
a 

St
at

e 
U

ni
ve

rs
ity

 o
n 

06
/1

0/
20

16
 2

2:
17

:4
1.

 
View Article Online

http://dx.doi.org/10.1039/b306954k


a point dipole in a spherical cavity. Onsager’s model is a refine-
ment of Bell’s treatment by adding to the system an isotropic
dipolar polarizability term.18d Further improvements to these
methods come precisely from the inclusion of higher terms in
the multipolar expansion and from the use of more realistic
cavities. In the QM framework, MPE models were developed
by Hall et al.,19a Tapia and Goscinski,19b Rivail and
Rinaldi,19c,d Yomosa,19e,f Karelson and Zerner,19g Mikkelsen
and coworkers19h and Wiberg et al.19i

The Nancy group has developed a very accurate and elegant
self-consistent reaction field model based on multipole expan-
sions. In the newest versions of the method multicentric multi-
polar expansions up to terms with l ¼ 12 are used,20 though
acceptable convergence is achieved in most cases upon trunca-
tion at l ¼ 6. Moreover, the spherical cavity was replaced by
an ellipsoid21a and subsequently adapted to molecules of gen-
eral shape.21b Typically the cavity is built up from superposi-
tions of nuclear-centered spheres by using Bondi’s atomic
radii scaled by a factor of 1.3, which was derived to fit the
experimental molecular volume of a set of reference liquids.
By denoting with I,J the centers of the multipolar expansion,

the electrostatic component of the solvation free energy is
obtained by introducing in the Fock matrix elements, Fmn , a
term due to the solvent reaction field, as noted in eqns. (16).

Fmn ¼ F0
mn þ

X
I

X
J

X
l;l0

X
m;m0

m M̂Mm
l ðIÞ

�� ��n� �
� f mm0

ll0 ðI ; JÞMm0

l0 ðJÞ ð16aÞ

with

Mm0

l0 ðJÞ ¼
X
l

X
Z

l M̂Mm0

l0 ðJÞ
�� ��ZD E

ð16bÞ

where F 0
mn represents the Fock matrix element for the isolated

solute, Mm
l denotes the operator for the multipolar expansion

of the solute charge distribution, and f mm0
ll0 are the reaction field

factors, which only depend on the dielectric constant of the
solvent and on the shape of the cavity.
Extension of the method to account for electron correlation

effects has also been considered at the Møller–Plesset perturba-
tion theory or at the density functional theory.22 Moreover,
analytical expressions for the first and second derivatives of
the free energy have been derived.23

Generalized Born model (GB)

The GB model can be considered to be a special case of the
MPE methods, as it is a multicenter generalization of the
one-center Born equation for monoatomic ions. In the GB
model the charge distribution is represented by a set of point
charges centered at nuclei. The electrostatic component of
the solvation free energy is determined from the indivi-
dual Born solvation of each atom (charge), corrected by the
perturbing effect of the other atoms (charges).
Besides preliminary efforts made in the development of GB

or related models,24 the most elaborate QM GB method corre-
sponds to the series of SMx models developed by Cramer and
Truhlar,4f which were originally implemented in semiempirical
AM1 and PM3 methods. Here the elements of the Fock matrix
adopt the form indicated by eqn. (17), where only the diagonal
elements of the Fock matrix are modified as a consequence of
the Kronecker delta function, dmn .

Fmn ¼ F0
mn þ dmn

e� 1

e

X
k0

qk0gkk0 with m 2 k ð17aÞ

where

qk ¼ Zk �
X
m2k

Pmm ð17bÞ

where k,k0 denote atomic indices, Zk is the nuclear charge of
atom k, P is the first-order density matrix, qk denotes the
atomic charge, and gkk0 is the Coulomb integral.
The original versions of the solvation model have been

refined in a number of ways leading to the latest SM5 model.25

The first remarkable feature is the refinement of the monopole
distribution. Earlier versions of the GB model used Mulliken
population analysis26 to obtain the atomic charges, but the
SM5 model adopts the class IV charges,27 which are based
on a mapping procedure aimed at reproducing charge-depen-
dent observables. Particularly, the SM5.42 models rely on
the Charge Model 2 (CM2) mapping,28 where atomic charges
are determined by first computing Löwdin charges,29 and then
by applying the charge mapping indicated in eqn. (18).

qCM2
k ¼ qL€oowdink þ

X
k 6¼k0

Bkk0 ðDZkZk0 þ CZkZk0Bkk0 Þ ð18Þ

where Bkk0 is the Mayer bond order between atoms k and k0,
and the matrix elements of C and D, which dictate how charge
is redistributed between atoms having different atomic num-
bers, are fitted to reproduce the agreement between experimen-
tal gas-phase dipole moments and those computed from CM2
point charges.
Another critical aspect of the GB method is the determina-

tion of the effective Born radii for the different atoms, which in
turn depends on the intrinsic Coulomb radii and on the geome-
try of the molecule. In earlier versions of the GB model the
intrinsic Coulomb radii were determined as a function of the
atomic charge.30 In the SM5 formalism, nevertheless, they
are constant for all atoms but hydrogen, which is assigned dif-
ferent values depending on the atom is attached to. A comple-
mentary refinement concerns the treatment of the dielectric
descreening, where a number of approximate methods have
been examined to estimate the descreening of one part of the
solute by the presence of another part of the solute.31 The
simplest approximation is the use of pairwise descreening
function,31b an approach which largely enhances the computa-
tional efficiency of the method, and that after some calibration
reproduce well more accurate approaches. Moreover, it also
facilitates the evaluation of analytic gradients into solvation
calculations.

Apparent surface charge (ASC)

A different solution to the electrostatic component of the sol-
vation free energy comes from the apparent surface charge
model. Particularly, the original formulation of the polarizable
continuum model (PCM) was developed by Miertus, Scrocco
and Tomasi.32

The method relies on the calculation of an apparent surface
charge that simulates the solvent response to the perturbing
effect generated by the solute’s charge distribution. To this
end, the solute cavity is tessellated into a number of surface
elements small enough as to assume that the solvent’s
charge density is constant. Then, the apparent charge can be
determined from the component of the electric field normal
to the surface (eqn. (19)).

qj ¼ � e� 1

e
Sj

@VT

@n

� �
j

ð19Þ

where VT is the total electrostatic potential, which includes
both solute and solvent contributions, n is the unit vector
normal to the surface element j, Sj is the area of the surface
element j, and e is the solvent dielectric constant.
The electrostatic component of the solvation free energy is

obtained by adding a term that account for the electrostatic
interaction with those apparent charges to the Fock matrix

3830 Phys. Chem. Chem. Phys., 2003, 5, 3827–3836
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elements, Fmn (eqn. (20)).

Fmn ¼ F0
mn þ m

X
k

qk
r� rkj j

�����
�����n

* +
ð20Þ

where the summation runs over the total number of surface
elements in which the solute cavity is divided and {qk} is the
set of charges (located at rk) that represents the solvent
response.
Different aspects of the physical and mathematical features

of the original PCM have been refined over the years. First,
owing to the mutual dependence between solute and solvent
charge distributions (eqns. (19) and (20)), an iterative proce-
dure was initially proposed to obtain self-consistency between
the solute wavefunction and the apparent charges spread on
the cavity surface. This iterative procedure was reformulated
using other procedures, such as the closure approach33a or
the matrix-inversion method.33b,c Within this latter formalism,
the development of analytical expressions for the first and
second free energy derivatives has allowed the implementation
of algorithms for geometry optimization in solution.34

Another issue that has deserved particular attention has
been the treatment of the charge compensation, which stems
from (i) the tails of the solute charge density that escape from
the solute cavity, and (ii) numerical errors due to tessellation
of the cavity surface. Originally this effect was corrected by
defining a factor, fX, that satisfies the relation given by eqn.
(21), where X denotes the net charge of the solute.

f X
X
k

qk ¼ � e� 1

e
QX

M ð21Þ

where QM denotes the total charge of the solute.
The most elaborate treatment of the charge compensation

relies on two features.35 First, the introduction of separate fac-
tors for the apparent charges induced by the nuclei and the
electrons. In this case QX

M (see eqn. (21)) accounts for the total
nuclear charge (X ¼ N) and for the total number of electrons
(X ¼ e). Second, the explicit treatment of the escaped charge
density as a source of an effective apparent charge. This is
achieved by computing the escaped solute charge, Qtot , from
the difference between the total number of electrons, Nel , and
the solute charge really inside the cavity, Qin , which is deter-
mined by resorting to the Gauss theorem (eqn. (22)). It is worth
noting that by calculating with sufficient accuracy the outer
solute charge, Qout , and by taking into account its effect
through an extra set of apparent charges, the solvent response
induced by the nuclei and the solute charge density inside the
cavity are then only affected by the same numerical errors.

Qout ¼ �ðNel �QinÞ ¼ � Nel þ
1

4p

Z
S

EMðsÞ � n̂ns � ds
� �

ð22Þ

Another aspect that has deserved particular research effort has
been the refinement of the procedure used to build up the
solute/solvent interface, which has been reformulated to
obtain a finer description of the cavity as well as to deal with
medium-to-large size solutes.36 Finally, while the original
PCM model was developed to treat an isotropic homogeneous
medium, the Pisa group has also made efforts to deal with more
complex systems, including anisotropic dielectrics and ionic
solutions, within the so-called integral equation formalism,37

which represents a significant improvement with regard to
the original formulation.
Inclusion of correlation effects within the PCM method has

also been performed at different levels,38 using CI, MC-SCF,
MBPT and density functional theories. Particular attention
has been paid to the inclusion of solvent effects only at the
energetic level or both at the energetic and density matrix levels
simultaneously.
A closely related ASC method is the conductor-like screen-

ing model (COSMO) developed by Klamt and Schüürman.39

The main feature of COSMO is that the solvent response is
treated by assuming an ideally screening state corresponding
to a conductor instead of a dielectric. The main practical ben-
efit of this approach arises from the simplification of the elec-
trostatic problem, which facilitates the calculation of analytic
gradients. The transition from a conductor to a high polar sol-
vent is not difficult, but such a transition is less evident for
a low polar solvent. To this end, the authors introduced an
empirical factor, f (e) (see eqn. (23)), to correct the electrostatic
free energy, where the parameter d was chosen to be 1

2 as a
compromise between the optimal values for a net charge and
for a dipole embedded in a cavity. Finally, the problem of
the escaping charge density was corrected by using an auxiliary
cavity lying approximately 1 Å further outside the main
cavity.39b

f ðeÞ ¼ ðe� 1Þ=ðeþ dÞ ð23Þ

Other methods based on a conductor-like description of the
solvent have been reported in the last years.40 Compared to the
Klamt–Schüürmann COSMO model, the main differences con-
cern the definition of the cavity and the treatment of the charge
outlying effects. Moreover, the choice of different values for the
parameter d (eqn. (23)) depending on the solute charge,
specially in apolar solvents, has also been investigated.
An extension of the model is the so-called COSMO-RS (real

solvent) method.41 In this approach both solute and solvent
molecules are initially described by means of COSMO cal-
culations, which provide ideally screened (free) energies and
apparent charge densities. The intermolecular interactions
then described as pairwise interactions of surface segments.
Accordingly, the deviations from ideal screening are described
as pairwise misfit interactions (eqn. (24)) of the ideal ap-
parent charges on contacting parts of the solute and solvent
molecules.

Emisfitðs; s0Þ ¼
a0

2
ðsþ s0Þ2 ð24Þ

where s,s0 are the local screening charge densities of the inter-
acting pieces of surface, and a0 is an adjustable parameter that
accounts for corrections in effective contact area and the
reduction in the misfit energy due to electronic polarization
of the interacting surface segments.

The solute cavity: parametrization of continuum
models

A key issue in any continuum model is the definition of the
solute–solvent interface, since it largely modulates the electro-
static contribution to the solvation free energy. Generally cav-
ities are built up from the intersection of atom-centered
spheres whose size is determined from fixed standard atomic
radii.42 However, other strategies have been proposed, such
as the use of variable atomic radii, whose value depends
on the molecular environment or the charge distribution of
the solute,43 the analysis of radial distribution functions
obtained from discrete simulations of diluted systems44 or the
choice of a given isodensity contour.45 Finally, though most
SCRF methods use the same cavity for all the solvents,
solvent-adapted cavities have also been considered.46

The development of any continuum model unavoidably
implies certain degree of arbitrariness, which mainly involves
the choice of the solute cavity and the treatment of non-elec-
trostatic contributions to the solvation free energy. In turn,
this requires a certain parametrization effort, mostly accom-
plished by fitting experimental and predicted free energies of
solvation, but also extended to properties such as solvatochro-
mic effects, solvent-induced shifts in chemical equilibria, or spe-
cific properties of solutes in solution.2,3d,g,4 Though the limited
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size of this manuscript precludes a detailed description, it is
worth to point out here the main features underlying the para-
metrization of the most commonly used continuum models.

The MPE model

This model was parametrized by Tuñón et al. to treat solvation
in water.47 The electrostatic term was determined at the
Hartree–Fock level with the 6-31G(d) basis using a mono-
centric multipolar expansion up to l ¼ 6 and an ellipsoidal
cavitiy, whose size was related to the axes of inertia of a solid
of uniform density limited by a van der Waals surface and
whose volume was constrained to be equal to the average
molecular volume in the liquid.
The nonelectrostatic terms were treated by using a linear

relationship with the atomic contribution to the surface area
(eqn. (25)). Accessible surface areas were calculated adding
the radii of a water molecule (1.4 Å) to the van der Waals radii
of the solute atoms. Each atomic surface tension is constant
for a specific atom type (C, N and O; different atom types were
considered for hydrogens depending on whether they are
bonded to C, N or O atoms) and was obtained by fitting
to the experimental free energies of hydration for a series of
35 small and medium-size neutral organic molecules, with
a root-mean square deviation between calculated and
experimental values of 0.75 kcal mol�1.

Gn�ele ¼
X
k

gkAk ð25Þ

The SM5 model

It has been subjected to a thorough parameterization by the
Minnesota group. Besides the semiempirical AM1 and PM3
Hamiltonians, the SM5.42R method48 has been parameterized
at the ab initioHartree–Fock (HF/MIDI!6D;25 HF/MIDI!, HF/
6-31G(d), HF/6-31+G(d), HF/cc-pVDZ)49b and density func-
tional (BPW91 with MIDI!6D, DZVP and 6-31G(d) basis;49a

BPW91 and B3LYP with MIDI! basis)48b levels of theory.
The nonelectrostatic terms (typically denoted by CDS for

‘‘cavitation–dispersion–solvent structure ’’ effects) were deter-
mined by using a functional form related to the solvent-acces-
sible surface area of the atoms (H, C, N, O, F, P, S, Cl, Br, I)
in the solute [eqn. (26)]. The atomic surface tension, sk , was
defined as a multilinear function of semiempirical surface ten-
sion coefficients, ~sskm (eqn. (27)). The first-solvation-shell func-
tional forms, Tm , depend on interatomic distances of atoms
within bonding distance and sometimes within the range of
distances characteristic of geminal interactions.25 Moreover,
within the so-called universal solvation model50 they also
depend on a small number of solvent descriptors.

GCDS ¼
X
k

skAk ð26Þ

sk ¼
X
m

~sskmTm ð27Þ

A large number of solvents were considered (including water,
alkanes, cycloalkanes, arenes, alcohols, ketones, esters, ethers,
amines, pyridines, nitriles, nitro compounds and amides) in the
universal SM5 model. The parametrization was performed by
considering 2135 free energies of solvation for 275 neutral
solutes and for 91 solvents, and for 49 ions in water. Mean
unsigned errors between calculated and experimental free ener-
gies of solvation are typically 0.4–0.5 kcal mol�1 for neutral
solutes, and around 4 kcal mol�1 for ions in water.

The UAHF PCM model

This model was parametrized by Tomasi and coworkers at the
HF/6-31G(d) level for neutral molecules and cations, and at
the HF/6-31+G(d) level for anions.51

The nonelectrostatic terms included cavitation and van der
Waals terms. The former was determined by using the
Claverie–Pierotti equation (eqns. (5)–(7)), and the latter was
calculated by using eqn. (10) and the uniform approximation
to the solvent14b,c (contributions to the dispersion arising from
k ¼ 6, 8, 10 terms in eqn. (9) and an exponential repulsion
term were considered). These terms were determined by using
a van der Waals-like surface obtained by using atomic radii
augmented with the solvent radius. For the electrostatic term,
a solvent-excluded surface obtained by scaling the atomic radii
by a factor f > 1 (1.2 for aqueous solutions) was used.
The UAHF parametrization is characterized by three main

features. First, hydrogens do not have individual spheres (uni-
ted atom approach), but they are included in the spheres of the
heavy atoms to which they are bonded. Second, the elements
of each periodic table row have the same ‘‘basic ’’ radius,
which is modified by the molecular environment. Third, a
series of rules have been defined to estimate the ‘‘ effective ’’
atomic radius by taking into account the molecular environ-
ment where the atom is inserted to. To this end, properties
such as the hybridization state, the number of linked hydro-
gens and the nature of the vicinal heavy atoms, among other,
are explicitly considered in those rules.
The UAHF procedure was applied to compute the hydra-

tion free energies for molecules containing H, C, N, O, F, P,
S, Cl, Br and I. The optimized radii reduced the mean error
with respect to the experimental hydration free energies below
0.2 kcal mol�1 for a set of 43 neutral solutes and around 1 kcal
mol�1 for 27 ions.

The MST model

This model also uses the PCM32 approach for the calculation
of the electrostatic component of the solvation free energy.
It has been parametrized by the Barcelona group at the
HF/6-31G(d) and semiempirical AM1 and PM3 methods.52

The method has been parametrized to describe solvation in
water, dimethylsulfoxide, octanol, chloroform and carbon
tetrachloride.
The MST method computes the nonelectrostatic contribu-

tions from the addition of cavitation and van der Waals con-
tributions. The cavitation component was computed using
the Claverie–Pierotti expression (see eqns. (5)–(7)), and the
van der Waals term was calculated using a linear relationship
with the atomic surface (eqn. (12)) by defining surface tensions
for atoms H, C, N, O, S, F, Cl and Br. Molecular-shaped
GEPOL cavities53 were used. In the last parametrization of
the model a dual-cavity strategy54 was used, so that nonelec-
trostatic contributions are determined by using a van der
Waals surface built up mainly from Pauling radii, whereas
the electrostatic term is determined by using a solvent-exposed
surface created by scaling the atomic radii by a solvent-depen-
dent factor. The use of solvent-dependent cavities was justified
by the need to account for the different placement of the first
solvation shell in different solvents,52 as determined from the
comparison of MST results with those obtained from discrete
simulations of the solute in solution using classical force fields
and mixed quantum mechanics/molecular mechanics calcula-
tions. For ions, a reduction of the cavity by a factor of �0.9
has been found to be necessary55 to reproduce the fact that sol-
vent molecules approach more to charged than to neutral
solutes.
The latest parametrization of the MST method was

performed by considering 228 small to medium-sized neutral
molecules containing prototypical organic functional
groups,52d 75 octanol/water partition coefficients52d and 47
ionic compounds.55b Generally, root-mean square devia-
tions less than 0.6 kcal mol�1 have been reported for neutral
solutes in the different solvents, 0.4 (in logP units) for the

3832 Phys. Chem. Chem. Phys., 2003, 5, 3827–3836
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octanol/water partition coefficients, around 3–4 kcal mol�1 for
the hydration of ionic compounds.

The COSMO-RS model

The parametrization of this method has been performed at the
DFT level with the BPW91 functional.56 The solute cavity was
built up by using a set of radii chosen so that the volume of the
cavity aproximated the molar volume of the compound. The
COSMO radii are about 1.17 times the Bondi van der Waals
radii. The DFT/COSMO calculations for each of the indivi-
dual molecules of the system affords the screening charge den-
sity (SCD) for each piece of the molecular surface. To account
for hydrogen-bonding effects, additional SCDs for hydrogen-
bond donor and acceptor capabilities, which are determined
upon parametrization, are considered. A dispersion term pro-
portional to the exposed surface area, with the atomic surface
tensions being determined by fitting experimental data, is also
included. Finally, other adjustable parameters are also
exploited.
The method was parametrized by considering 217 small to

medium-sized neutral molecules including a variety of chemi-
cal functionalities of the elements H, C, N, O and Cl using
a variety of properties. An overall accuracy around 0.4 kcal
mol�1 for free energies of hydration (neutral molecules) and
0.8 log units for the octanol/water partition coefficients has
been achieved.

Comparison of different SCRF formalisms

The preceding discussion suffices to state that parametrizations
of current state-of-the-art QM-SCRF methods allow to esti-
mate solvation free energies for a large variety of solutes with
an error below 1 kcal mol�1. Furthermore, in our experience
similar accuracy is generally obtained for molecules not con-
sidered in the fitting databases. Such an agreement, neverthe-
less, does not warrant that all the methods provide similar
values of the electrostatic and nonelectrostatic components
of the solvation free energy. Accordingly, it is a priori neces-
sary to maintain a close correspondence between each SCRF
formalism and the specific details entailing its parametrization.
Moreover, caution is needed in interpreting the various contri-
butions to the free energy of solvation provided by different
SCRF formalisms. Under these circumstances, whether or
not different SCRF methods are equivalent in describing the
solvation process of a given solute is unclear. At this point,
comparison of the electrostatic term is particularly worth,
since generally it is the only term affecting the solute wavefunc-
tion in solution (see above). Accordingly, a correct representa-
tion of the electrostatic component of the solvation free energy
is necessary for a suitable representation of the solvent-induced
changes in the solute properties.
Very recently a systematic analysis of the electrostatic

response given by three different formalisms -the GB model
as implemented in the SM5.42R model, the MPE (multicentric
expansion up to l ¼ 12 terms) model, and the MST version of
the PCM model- has been reported.20 For a set of 18 neutral
molecules containing typical organic groups, calculations were
performed at the HF/6-31G(d) level using the same geome-
tries, solute cavities and solvent permittivities for all the conti-
nuum methods. The results clearly point out that the three
SCRF formalisms behave similarly in capturing the changes
in the electrostatic free energy as the dielectric permittivity is
varied. Regarding the absolute value of the electrostatic term,
both MPE and MST methods give rise to a similar electrostatic
response (for the same cavity). On the contrary, the SM5.42R
method yields electrostatic free energies smaller in magnitude
than those derived from MPE and MST calculations when
identical cavities are employed, which suggests that for this

method smaller cavities should be used (as already done in
the current SM5.42 method).
The same study20 also compared the induced dipole moment

originated upon solvation. At this point, the results point out
that this property is less sensitive to the specific details of the
SCRF electrostatic formalism than the electrostatic compo-
nent of the solvation free energy, since all the methods leads
to a similar dipole moment enhancement. It must be noted,
nevertheless, that not all the properties might exhibit the same
sensitivity to the influence exerted by the solvent.
As noted above, the models could be further refined if not

only solvation free energies, but also solvent-induced changes
in solute properties were considered in the parametrization
process. Owing to the limited length this article must have,
we do not review here these aspects. Nevertheless, we want
to address the reader to the excellent review by Cramer and
Truhlar,4f where a comprehensive compilation of studies
devoted to the solvent effects on dipole moments, charge and
spin distributions, and electronic and vibrational spectra is
made. We also want to remark a couple of recent reviews by
Tomasi et al.,57 which examines properties such as hyperpolar-
izabilities, infrared and Raman spectra, circular dichroism and
nuclear magnetic shieldings, among other topics.

Towards fractional solvation models

Partitioning of the solvation free energy into fragmental
(atoms or groups) contributions has been the subject of large
research effort due to two major reasons. First, it allows us
to gain deeper insight into the physicochemical basis of the
solute–solvent interaction, which can be valuable to analyze
processes such as the ‘‘hydrophobic effect ’’.58 Second, it allows
a compact description of the solvation properties of molecules
for structure-activity relationships.59

Fractional contributions to the solvation free energy can be
qualitatively estimated by using simple methods, such as the
calculation of hydrophobic and hydrophilic surfaces60 or the
use of empirical group contributions.61 In particular, this latter
approach has given rise to a plethora of methods to predict
relevant physicochemical properties such as the octanol/water
partition coefficient.62 Typically, these methods exploit data-
bases of contributions assigned to specific atoms or groups
in conjunction with a diverse set of combination rules, which
correct the implicit assumption of the additive nature of frag-
ment contributions. In this context, the development of frac-
tional partitioning methods based on physical models can be
extremely useful to refine those empirical methods, because
(i) the contributions are computed considering explicitly the
molecular environment, conformation, ionic and tautomeric
states, and (ii) the fragmental contributions are directly
extracted from real physical properties. In the context of con-
tinuum solvation methods, fractional methods have been
developed within the GB framework by Cramer and Truhlar63

and by our own group within the MST model.64

Partitioning of the nonelectrostatic terms is straigthforward,
since they are typically related to the solvent accessible surface
of atoms (see eqns. (7), (12) and (26)). The partition of the elec-
trostatic term is more difficult due to the problems related to
partitioning of the solute charge distribution. However, this
problem can be alleviated by using perturbation theory, which
permits the rewriting of the electrostatic component of the
solvation free energy as shown in eqn. (28).65

DGele ¼ C0 1

2
V̂V sol

����
����C0

� 	
ð28Þ

where Vsol is the solvent reaction field generated by the fully
polarized solute in solution, whose wavefunction is denoted
by Csol.
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Eqn. (28) allows us to determine the electrostatic component
from the addition of fractional contributions (see eqn. (29)).
We should note that within this partitioning scheme, the con-
tribution of atom i (DGele,i) really accounts for the interaction
of the entire molecule with the surface elements j which can be
ascribed to the solvent-exposed surface of atom i.

DGele ¼
XN
i¼1

DGele;i ¼
XN
i¼1

X
j¼1
j2i

C0 1

2

qsolj

rj � r
�� ��

�����
�����C0

* +
ð29Þ

The use of NDDO-based semiempirical methods permits
further partition the contribution of atom i into self and cross
components (see eqns. (30)–(32)).66 The self term involves the
electrostatic interaction of the core charge (Zi) and the ele-
ments fmfn of the electron charge distribution of atom i with
the solvent reaction charges located at the surface of atom i
(eqn. (31)). The cross term accounts for the interaction of the
core charges (Zk) and the elements fmfn of the electron charge
distribution of the rest of atoms with the solvent apparent
charges at the surface of atom i (eqn. (32)).

DGele;i ¼ DGself
ele;i þ DGcross

ele;i ð30Þ

DGself
ele;i ¼

1

2

X
j¼1
j2i

X
m2i

X
n2i

Pmn

 "
wm

qj

rj � r
�� ��
�����

�����wn
* +!

þ Zi
qj

rj � r
�� ��

#

ð31Þ

DGcross
ele;i ¼ 1

2

X
j¼1
j2i

X
k 6¼i

X
m2k

X
n2k

Pmn wm
qj

rj � r
�� ��
�����

�����wn
* + !"

þZk
qj

rj � r
�� ��

#
ð32Þ

where w stands for the basis of atomic orbitals, and P is the
one-electron density matrix.
Despite the arbitrariness implicit to any partitioning method

of the solvation free energy, the surface-based partitioning
scheme outlined above has recently been shown to yield consis-
tently similar results to those obtained from alternative parti-
tioning schemes defined in the context of classical continuum
or discrete methods.67 This gives us confidence in the fractional
contributions derived in this way and makes this procedure
useful to derive parameters to be used in structure–activity
relationship studies.
The partitioning scheme outlined above has been recently

used to explore the transferability of fragmental contributions
to the octanol/water partition coefficient, logPow .

66 The results
obtained demonstrated the dependence of the fragmental con-
tributions to the logPow on the electronic and steric properties
of the substituents attached to the core of the molecule, as well
as the variation in the fragmental contributions due to confor-
mational, tautomerism and hydrogen effects. From a practical
point of view, this opens the way to quantify the magnitude
of these effects, which can in turn be used to refine the atom/
group contributions in simple additive-based empirical schemes.
The graphical display of fractional contributions to the

solvation free energy provides a 3D picture of the solva-
tion properties of molecules,64 which facilitates to compare
compounds based on their distribution of hydrophobic/hydro-
philic regions. For example, we found very useful for structure-
activity relationships studies the use of the ‘‘ solvation dipole ’’
[64b,68; see eqn. (33)] as a simplified descriptor of the solvation
profile of a molecule.

msol ¼
XN
i

DGsol;iðri � r0Þ �
DGsol

N

XN
i¼1

ðri � r0Þ ð33Þ

where r0 is an arbitrary origin (typically the centre of mass of
the molecule)
Comparison of two solvation dipoles can be easily done

using the dot product of the unitary vectors (eqn. (34)), which
affords a very compact similarity index ranging from 1 to �1.

WWZ ¼ mWsol
jmWsolj

� mZsol
jmZsolj

ð34Þ

where W and Z denote two molecules.
A more detailed comparison between the fractional distribu-

tion of two molecules (W with NW atoms, and Z with NZ

atoms) can be obtained from similarity functions like that
shown in eqn. (35).64d Since the function LWZ , depends on
the mutual orientation of W and Z, the optimum orientation
can be obtained by maximizing LWZ using gradient optimiza-
tion routines or simulated annealing procedures coupled to
Monte Carlo simulations.

LWZðRwzÞ ¼
XN
i¼1

XNN

l¼1

DGsol;iDGsol;l

ðrnil þ dÞ ð35Þ

where n is an adjustable parameter that controls the shape of
the similarity function and d is a constant that avoids the
occurrence of singularities in the similarity function.
The similarity index can then be determined by using, for

example, a Carbó-like index,69 as noted in eqn. (36), where
LWW and LZZ denote self-similarity indexes determined from
eqn. (35) when W ¼ Z and RWW ¼ RZZ ¼ 0.

gwz ¼
Lwzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LwwLzz

p ð36Þ

The usefulness of the hydrophobic similarity index in the
context of structure–activity relationships, drug bioavailability
and molecular recognition has been recently investigated.64b–d

The results suggest that his technique appears to be a powerful
tool for the rational design of bioactive molecules.

Final remarks

During the last decade theoretical chemistry has started an
irreversible journey from gas phase chemistry to chemical pro-
cesses in solution, which is widening the range of phenomena
that can be studied by theoretical methods. The development
and popularization of continuum models have contributed
decisively to this drastic change. Several SCRF methods are
now finely parametrized and incorporated in the most popular
computer programs, allowing solvation free energies of neutral
molecules to be routinely calculated with an accuracy clearly
below 1 kcal mol�1. These calculations, which ten years ago
could be made only by a handful of groups, are now possible
for all the chemical community. Such a fast popularization has
nevertheless some risks, particularly due to the use of these
methods as a ‘‘black box’’ without knowing the implicit
approximations inherent to their development. This review,
mainly oriented toward non-expert readers, tries to give a con-
cise description of the most popular solvation models, empha-
sizing the specific features of their underlying formalisms and
the details of their parametrization.
The simplicity of continuum models and their accuracy

guarantees an progressive extension in their application to dif-
ferent areas of chemistry. From a formal point of view, we can-
not expect a massive development of new methods, but current
methodologies will be probably refined to deal with new pro-
blems. To this end, comparison of results derived from SCRF
models and discrete QM/MM methods, as well as calibration
of solvent-induced changes in solute properties with suitable
experimental data,4f,57 appear to be very promising. Develop-
ments for treatment of non-dynamic solvation effects are also
expected.4a,f Solvation in mixed solvents is another challenge

3834 Phys. Chem. Chem. Phys., 2003, 5, 3827–3836
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that will focus methodological developments in a near future.
Finally, a large field for development exists in exploiting
all the information provided by continuum models in bio-
pharmaceutical studies.63,64 Perhaps in the near future,
continuum solvation methods will be as popular in a pharm-
acological or biochemical laboratory as they are nowadays in
a chemical one.
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X. Barril, F. J. Luque, J. L. Gelpi, M. Orozco, in Fundamentals
of Molecular Similarity, eds. R.Carbó-Dorca, X.Girones,
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Muñoz-Muriedas, S. Perspicace, N. Bech, S. Guccione, M.
Orozco, F. J. Luque, submitted.

65 (a) F. J. Luque, J. M. Bofill and M. Orozco, J. Chem. Phys., 1995,
103, 10183; (b) J. G. Angyán, J Chem. Phys., 1997, 107, 1291; (c)
F. J. Luque, J. M. Bofill and M. Orozco, J. Chem. Phys., 1997,
107, 1293; (d ) F. J. Luque and M. Orozco, J. Phys. Chem.,
1997, 101, 5573.

66 C. Curutchet, A. Salichs, X. Barril, M. Orozco and F. J. Luque,
J. Comput. Chem., 2003, 24, 32.

67 A. Morreale, J. L. Gelpı́, F. J. Luque and M. Orozco, J. Comput.
Chem., 2003, 24, 1610.

68 (a) D. Eisenberg and A. D. McLachlan, Nature, 1986, 319, 199;
(b) D. Eisenberg, E. Schware, M. Komaromy and R. J. Wall,
Mol. Biol., 1984, 179, 125.
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