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Abstract: In the paper, we are concerned with the partial asymptotic stochastic stability (stability in 
probability) of stochastic differential delay equations with Markovian switching(SDDEwMSs), the 
sufficient conditions for partial asymptotic stability in probability have been given and we have 
generalized some results of Sharov and Ignatyev to cover a class of much more general 
SDDEwMSs. 

Introduction 
Stochastic differential equations (SDEs) have attracted much attention since they are not only 

academically challenging but also of practical importance, and have played an important role in 
many ways such as in insurance, finance, population dynamic. Much more papers are concerned 
with the global stability of SDDEwMSs with respect to sample paths or moments. However, in 
many practical systems, such stability is sometimes too strong to be satisfied. So the notion of the 
partial stability (e.g. Peiffer and Rouche (1969), Rouche et al. (1977) ect.)has been involved, and 
the Second Method of Lyapunov as an indispensable tool has been used to investigated the partial 
stability (Sontag and Wang (2001), Vorotnikov (1998), Vorotnikov and Rumyantsev (2001)). In the 
process of investigating the qualitative properties of equilibria and boundedness properties of 
motions of dynamical systems, the partial stability plays the key role, and the systems are often 
determined by all kinds of equations, including stochastic differential equations, of course. 

To the best of our knowledge, the results of the partial asymptotic stability in probability of 
stochastic differential delay equations are beautiful. However, another problem appears on the work, 
as we all known, the dynamical systems often jump from this state into another state with the 
probability, so the markov chain becomes very popular in recent years, because it is extensively 
used to deal with the jump phenomena to obtain the good results, and the investigation of 
SDDEwMSs is quite necessary. In this paper, motivated by the previously mentioned problems, we 
make the attempt to study this topic to fill the gap. 

This paper is organized as follows. In section 2, we present some basic preliminaries and the 
form of stochastic differential delay equations with Markovian switching. In section 3, the sufficient 
conditions for partial asymptotic stability in probability have been obtained and proof has been 
given. In section 4, some well-known results are generalized in the remarks. 

Preliminaries and definitions 

Let 0{ , ,{ } , }t P≥Ω   be a complete probability space with a filtration satisfying the usual 

conditions, i.e., the filtration is continuous on the right and 0 contains all P-zero sets. ( )B t is a 

standard Brownian motion defined on the probability space. Let ([ ,0]; )C Rτ− denote the family of 
functionsϕ from[ ,0]τ− to R that are right-continuous and have limits on the left. ([ ,0]; )C Rτ− is 
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equipped with the norm 
0

sup | ( ) |
s

s
τ

ϕ ϕ
− ≤ ≤

= and Tx x x= for any nx R∈ . If A is a vector or matrix, 

its trace norm is denoted by | | ( )TA trace A A= , while its operator norm is denoted by 

{| |:| | 1}A sup Ax x= = .Denote by
0
([ ,0]; )bC Rτ− the family of all bounded, 

0 measurable, ([ ,0]; )nC Rτ− -valued random variables. Let 0, 0p t> ≥ , ([ ,0]; )
t

pL Rτ− denote by 

the family of all t measurable, ([ ,0]; )C Rτ− -valued random 

variables { ( ) : 0}ϕ ϕ θ τ θ= − ≤ ≤ ,and
0

sup | ( ) |pE
τ θ

ϕ θ
− ≤ ≤

< ∞ . 

Let { ( ), [0, )}r t t R+∈ = +∞ be a right-continuous Markov chain on the probability space 

0{ , ,{ } , }t P≥Ω   taking values in a finite state space {1,2,..., }S N= with generator 

( )ij N Nγ ×Γ = given by 

( ) ,
( ( ) | ( ) )

1 ( ) ,
ij

ii

o if i j
P r t j r t i

o if i j

γ
γ

Δ + Δ ≠
+ Δ = = =  + Δ + Δ =

. 

where 0Δ > ,Here 0ijγ ≥ is the transition rate from i to j ,if i j≠ .while .ii ij
j i

γ γ
≠

= − We assume that 

Markov chain ( )r ⋅ is independent of the Brownian motion ( )B ⋅ .It is known that almost every sample 
path of ( )r t is right continuous step function with a finite number of simple jumps in any finite 

sub-interval of R+ . 

Consider the following stochastic differential delay equations with markovian switching: 
for 0τ >  

    ( ) ( , ( ), ( ), ( )) ( , ( ), ( ), ( )) ( ), 0dX t f t X t X t r t dt g t X t X t r t dB t tτ τ= − + − >       (1) 

with the initial condition 0 1 2( , ) ([ ,0]; )T nX C Rξ ξ ξ τ= = ∈ − ,where 1
kRξ ∈ and 2

pRξ ∈ , 

k p n+ = , which is independent of ( )B ⋅ . Here, we furthermore assume that: 

: , : .n n n n n n mf R R R S R g R R R S R ×
+ +× × × → × × × →  

For our purpose, Let f and g satisfy local Lipschitz and linear growth condition, which can 
ensure the existence and uniqueness of solution, denoted by ( )X t  on 0t >  for Eq.(1). 

Denote 1 2( , )T nX X X R= ∈ , where 1
kX R∈ and 2

pX R∈ , k p n+ = .The domain 

1 2{ : , }n
KB X R X K X= ∈ < < ∞‖ ‖ ‖ ‖ , and the stopping time Bσ is the first exit time from the KB of 

the sample path of the process ( )X t .Denote the set of functions : { : ,R Rϕ + += → continuous, 
monotonically increasing and (0) 0}ϕ = . 

Denote by 2 ( ; )nC R R S R+ +× × the family of all non-negative functions ( , , )V t x i on nR R S+ × × , 

which are twice continuously differential with respect to x .For any ( , , , ) n nt x y i R R R S+∈ × × × , 

define an operator LV by 

1

1
( , , , ) ( , , ) ( , , ) ( , , , ) [ ( , , , ) ( , , ) ( , , , )] ( , , ),

2

N
T

t x xx ij
j

LV t x y i V t x i V t x i f t x y i trace g t x y i V t x i g t x y i V t x jγ
=

= + + + where

2

1

( , , ) ( , , ) ( , , ) ( , , )
( , , ) , ( , , ) ( , , ), ( , , ) ( ) .t x xx n n

n i j

V t x i V t x i V t x i V t x i
V t x i V t x i V t x i

t x x x x ×
∂ ∂ ∂ ∂= = =

∂ ∂ ∂ ∂ ∂
  

Definition 2.1. The trivial solution ( )X t of Eq.(1) is said to be partially stability in probability 

with respect to 1( )X t , if for any 10, 0> >  and 0 0t ≥ , there exists 1 0( , , ) 0tδ δ= >  such 

that
0

1 1{sup ( ) } ,
t t

P X t
≥

> <  whenever ξ δ< . 

Definition 2.2. The trivial solution ( )X t of Eq.(1) is said to be partial asymptotic stability in 

probability with respect to 1( )X t , if it is the 1( )X t − stable in probability 
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and 1
0

lim {lim ( ) 0} 1.
t

P X t
ξ → →∞

= =  

Main results 

Theorem 3.1.Let there exists a nonnegative functional ( , , )V t x i  2 ( ; )KC R B S R+ +∈ × × , such that  

(I) 1 1 2 1( ) ( , , ) ( )X V t X i Xϕ ϕ≤ ≤ , where 1 2,ϕ ϕ ∈ ; 

(II) 0LV ≤ ; 
(III) For any sufficiently small 0η > and 0θ > ,any solution ( )X t of Eq.(1), beginning in the 

domain 1{ ( ) }X tη θ< < ,such that 1{ : ( ) } , . .inf t X t a sρ η= = < ∞  

Then the trivial solution of Eq.(1) is said to be partial asymptotic stability in probability with respect 
to 1( )X t . 

Now, before giving proof of Theorem 3.1, we should present a lemma. 
Lemma 3.1.Let ( , , )V t x i be a function in class 2 ( ; )KC R B S R+ +× × , bounded in the 

domain ( ; )KR B S R+ +× × , and suppose that 0LV ≤ in this domain. Then the process 

( , ( ), ( ))B BV t X t r tσ σ∧ ∧ is a super-martingale, so that ( , ( ), ( ))B BEV t X t r tσ σ∧ ∧ , 

0 0 0( , ( ), )V t X t i≤ for ( ) KX t B∈ . 

Proof. The proof is very similar with the Lemma appeared in the Has'minskii(1980), so we omit it. 
Proof of Theorem 3.1. As the lemma 3.1 and Doob(1953),the process ( , ( ), ( ))B BV t X t r tσ σ∧ ∧ is 

a super-martingale, and we can get 
                        lim ( , ( ), ( )) , . ..B B

t
V t X t r t c a sσ σ

→∞
∧ ∧ =                   (2) 

Denote 1 { : }Bω σΩ = = ∞ , owing to the 0LV ≤  and the theorem(Sharov 1978), the solution of Eq.(1) 

is the partially stability in probability with respect to 1( )X t , so we have 1
0

lim ( ) 1.P
ξ →

Ω = Combining 

with condition(III) and all the paths of 1Ω ,then 1
0

inf ( ) 0.
t

X t
>

= By the lemma of Has'minskii(1980), 

that is, the coefficients of Eq.(1) satisfy the local Lipschitz and linear growth condition in every 
domain bounded, and the process ( )X t is regular, then the set 1{ : ( , ) 0}X tω ω = is inaccessible to any 

sample path of the process if 1 0ξ ≠ , where 1 2( , )Tξ ξ ξ= . So we get 

                               1inf ( ) 0.lim
t

X t
→∞

=                             (3) 

Combining with condition(I) and Eq.(3), it follows that  
                             inf ( , ( ), ( )) 0.lim

t
V t X t r t

→∞
=                        (4) 

As the Eq.(2), we have obtained 
           lim ( , ( ), ( )) lim ( , ( ), ( )) , . ..B B

t t
V t X t r t V t X t r t c a sσ σ

→∞ →∞
∧ ∧ = =             (5) 

By the Eq.(4) and Eq.(5), we have the limit of above equation 0c = , since the condition (I) and all 
the paths of 1Ω , we can implies that 

                           1lim ( ) 0, . ..
t

X t a s
→∞

=                                (6) 

So we have obtained the trivial solution of Eq.(1) is partial asymptotic stability in probability with 
respect to 1X with 1

0
lim ( ) 1P
ξ →

Ω = and Eq.(6).  

Remarks 

Remark 4.1.When 0τ ≡ and ( ) 0r t ≡ , equation (1) reduces to 
                   ( ) ( , ( )) ( , ( )) ( ), 0dX t f t X t ds g t X t dB t t= + >                  (7) 

which is recently studied in Ignatyev(2009), that is to say, the theorem 3.1 of Ignatyev(2009) has 
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been generalized. 
Remark 4.2. The operator LV of equation Eq.(7) of Sharov(1978) must be negative, but we can 

obtain the partial asymptotic stability in probability of Eq.(1) under LV  being 
non-positive( 0LV ≤ ), which makes the conditions of solution be more feasible to be satisfied. 
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