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ABSTRACT 

Background: Knowledge of the anatomy of the circulus arteriosus cerebri (CAC) is 

important in understanding its role as an arterial anastomotic structure involved in collateral 

perfusion and equalization of pressure, and may explain observed variations in neurovascular 

disease prevalences across populations. This study was aimed at understanding the 

anatomical configuration and morphometric properties of the CAC in Malawian population. 

Materials and methods: Brains were collected from 24 recently-deceased black Malawian 

human cadavers during medico-legal autopsies. Photographs of the CACs were taken using a 

camera placed at a 30 cm height from the base of the brain. Whole-circle properties and 

segmental vessel parameters were analyzed using the OSIRIS computer program, paying 

attention to completeness, typicality, symmetry, and segmental vessel diameters and lengths. 

Results: 69.57 % of the CACs exhibited the complete-circle configuration. Of these, 37.5 % 

were typical, representing an overall typicality prevalence of 26.09 %. Vessel asymmetry was 

observed in 30.43 % of cases. There were 7 cases of vessel aplasia and 12 cases of vessel 

hypoplasia. The posterior communicating artery (PcoA) was the most variable (with 12 

variations), widest (7.67 mm) and longest (27.7 mm) vessel while the anterior 

communicating artery (AcoA) was the shortest (0.78mm). Both the AcoA and the PcoA were 
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the narrowest vessels (0.67 mm) in this study. CAC variations in Malawian populations 

appeared to be similar to those observed in diverse populations. 

Conclusions: Anatomical variations of the circulus arteriosus cerebri exist in Malawian 

population and should be taken into consideration in clinical practice. 

Key words: anatomical configuration, neurovascular diseases, posterior communicating 

artery, anterior communicating artery, circle of Willis, hypoplasia, aplasia, vessel 

asymmetry, internal carotid artery 

 

INTRODUCTION 

The circulus arteriosus cerebri (CAC), also known as the Circle of Willis, is a 

polygonal anastomotic system of arteries that constantly supplies blood to the brain. First 

described in the year 1658 and later detailed by Thomas Willis in the year 1664 [1], the CAC 

connects the four sources of brain vascular supply: two internal carotid arteries (ICA) and 

two vertebral arteries [2]. In a typical CAC, the ICA give rise to the anterior cerebral arteries 

(ACA) which are connected to each other by the anterior communicating artery (AcoA) while 

the vertebral arteries terminate by fusion into the basilar artery (BA) [3]. The BA bifurcates 

to give rise to two posterior cerebral arteries (PCA). The PCA are connected to the ICA 

system by the posterior communicating arteries (PcoA) [1]. This anastomotic network forms 

an arterial ring at the base of the brain, which serves to provide collateral blood circulation to 

the brain through the major branches that arise from it and equalize the pressure. Anastomotic 

flow of blood in the proximal portions of the cerebral arterial tree is of great physiological 

importance, in as far as adequate brain perfusion is concerned. This is most evident in times 

of arterial incompetence such as during states of occlusive cerebrovascular conditions. [3] 

The clinical significance of the CAC needs no special emphasis. A number of studies 

have established the role of an anatomically complete Circle of Willis in maintaining 

sufficient cerebral perfusion [2,4]. Variations in the anatomy of the CAC have also been 

observed across population groups, ages and genders, some of which highly correlate with 

increased risk of neurosurgery complication and conditions such as migraine [1,5], stroke 

[6,7], and aneurysms [8,9]. Evidence reveals existence of both typical and atypical CAC 

variants within populations [15]. A typical CAC exhibits a complete polygonal structure with 



all its component vessels intact and branching from usual locations. All CACs with missing 

(aplastic) or hypoplastic (string-like) component vessels are referred to as atypical.  

The issue of segmental vessel aplasia or hypoplasia raises important questions on the 

systems’ ability to maintain adequate cerebral perfusion in normal states and the relationship 

between these variations and the risks of neurovascular diseases. The number of working 

collaterals within a CAC has been associated with lower stroke incidence in 2-year follow up 

studies [2,10]. Further, variations in anatomy of the CAC have, over the years, been used to 

explain, in part the observed difference in prevalence, incidence and geographical distribution 

of certain neurovascular diseases [11]. 

In literature, the CAC has been classified in at least three ways namely; whole circle 

classification [4,11–13], classification by segmental vessels [14–16], and classification by 

configuration of the posterior circulation [6]. Unlike the other systems, whole circle 

classifications are particularly important in that they focus on both the completeness of the 

arterial ring and the caliber of its component vessels. In addition, whole circle studies enable 

comparison across populations. However, studies on whole-circle properties are sparse and 

when available direct comparison is often a challenge due to inconsistent study protocols, and 

unspecified methodologies by some researchers [15]. For instance, the definition of 

hypoplasia and methods of vessel measurement have varied greatly across studies. 

The anatomy of the CAC has not been previously studied in Malawians and little is 

known on the distribution of neurovascular variations that exist in this population. 

Consequently, data on differences and similarities in anatomical configuration of the CAC 

between black Malawians and other diverse populations has not been established. This study 

aimed to understand and describe the anatomy of the CAC among indigenous Malawians and 

investigate variations in its anatomical configuration in comparison with other population 

groups. Knowledge of the morphological anatomy of the CAC among Malawians will help 

inform clinical practice, aid assessment of risks for public health interventions and offer 

convincing explanations on the prevalence of neuro-vascular diseases in Malawi. 

 

MATERIALS AND METHODS 

Sample collection 



A total of 24 brains were studied from the recently deceased black Malawian cadavers 

aged 3-65 years who were candidates of autopsy for medical-legal reasons in the laboratories 

of the Anatomy Division, College of Medicine, University of Malawi. The brains were 

extracted from cranial cavities, washed with isotonic saline to remove blood around the 

region of interpeduncular fossa, and fixed with 10% formalin. Cases with remarkable 

alteration in brain arteries and gross pathological lesions such as crush injuries, 

macroscopically identified tumours and severe haemorrhage were excluded from the study. 

This study was conducted in accordance with the Government of Malawi Anatomy 

Act No. 14 of 1990 and was approved by the University of Malawi’s College of Medicine 

Research and Ethics Committee (COMREC) with a clearance number P05/15/1729.   

 

Photography and image analysis 

Extracted brains were placed on a flat plane with a white background, ventral surface 

up. Images of the exposed base were taken with an 18.4 Megapixels camera (Canon EOS 

600D, 2011 model, Cannon USA). Before photography, a metric caliper gauge was placed 

horizontally on the frontal lobes anterior to temporal poles and each image was taken 

perpendicularly from a 30cm height in order to minimize errors that may arise due to 

variations in angles of view. 

Photographs were initially studied under direct vision to define the completeness of 

the CACs, then with OSIRIS software package installed on a Microsoft Windows 10 

computer to measure length and diameter of component vessels. OSIRIS is an open source 

extensible and portable program for displaying, manipulating and analyzing digital images. 

Designed in 1990 at the University Hospital of Geneva, the program is equipped with various 

image manipulation functions that allow a user to flip, zoom, pan and magnify images 

thereby allowing evaluation of distances and angles for research purposes [1]. The use of 

OSIRIS as a tool for studying morphometric anatomy of the CAC was described in previous 

works by Ansari et al., and Eftekhar et al. and needs not be repeated here [1, 15]. 

Vessels studied include the AcoA, the precommunicating part of ACA (A1), the PcoA 

and the precommunicating part of PCA (P1) (Fig. 1). To be consistent with previous studies 

[1,11,17], a cut-off point of 1mm was used to define vessel hypoplasia while asymmetry was 

defined as a vessel’s diameter or length being less than half of that on the contralateral side 

within a CAC architecture. Data was processed in Microsoft Excel program and CACs were 

schematized based on a scheme described by Riggs and Rupp. [4] Descriptive statistics of 

component vessel properties and hypothesis tests were run in Stata version 14 



 

RESULTS 

Data was processed at the level of the circle, where whole circle properties such as 

typicality, completeness and symmetry of the CAC were assessed, and at the level of 

individual segmental vessels, where vessel parameters such as length and diameter were 

analyzed. One hundred and fifty-eight segmental vessels from the 24 photographed arterial 

circles were measured and analyzed in this study. There was one brain whose circle had 

completely lost posterior circulatory vessels (the P1 and PcoA). However, it was still 

included in the final analyses because its anterior circulation was intact. 69.57 % of the CACs 

studied were complete, 37.5 % of which exhibited the classical text-book (typical) 

configuration where all segmental vessels were intact and had diameters of at least 1mm. 

This represented an overall typicality prevalence of 26.09% (table 1). Asymmetry of vessels 

between opposite sides of the CAC was observed in seven brains (30.43%). Vessels involved 

in asymmetry included P1 (four), A1 (three) and PcoA (two). Two CACs had double 

asymmetry, one involving P1 and PcoA vessels, and the other involving A1 and PcoA 

vessels. Table 1 presents a summary on the distribution of whole-circle CAC characteristics. 

Analysis at the level of segmental vessels revealed 19 separate cases of variations. 

There were seven cases of vessel aplasia (29.17 %), four of which were observed on the right 

side of the CAC and three on the left. Cases of hypoplasia were seen in 5 instances on the 

right side of the CAC, 3 instances on the left and 3 instances in the AcoA, making a total of 

12 cases (45.83 %). 

Comparison between the posterior (P1 and PcoA) and anterior (A1, AcoA) circulatory 

routes of the CAC revealed existence of more variations in the posterior route. Eight cases of 

vessel hypoplasia and seven cases of vessel aplasia were observed in the posterior circulation 

while only four cases of vessel hypoplasia were observed in the anterior. Most of the 

variations in the posterior circulation were associated with the PcoA. There was no case of 

aplasia in the anterior circulation. 

Duplication of vessels, in this instance associated with the AcoA, was observed in one 

case. There were only two candidates with more than one variation in the arterial circle (right 

PcoA hypoplasia with left PcoA aplasia; right PcoA and AcoA hypoplasia). The PcoA was 

the most variable vessel (with 12 variations) in this study, followed by the P1 (3 variations) 



and the AcoA (3 variations). The smallest diameter (0.67mm) was observed both in AcoA 

and PcoA vessels. The AcoA was the shortest (0.78mm) vessel while the PcoA was the 

widest (7.67mm) and longest (27.7mm) vessel. Hypoplasia was seen at least once in each 

vessel type (A1, P1, PcoA and AcoA) as shown in Table 2. A paired samples t-test revealed 

no statistically significant differences in length (P = 0.1256) and diameter (P = 0.9434) 

between first and second measurements that were collected in A1 vessel at an Alpha of 0.05. 

No aneurysms were observed in this study. 

 

DISCUSSION 

Whole circle properties: Typicality and Completeness  

Our findings suggest that although anatomically complete arterial circles are common 

in most populations, circles exhibiting the classical or typical configuration are not. Despite 

the wide prevalence range (4.6 % to 72.2 %) reported in literature [16,18], studies that have 

reported typical CAC prevalences higher than 50 % are rare. In the present study, the 

prevalence of typical CACs falls within the range and is consistent with studies conducted in 

other diverse populations [16,18]. For instance, prevalences of 14.2 %, 27 %, 28 % and 48 % 

were reported among Sri Lankans, Poles, Iranians and Indians respectively [5,11,15–17]. 

Koker et al, reported a typical CAC prevalence of 8 % in Turkish population while 

Americans registered 19 % and 14.5 % [4,19]. On the contrary, complete CACs are common 

in several populations. In the present study, 70.83 % of the brains had complete CACs. 

Similarly, a 90 % prevalence was reported among Iranians [15]. Regardless of typicality, 

Zulu found completeness in 90.2 % of cases among 185 Zambian cadavers [18], while 

Gunnal et al, found 1 typical CAC was in a sample of 150 adult brains 90 of which had 

complete CACs [20]. However, due to lack of adequate information on sample selection, 

demographic distribution and methods of vessel measurement, the representativeness of the 

findings could not be commented on. 

Typicality of the arterial circle is an attribute that depends on the proposed definition 

for hypoplasia. Across studies, researcher have defined hypoplastic vessels varyingly. This 

may have contributed to the wide disparity in the prevalence of CAC typicality in literature. 

For instance, some authors have previously presented whole circle properties of the CAC 

based on estimates without actually measuring component vessel parameters such as diameter 



and length. Others used terms such as ‘string-like’, ‘minute’ or ‘threadlike’ to describe the 

caliber of hypoplastic vessels [16]. Moreover, even among researchers who have measured 

component vessels directly, the definition of hypoplasia has not been uniform. Nagawa et al. 

[21], used a cutoff point of 0.5 mm in a study of Ugandan population while Iqbal used cutoff 

points of 0.5 mm in the AcoA alone and 1 mm in the rest of the vessels among Indians [5]. 

Meanwhile, Zulu et al., did not exclude hypoplasia in the definition of typicality [18]. 

Hemodynamically-unfavorable CAC configurations were observed in this study. For 

instance, the case of unilateral PcoA and AcoA hypoplasia (table 2) may affect collateral 

circulation of blood between the right and left arterial routes. Similarly, the case of PcoA 

aplasia with contralateral PcoA hypoplasia (table 2) may affect collateral flow between the 

ICA and VA systems. Both of these may be detrimental in times of cerebrovascular 

conditions especially where one route is affected (occluded or ruptured) and the other is 

required to provide backup in order to maintain adequate brain perfusion [16,22]. Various 

configurations of atypical CAC have shown to exacerbate or increase the risk of 

neurovascular diseases [2,16], and their presence within a population thus demands 

modification in routine clinical management [23]. For instance, knowing that a larger 

proportion of the population exhibit CAC configurations that may inhibit communication 

between posterior and anterior circulatory routes or between the right and left ICAs (as may 

be the case in PcoA and AcoA aplasia) would mean that surgeons need to be cautious during 

neurovascular procedures, particularly those that involve temporary unilateral occlusion of 

cerebral arteries as would be the case during repair of intracranial aneurysms. Instances of 

bypassing or shunting effects, vascular inadequacy, recovery and lack of recovery after 

vascular occlusion procedures have previously been explained by variations in anatomy of 

cerebral arteries, particularly the CAC [1,5]. 

 

Vessel asymmetry 

Vessel asymmetry is a property that is scarcely reported among CAC studies. 

According to Ansari et al. [1], asymmetry is said to exist when the diameter of a component 

vessel is less than half of that of its contralateral counterpart. However, Pascalau et al, used 

an extended definition incorporating both diameter and length [2]. The present study used the 

latter. 



A 30.43% prevalence of asymmetry was observed in the present study, with higher 

frequencies in the PcoA, followed by A1 and P1 vessels (table 1). The patterns of asymmetry 

in the CAC architecture appears to be distributed similarly across populations. Gunnal et al. 

[20], reported higher frequency of asymmetry in PcoA (58%), A1 (31.33 %) and P1 (22.66 

%) as compared to other vessels in Indian population, which is consistent with findings of the 

present study. Similar results were also observed among Turks in 2018 [2]. This seems to 

suggest that some variations in the anatomy of the CAC may, to some extent, be attributed to 

factors other than racial and geographical differences. 

The issue of asymmetry causes variation in branching patterns of segmental vessels of 

the CAC where some segments arise from and terminate in unusual locations. This tends to 

position the arterial flow divider at points of bifurcation unfavourably, causing alterations in 

intravascular haemodynamics [5]. Using mathematical models approximating resistance to 

flow, vascular conductance and branching, Pascalau et al demonstrated that asymmetrical 

arteries offered higher resistance to blood flow and exhibited imbalanced bifurcation 

geometry to a higher extent than normal arteries [2]. This has been proposed to be an 

independent risk factors for development of embolism and intracranial aneurysms due to 

higher possibilities for increased wall sheer stress within such vessels which may over time 

accelerate atherogenesis and intimal degeneration [24]. Unsurprisingly, regions with greater 

likelihood of aneurysms development or rupture represent the most frequently reported sites 

for asymmetry [2,5]. Moreover, A1 aplasia, PcoA hypoplasia and Basilar artery asymmetrical 

fusion were independently associated with higher recurrence rate of saccular aneurysms 

following coil embolization in an 8 years cohort study [8]. 

 

Aplasia and hypoplasia 

Consistent with other cadaveric studies [1,17], the PcoA and AcoA were the 

narrowest vessels (0.67 mm in diameter) in the present study. Segmental vessels’ diameter 

and length are independent factors that affect functionality of the CAC as an anastomotic 

structure. It has been established that volume of blood flow is directly proportional to arterial 

diameter and inversely proportional to arterial length [21]. Thus, shorter and wider segmental 

vessels are seen to favour haemodynamics of the CAC to a greater extent than longer and 

narrower (or hypoplastic). This is analogous to the way thicker and shorter wires favour flow 



of current in an electric circuit. Using mathematical models, Pascalau et al, observed that 

hypoplastic arteries presented a higher resistance to flow than otherwise normal vessels [2]. 

The PcoA has been the narrowest vessel in many studies [1,17]. Moreover, in a normal CAC 

configuration, the PcoA are naturally the narrowest vessels and therefore a point of highest 

flow resistance in the entire CAC architecture. Due to the widely-established association 

between vessel hypoplasia and neurovascular diseases [2,5,8], this may partly explain the 

higher occurrence of abnormalities in the posterior half of the CAC as observed in literature. 

Apart from hypoplasia, missing vessels (aplasia) also render the CAC unfavorable as 

a collateral channel for arterial supply to the brain. In literature, cases of complete absence of 

vessels are quite rare. Most variations have been associated with string-like appearance of 

vessels, accessory vessels and disparities at branching [2,16]. De Silva et al found no aplasia 

among 225 Sri Lankan brains [16]. In their study, circles were visualized under a dissecting 

stereomicroscope which may have improved the accuracy of vessel identification, enabling 

the researchers to measure even the very thin vessels that could otherwise be missed under 

naked vision. Gunnal et al. [20], found only 2.66 % aplasia cases in a sample of 150 

formalin-fixed brains; however, the measurement tool was not specified. Using photography 

and picture manipulation computer software, the present study found aplasia in 29.17 % and 

hypoplasia in 45.85 % of the brains, reflecting fewer cases of aplasia than hypoplasia. This is 

consistent with other cadaveric studies [1,2,17,20]. 

In the present study, variations involving the posterior half (PcoA and P1) of the CAC 

were more frequent than those involving the anterior half (Table 2). This is a common 

finding among CAC studies across populations [2,5,17,20,25]. De Silva et al reported of 

these variations in 70 % of 225 brains in 2009 [16]. Similarly, in a study of 100 Polish brains, 

Koziej et al, found that 88 % of the observed variations involved the PcoA alone [17]. Using 

a similar method as used in the present study, Eftekhar et al found a total of 87 % variations 

(60 % PcoA hypoplasia, 10 % PcoA aplasia, and 7 % P1 hypoplasia) in the posterior half of 

the circle [15]. These observations seem to suggest that the distribution of anatomical 

variations of the CAC may be uniform across populations. 

 

CONCLUSIONS 



The present study has provided data on whole-circle properties of the CAC among 

Malawians for the first time. Values of vessel diameter, vessel length as well as laterality 

have also been established. Variations in the anatomy of the CAC seem to exist in Malawian 

population and their distribution appears to be similar to those observed in other diverse 

populations. CAC configurations with the potential to favor atherogenesis, aneurysm 

formation and exacerbation of strokes have also been observed. These should be considered 

when performing various neurovascular procedures, particularly those that involve occlusion 

of main cerebral vessels in order to avoid unexpected complications. It is recommended 

based on this study, that such invasive neurovascular procedures be preceded by angiography 

and functional occlusion tests. Future studies should investigate the prevalence of 

neurovascular diseases, mechanisms of atherogenesis and aneurysm formation in Malawians. 
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Table 1. Distribution of differences in whole circle properties 

Property Variant Subvariant  Count (%) 

Typicality Typical   6 (26.09) 

Atypical  Complete  10 (43.49) 

Incomplete  7 (30.43) 

Symmetry  Symmetrical   16 (69.57) 

 Asymmetrical   7 (30.43) 

 

Table 2. Variations in segmental vessels of the CAC 

Vessel segment Parameter Laterality  Count (n) or Mean  

SD 

AcoA Diameter  1.65 ± 0.64 

 Length  2.92 ± 0.94 

 Hypoplasia (n)  3 

 Aplasia (n)  0 

A1 Diameter   1.75 ± 0.45 

 Length  12.54 ± 3.07 

 Hypoplasia (n) Unilateral 1 (left) 

  Bilateral 0 

 Aplasia (n) Unilateral 0 

  Bilateral 0 

PcoA Diameter  1.61 ± 1.05 

 Length  12.95 ± 4.63 

 Hypoplasia (n) Unilateral 5 (4 right, 1 left) 

  Bilateral 0 

 Aplasia (n) Unilateral 7 (3 right, 4 left) 

  Bilateral 0 

P1 Diameter  1.60 ± 1.05 

 Length  5.87 ± 1.98 

 Hypoplasia (n) Unilateral 3 (1 right, 2 left) 

  Bilateral 0 

 Aplasia (n) Unilateral 0 

  Bilateral 0 
Multiple variations: 2 (right PcoA hypoplasia and left PcoA aplasia, right PcoA and AcoA hypoplasia). 

Duplication of vessels: 1 (AcoA) 

 

 

Figure 1. Schematic diagram and photograph of complete CAC configurations showing 

major component vessels. AcoA: Anterior communicating artery, ACA: Anterior cerebral 

artery, MCA: Middle cerebral artery, ICA: Internal carotid artery, PcoA: Posterior carotid 

artery, PCA: Posterior cerebral artery, BA: Basilar artery.  

 

Figure 2. Some of the variations seen in this study. a. CAC with right unilateral PcoA 

hypoplasia (arrow); b. CAC with duplicated AcoA, the proximal of which was hypoplastic 

(arrow); c. CAC with unilateral P1 hypoplasia (arrow); d. CAC with right PcoA aplasia 

(missing). 






