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Abstract 

Recent research has suggested that forecast evaluation on the basis of standard statistical 

loss functions could prefer models which are sub-optimal when used in a practical setting. 

This paper explores a number of statistical models for predicting the daily volatility of 

several key UK financial time series. The out-of-sample forecasting performance of 

various linear and GARCH-type models of volatility are compared with forecasts derived 

from a multivariate approach. The forecasts are evaluated using traditional metrics, such as 

mean squared error, and also by how adequately they perform in a modern risk 

management setting. We find that the relative accuracies of the various methods are highly 

sensitive to the measure used to evaluate them. Such results have implications for any 

econometric time series forecasts which are subsequently employed in financial decision-

making. 
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I. Introduction 

Modelling and forecasting stock market volatility has been the subject of a great deal of debate over the past 

fifteen years or so. Volatility, usually measured by the standard deviation of portfolio returns, is uniquely 

important in financial markets, for it is often taken to represent the portfolio’s risk.  Consequently, the 

literature on forecasting volatility is sizeable and still growing. Akgiray (1989), for example, finds the 

GARCH model superior to ARCH, exponentially weighted moving average, and historical mean models for 

forecasting monthly US stock index volatility. A similar result concerning the apparent superiority of 

GARCH is observed by West and Cho (1995) using one-step ahead forecasts of Dollar exchange rate 

volatility, evaluated using root-mean squared prediction errors. However, for longer horizons, the model 

behaves no better than their alternatives
1
. Also using the same models and data, West et al. (1993) use 

asymmetric, utility-based criteria for evaluating the conditional variance forecasts, finding that GARCH 

models tend to yield the highest utilities. Pagan and Schwert (1990) compare GARCH, EGARCH, Markov 

switching regime and three non-parametric models for forecasting monthly US stock return volatilities. The 

EGARCH followed by the GARCH models perform moderately; the remaining models produce very poor 

predictions. Franses and van Dijk (1996) compare three members of the GARCH family (standard GARCH, 

QGARCH and the GJR model) for forecasting the weekly volatility of various European stock market 

indices. They find that the non-linear GARCH models were unable to beat the standard GARCH model. 

Brailsford and Faff (1996) find GJR and GARCH models slightly superior to various simpler models
2
 for 

predicting Australian monthly stock index volatility. The conclusion arising from this growing body of 

research is that forecasting volatility is a “notoriously difficult task” (Brailsford and Faff, 1996, p419), 

although it appears that conditional heteroscedasticity models are among the best that are currently available. 

In particular, more complex non-linear and non-parametric models are inferior in prediction to simpler 

models, a result echoed in an earlier paper by Dimson and Marsh (1990) in the context of relatively complex 

versus parsimonious linear models. Finally Brooks (1998) uses a measure of market volume in volatility 

forecasting models, but observes no increase in forecasting power. 

 

                                                 
1
 The alternative models are the long term mean, IGARCH, autoregressive models, and a nonparameteric 

model based on the Gaussian kernel. 
2
 The other models employed are the random walk, the historical mean, a short- and a long-term moving 

average, exponential smoothing, an exponentially weighted moving average model, and a linear regression. 
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Recent papers have also sought to compare the predictive ability of volatility forecasts derived from the 

market prices of traded options, with those generated using econometric models (see, for example, Heynen 

and Kat, 1994 or Day and Lewis, 1992). The general consensus appears to be that implied volatility forecasts 

are more accurate from those derived using pure time series analysis, but also that the latter still contain 

additional information not embedded in the implied values. 

 

Also over the past decade, there has been rapid development of techniques for measuring and managing 

financial risk, partially motivated by a spate of recent financial disasters involving derivative securities. One 

of the most popular approaches to risk measurement is by calculating what is known as an institution’s 

“value at risk” (VaR). Broadly speaking, value at risk is an estimation of the probability of likely losses 

which could arise from changes in market prices. More precisely, it is defined as the money-loss in a 

portfolio that is expected to occur over a pre-determined horizon and with a pre-determined degree of 

confidence. The roots of VaR’s popularity stem from the simplicity of its calculation, its ease of 

interpretation, and from the fact that VaR can be suitably aggregated across an entire firm to produce a single 

number which broadly encompasses the risk of the positions of the firm as a whole. Jorion (1996) or Dowd 

(1998) provide thorough introductions to value at risk, and Brooks and Persand (2000a and 2000b) present 

recent discussions of VaR model estimation issues. The value at risk estimate is also often known as the 

position risk requirement or minimum capital risk requirement (MCRR); we shall use the three terms 

interchangeably in the exposition below. 

 

Although the academic literature has thus far failed to keep pace with this expansion, evidenced by the 

relatively few academic studies that address this topic, one exception is the study by Jackson et al. (1998), 

which assesses the empirical performance of various models for value at risk using historical returns from the 

actual portfolio of a large investment bank. They find that non-parametric, simulation-based techniques yield 

more accurate measures of the tail probabilities than parametric models. Alexander and Leigh (1997) offer 

an analysis of the relative performance of equally weighted, exponentially weighted moving average 

(EWMA), and GARCH model forecasts of volatility, evaluated using traditional statistical and operational 

adequacy criteria. The GARCH model is found to be preferable to EWMA in terms of minimising the 

number of exceedences in a backtest, although the simple unweighted average is superior to both. Brooks, 

Henry and Persand (2001) investigate the effectiveness of various hedging models when assessed according 
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to their ability to minimise VaR, finding that there is a large role for time-varying volatilities and 

correlations, but a very minor role for asymmetries. 

 

This paper seeks to combine and advance the two literatures in volatility forecasting and financial risk 

management in a number of ways. First, the volatility forecasting debate is re-opened, and the forecasts from 

the various models evaluated on the basis of how well they perform in a modern risk management setting, as 

well as by traditional statistical loss functions. This is important for Dacco and Satchell (1999) demonstrate 

that the evaluation of forecasts from nonlinear models using statistical measures can be misleading, and they 

propose the use of alternative economic loss functions. Here, the relative performances of the forecasting 

models are evaluated using both statistical and economic loss functions, so that a comparison can be drawn 

between the two. Second, we also directly compare the forecasting performance of univariate and 

multivariate forecasting models for financial asset return volatility. Multivariate GARCH models permit the 

estimation of the conditional covariances between assets’ returns, and explicit modelling of this interaction 

may improve the accuracy of forecasts of volatility for a portfolio comprising these components. Finally, we 

evaluate forecasts over the 1- 5-, 10- and 20-day horizons. Although many volatility forecasting papers 

compare accuracies at daily horizons, it is often the case that financial market practitioners require 

predictions of much lower frequency. For example, the Basle Committee on Banking Supervision rules for 

the use of VaR models (see, for example Basle Committee on Banking Supervision, 1998) require the use of 

a 10-day  holding period, which allows reasonable time for investors to unwind a position, and fund 

managers typically re-balance their portfolios on a monthly (20 trading days) basis. 

 

The remainder of the paper is organised as follows. Section 2 presents the data employed in the study, while 

the forecasting models are described briefly in section 3. Forecast evaluation methods are outlined and 

discussed in section 4, with results given in section 5. Finally, section 6 summarises the paper, and offers 

some concluding remarks. 

 

2. The Data 

In this study we calculate the VaRs for three different assets - the FTSE All Share Total Return Index, the 

FTA British Government Bond (over 15 years) Index and the Reuters Commodities Price Index, as well as 
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an equally weighted portfolio containing these three assets
3, 4

. The data was collected from Datastream 

International, and spans the period 1
st
 January 1980 to 25

th
 March 1999. Observations corresponding to UK 

public holidays were deleted from the data set to avoid the incorporation of spurious zero returns, leaving 

4865 observations, or  trading days in the sample. In the empirical work below, we use the daily log return of 

the original indices. Summary statistics for the data are given in table 1. It is evident that the FTSE returns 

series is the most volatile, while the government bond index returns is the least. The benefits from 

diversification, in terms of a substantial reduction in variability, are clear, since the variance for the equally 

weighted portfolio returns is almost half that of the least volatile component. Also, as one might anticipate, 

the series are all strongly non-normal. All are leptokurtic, while the FTSE All-Share and commodities series 

are also significantly skewed to the left. 

  

3. Forecasting Volatility 

3.1 Construction of Forecasts and Notation 

The total sample of 4865 observations is split into two parts: the first 1250 observations (approximately 5 

years of  daily trading data) are used for estimation of the parameters of the model, and then one, two,…, 

twenty step ahead forecasts are calculated. The multi-step ahead forecasts are then aggregated to form 

forecasts of volatility over the next 5, 10, and 20 days. We can thus write
5
 

  t N t t n

n

N

, ,

2 2

1

 



         (1) 

where  t N,

2
 denotes the time t aggregated forecast for the next N steps, and  t t n, 

2
 denotes the n step ahead 

forecast made at time t.  

 

                                                 
3
 Our analysis assumes that we are long all the three assets - both individually and in the portfolio. A similar 

analysis could be undertaken for short or netted positions, but we would not expect our conclusions to be 

markedly altered. 
4
 This portfolio is deliberately highly simplistic relative to a genuine bank’s book, as well as being entirely 

linear in nature. The use of a simple portfolio enables us to more easily unravel the various estimation issues 

and broad aspects of the methodologies. Additionally, the three series that we consider are all fundamental or 

“benchmark” factor series, to which other series are mapped under the JP Morgan approach. 
5
 This step is permissible since the variances are additive over time. Another possibility would be to multiply 

the one step ahead forecast by the desired horizon using an equivalent of the “square root of time” rule, so 

that, for example, the volatility forecast over the next 20 days is 20 times the forecast for tomorrow. 

However, our approach is likely to be superior, since it employs more information while implicit 

extrapolation of one step forecasts could be inappropriate for a mean-reverting series. 
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In contrast to much previous research in this area, these are not 1,2,3,…,20 step ahead forecasts, but rather 

we aggregate the forecasts for the next 5, 10, and 20 days. Aggregated forecasts will be the ones of interest to 

financial market practitioners and risk managers, when they have investment horizons longer than one day; 

they will not be particularly interested in multi-step ahead one-day volatility forecasts, such as the volatility 

forecast for day t+20 made on day t. The sample is then rolled forward by removing the first observation of 

the sample and adding one to the end, and another set of forecasts of the next twenty days’ volatilities is 

made, and aggregated. This “recursive” modelling and forecasting procedure is repeated until a forecast for 

observation 4865 has been made using data available at time 4845. Computation of forecasts using a rolling 

window of data should ensure that the forecasts are made using models whose parameters have been 

estimated using a sufficient span of time, while not incorporating such old vintages that the data may no 

longer relevant in the context of an evolving financial market.  

 

3.2. Forecasting Models 

Almost all of the forecasting models employed in this study are not new, rather it is the evaluation of the 

models which is novel. Hence the model descriptions are brief and presented in table 2, with 

 f t n t, 

2  denoting the n-step ahead (n = 1, 2, …, 20) forecast for the conditional variance upon 

information available at time t, where t runs from observation 1250 to 4845. With one possible exception, 

the model equations in table 2 are self-explanatory, and readers are referred to Bollerslev et al. (1992), 

Brailsford and Faff (1996), or Brooks (1998), and the references therein, for a more detailed treatment. 

 

The only model which perhaps requires further explanation is the multivariate GARCH model, which has not 

been employed in previous studies of volatility forecast performance. The particular parameterisation used 

here is of the diagonal VEC form due to Bollerslev, Engle and Wooldridge (1988), where each element of 

the conditional variance covariance matrix hjk,t depends on past values of itself and past values of j,tj,t’ , 

which may be written 

vec H h C A vec B ht t t t t( ) ( ')    1 1 0 1 1        (14) 

where vec denotes the column stacking operator, A1 and B1 are restricted to be diagonal. The 

parameterisation for Ht+1 conditional upon the information set, allows each element of the conditional 
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variance-covariance matrix to depend on lags of the squares and of the cross products of the elements of  t+1 

as well as lags of the elements of Ht+1. 

 

4. Evaluating Volatility Forecasts 

4.1 Standard Loss Functions 

Three criteria are used here to evaluate the accuracy of the forecasts: mean squared error (MSE), mean 

absolute error (MAE), and proportion of over-predictions. Mean squared error provides a quadratic loss 

function which disproportionately weights large forecast errors more heavily relative to mean absolute error, 

and hence the former may be particularly useful in forecasting situations when large forecast errors are 

disproportionately more serious than small errors. The proportion of over-predictions should give a rough 

indication of the average direction of the forecast error (compared with the two previous measures which 

only give some measure of the average size) and whether the models are persistently over- or under-

predicting the “true” value of volatility. Hence this measure gives an approximate guide as to whether the 

forecasts are biased. 

 

4.2 But What is Volatility? 

Unlike financial asset returns, volatilities are not directly observable from the market. Consequently, when 

attempting to benchmark the accuracy of volatility forecasting models, researchers are necessarily required to 

make an auxiliary assumption about how the ex post, or realised volatilities are calculated. The vast majority 

of existing studies,  including those listed in the introduction to this paper, use squared returns of the 

frequency of the data and analysis, as the measure of realised volatility. For example, studies using daily data 

would assume that the “correct” volatility number on day t is rt
2
, and it is this value that would be used as an 

input to the mean squared error calculation, or as the dependent variable in a Fair-Schiller (1990)-type 

regression of actual volatilities on their forecasted values. 

 

Whilst this method is simple and intuitively plausible, Andersen and Bollerslev (1998, hereafter AB) suggest 

that “same-frequency” squared returns are an unbiased but extremely noisy measure of the latent volatility 

factor which underlies financial asset return movements. AB show that a much better approximation to the 

latent volatility factor can be obtained by summing the squares of higher frequency returns. For example, a 

superior estimate of volatility on day t to rt
2
 is given by 
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 r rt t j m

j

m
2

1

2

1

* ( / )  



         (15) 

where m is an intra-day sampling frequency, such as 8 for hourly data
6
. 

 

Unfortunately, for many applications, the usefulness of this method is limited by the lack of availability of a 

sufficiently long span of higher-frequency returns. In the present paper, however, our analysis focuses upon 

daily, weekly, bi-weekly, and monthly forecasts. For the latter three horizons, two methods of calculating ex 

post volatility are available, both of which are employed in this study. The first of these ex post measures, 

which may usefully be termed the traditional measure, is to use weekly, bi-weekly or monthly squared 

returns
7
. The second method, would be to take the daily returns, square them, and sum them over the relevant 

(5, 10, or 20 day) horizon
8
. As AB note, it is not necessarily the case that the two ex post measures will give 

the same model rankings, let alone the same values of the error measures. Thus a comparison of model 

rankings under the two approaches is a relevant question for research, which this paper makes the first 

attempt to address. 

 

4.3 Value at Risk Calculation 

Given the voluminous literature which almost unquestioningly evaluates volatility forecasts using standard 

loss functions, three sensible questions to ask are first, what are volatility forecasts useful for, second, what is 

an appropriate loss function given this usage, and finally, will alternative loss functions lead to approval of 

the same or similar models? Some answers to the first of these questions are provided in the introduction to 

this paper. One use of volatility predictions, which has grown substantially in importance over recent years, 

is as an input to financial risk management. In this paper, we thus employ a relevant “risk management” loss 

function, which is based upon the calculation of an institution’s value at risk, as defined above in section 1. 

Specifically, we calculate value at risk for three individual assets by calculating the following quantity 

 VAR N Ft

i

t N

i( , ) [ ],













1

100
       (16) 

                                                 
6
 Assuming, of course, that 8 hourly observations are available from the financial market concerned. 

7
 So, for example, the volatility for weekly returns would be given by rt

2
 = [ln(Pt / Pt-5)]

2
 . 

8
 Obviously for the 1-day horizon, both methods will yield the same ex post measure. 
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where VARt

i
 is the value at risk for a given asset at time t, determined from model i (where i = 1, 13 are the 

models as defined in section 3.2 above), N is the investment horizon, [ ],Ft N

i 1
is a cumulative distribution 

function (cdf) and  is a percentage significance level. The cdf employed in this paper is that of a normal 

distribution.  

 

A limiting assumption of the analysis in many empirical papers in risk management is the standard 

assumption of normality, for it is well known that asset returns are not Gaussian. However, the normal 

approximation is extremely widely used in the risk management field.Fat tailed return distributions will lead 

the delta-normal model to understate the true value at risk (see, Jorion, 1996 or Huisman et al., 1998). For 

Example, a 5% daily loss is observed to occur approximately once every two years, while if returns were 

normally distributed, such a change would be expected only once every 1000 years (Johansen and Sornette, 

1999). A number of methods to incorporate the fat tails have been proposed, most importantly the use of 

extreme value distributions for returns (e.g. Embrechts et al., 1999). However, we continue to employ the 

normality assumption since other distributional approaches usually do not directly employ a volatility 

estimate. Therefore our purpose of comparing between volatility forecasts when used for risk management 

would be lost.  

 

We employ both the 1% and 5% levels of significance. The former level has been selected by the Basle 

Committee (1996) as the focus of attention, although the first percentile of a distribution is more difficult to 

estimate than the fifth, and thus the latter is the quantity which many securities firms wish to employ (see JP 

Morgan, 1996). The VaR corresponding to 5% may be defined as that amount of capital, expressed as a 

percentage of the initial value of the position, which will be required to cover 95% of probable losses. In the 

case of the normal distribution, this quantity may be calculated as  

 VAR Nt

i

t N

i( , . ,5%) 1645         (17) 

where  t N

i

,  is the square root of the conditional variance forecast, made at time t for forecast horizon N 

(N=1,5,10,20). We thus forecast volatility for some future period (t,N) and hence we calculate the amount of 

capital required to cover expected losses on 95% or 99% of the investment horizons. The 95% confidence 
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level is employed by the popular RiskMetrics
TM

 risk measurement software, while the regulators require 

capital to cover 99% of losses
9
. 

 

The calculation of the value at risk estimates for the individual assets is achieved by following the steps 

outlined above. In the case of the portfolio, however, for all forecasting models except the mutlivatiate 

GARCH (that is models 1-12 in Table 2), we employ a method known as the “full valuation approach”. This 

simply involves the aggregation of the components and the calculation of the portfolio return at each point in 

time. In this case, the resulting portfolio return series is modelled in the same way as the individual 

component assets.  

 

An alternative approach is known as the “volatilities and correlations” method, which has been popularised 

by J.P. Morgan (1996). Here, the portfolio value at risk is estimated using the volaitlities of the individual 

assets which form the MCRR, and the correlations between their returns. The portfolio value at risk may be 

written  

  

CBBC

CAAC

BAAB

2

C

22

B

22

A

2

P

MCRRMCRRbc2

MCRRMCRRac2

MCRRMCRRab2

MCRRcMCRRbMCRRa

MCRR

















               (18)

 

where A, B, and C denote the bond, stock and commodities series respectively, and a=b=c=1/3. We adopt 

this approach when using the multivariate GARCH model, but instead of using the time-invariant volatility 

and correlation estimates, we instead use the relevant forecasts of the conditional variances and covariances 

from the MGARCH model in (18) to derive the VaR. 

 

4.4 Risk Management-Based Forecast Evaluations 

In this paper, we employ three methods for determining the adequacy of the volatility forecasts that are used 

as an input to the value at risk calculation. All methods essentially require the calculation of VaR, and then 

assuming that the securities firm had employed this much capital, the methods track the actual realised losses 

                                                 
9
 In fact, the 99% VaR is multiplied by a “scaling factor” , which is usually 3, so that the actual coverage rate 

is considerably higher than 99%. We do not employ the regulatory scaling factor in our analysis, so as to 

focus upon forecast adequacy. Multiplying the estimated VaR by 3 has the effect of rendering the forecasted 

VaRs virtually indistinguishable from one another, since the implied coverage rate is now more than 99.99%. 
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during an out of sample period. The simplest approach to determining model adequacy in the risk 

management framework is to calculate the time until first failure (TUFF), defined as the first observation in 

the hold out sample where the capital held is insufficient to absorb that period’s loss, and derived as follows. 

Following Kupiec (1995), let p denote the realised probability of observing the first failure of the model in 

period V, and letting 
~
R  be a random variable that denotes the number of observations until the first failure 

is recorded, then we may write 

 Pr(
~

) ( )R V p p V   1 1
       (19) 

Then 
~
R has a geometric distribution with an expected value of 1/p. This quantity can be interpreted as the 

expected number of observations until the first failure is observed. In the cases of interest in this paper, if the 

actual proportion of failures were 5% and 1% respectively, then the time until first failure would be 100 and 

20 steps respectively. If we now let p* denote the probability of failure under the null hypothesis, then the 

following likelihood ratio test can be established 

 TUFF V p p p
V V

V

V

( , *) log[ *( *) ] log[ ]    














2 1 2
1

1
1

1

1

  (20) 

which is 
2
(1) under the null. Given the appropriate critical value, it is possible to derive a 95% confidence 

interval for TUFF of (6,439) for the 1% VaR and (-,87) for the 5% VaR
10

. The confidence intervals can be 

interpreted as follows. If VaR determined using a 1% significance level fails before the 6th observation, we 

can reject at the 5% level the null hypothesis that the model is adequate to cover losses on 99% of occasions. 

On the other hand, if the actual TUFF is greater than 439, then we would conclude that the model was 

leading to too high a value at risk, and therefore that the model was not failing as quickly as would be 

expected given the nominal 1% probability of failure. 

 

It is perhaps worth noting that it is desirable from the point of view of the bank or securities firm concerned, 

for the calculated value at risk to be neither too large nor too small. A value at risk set too low could imply 

that the bank does not have sufficient capital to cover future losses, leading at best to regulatory scrutiny, and 

an increase in the scaling factor (resulting in a substantial increase in the capital requirement), and at worst to 

financial distress and possible company failure. Conversely, a VaR set too high, so that it covers more than 

the nominal percentage of horizons (e.g. an estimated 5% daily VaR which is actually sufficient to cover 
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99.9% of the out of sample periods), probably implies that the firm is tying up too much of its capital 

unnecessarily in an unprofitable fashion
11

.  

 

Whilst intuitive and simple to calculate, TUFF has obvious flaws as an evaluation metric. First, it is clearly 

not using much information from the sample, since all observations after the first failure are ignored, 

resulting in the test being over-sized. Thus, if the start of the out of sample period occurs at a time of 

exceptional market turbulence, a model which may have been perfectly adequate for the rest of the sample 

and incurring no further failures, would be rejected. Second, the TUFF statistic consequently has low power 

to reject models which are not adequate - this is clearly evidenced by the wide confidence intervals for TUFF 

presented above. For example, a 99% nominal coverage rate is expected to result in first failure at 

observation 100, but even if an exceedence of the VaR is recorded as early as observation 7, we cannot reject 

the underlying model at the 1% level; thus TUFF will have low ability to discriminate between volatility 

forecasts from different models. 

 

Another simple method for determining model adequacy within the risk management framework is simply to 

calculate the percentage of times that the calculated value at risk is insufficient to cover the actual losses, 

during the rolling out of sample period. A good model would be one whose proportion of out of sample 

exceedences is close to the nominal value of (one minus coverage probability)% assumed (5% or 1%). We 

can also formulate a likelihood ratio test for the proportion of failures, in similar vein to (19) above. The 

probability of observing x failures in an actual sample of independent observations of size K will be 

distributed binomially, leading to the following test statistic distributed 
2
(1) under the null 

 UCF K x p p p
x

K

x

K
K x x K x

x

( , , *) log[( *) ( *) ] log[( ) ]    




















 2 1 2 1  (21) 

with notation as above. For ease of interpretation of the results, models are also ranked in the following way. 

We assume that any model which has a percentage of exceedences in the rolling hold-out sample which is 

greater than the nominal threshold, should be rejected as inadequate. Therefore, the lowest ranking models 

(classified as worst) are those which have the highest percentage of failures greater than the nominal value. 

                                                                                                                                                   
10

 It is not possible to establish a lower limit for the 5% VaR interval. 
11

 Particularly in view of the regulatory scaling factor, which multiplies the firm’s own value at risk estimate 

by at least 3. 
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When these models have been exhausted, we assume further that any model which generates far fewer 

exceedencess than the expected number is less desirable than a model which generates closer to the nominal 

number. Thus the best models under this loss function are those which generate less than, but closest to, the 

assumed coverage rate
12

. 

 

5. Results 

5.1 Statistical Evaluation Criteria 

The results for the volatility forecasts under standard statistical evaluation methods (percentage of over-

predictions, mean squared error, and mean absolute error) are presented in Tables 3 to 6 for the government 

bond, FTA All-Share, commodities and portfolio series respectively.  

 

Considering first the 1-step ahead (1 day) forecast horizon, a number of important features emerge. As one 

might anticipate, the random walk in volatility model produces roughly equal numbers of over-and under-

predictions of realised volatility measured by the squared daily returns. On the other hand, all models over-

predict volatility on average 70% of the time, except for the two EWMAs which over-predict more 

frequently than they under-predict. In all other respects, the random walk in volatility produces uniformly 

poor forecasts. 

 

No clear “winners” emerge at the 1-day horizon, with different models being preferred for each series. MSE 

is clearly not a good discriminator at the top end, with many models ranked equally as the best. MAE, on the 

other hand, selects EWMA models for the bond and portfolio series, while for the share and commodity 

series, the GJR and autoregressive volatility models are preferred. In terms of the least accurate next-day 

forecasting models, the random walk in volatility and EGARCH models emerge as the worst performers, 

followed by the EWMAs for commodities and shares, although the latter proved the most accurate for the 

other two series. 

 

An extension of the forecast and investment horizon to the one (trading) week, two week, and one month 

range does not markedly alter the relative model rankings, although the broad disagreement between criteria 

                                                 
12

 Of course, this could be replaced by a simpler symmetric or any other loss function if the user desired. 
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for a given series and model, is still apparent. For example, the autoregressive model, which ranks only 

seventh by MSE for the equities series at the one day horizon, ranks first when the investment horizon is 

extended to one month. 

 

However, as Andersen and Bollerslev (1998) have shown, the use of low frequency squared returns is often 

not a useful way to evaluate volatility forecasts, and it is quite possible that when sums of higher-frequency 

squared returns are used instead as the ex post volatility measure, not only the values of the error measures, 

but also the model rankings, could change substantially. Thus for the 5, 10, and 20 day periods, we also 

evaluate the forecast accuracies using the sum of squared daily returns. Results are presented for the bond, 

share, commodities, and portfolio series in tables 7 to 10 respectively
13

. Comparing the results for the low 

frequency squared returns versus the high frequency sums of squared returns, we note firstly that the values 

of the error measures are as expected reduced considerably
14

.  

 

The GARCH model with t-distributed errors now emerges as the clear winner, producing the most accurate 

forecasts according to MAE, for three of the four series (bonds, stocks, and the portfolio). Only for the 

commodities return series does GARCH-t perform poorly. For the latter series, the long term mean and 

autoregressive volatility models prove to be the best under both squared and absolute error measures. 

Interestingly, the worst models seem invariant to both the use of a same-frequency or higher-frequency ex 

post measure, and to whether the errors are squared or the absolute values taken; a bad model appears to be a 

bad model whatever. Models which fit into this category are the random walk in volatility, the exponential 

GARCH, and the exponentially weighted moving average model. 

 

5.2 Risk Management Evaluation Criteria 

The corresponding evaluations for the forecasts when used in a risk management context are given in Tables 

11 to 18. Volatility forecasts can be employed for the production of 99% and 95% nominal coverage rates 

for the value at risk estimates. In other words, forecasts are generated in respect of the amount of capital 

required to cover expected losses on 99% and 95% of days respectively. The results for these two sets of 

                                                 
13

 Of course, the results for the 1-step ahead evaluations will be identical to those of tables 3 to 6. 
14

 Mean squared errors are reduced by roughly an order equivalent to the forecasting horizon, while absolute 

errors are reduced by a factor of around two for all horizons. 
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nominal coverage rates are provided in Tables 11 to 14 and 15 to 18 respectively for the 1 day, 1 week, 2 

week and 1 month horizons. Three statistics are presented in each table - the time until first failure (TUFF), 

the proportion of failures (FT), and the test statistic associated with whether this proportion of failures is 

significantly higher than the nominal rate (UCF). Also given are the model rankings according to FT and 

UCF
15

 as described in Section 4.3 above.  

 

The first point to note is that if the objective is to cover 99% of future losses, then almost none of the models 

are adequate. The proportion of exceedences for the bond, share and commodity assets is always 

considerably in excess of 1% - typically 1.4% - 2%. Thus for example, even the best model at the 1-day 

horizon for the commodities data, which is the long term mean, has nearly 70% more violations of value at 

risk in the hold out sample than would be expected under the null. Also for this series, the majority of models 

have a TUFF statistic that takes on a value of one - that is, they fail at the first observation! Almost none of 

the models for any of the four asset classes makes it to the hundredth observation, the expected time until 

first failure. Consequently, the UCF statistic rejects all models for all individual asset series at all horizons. 

 

Matters are improved somewhat for the portfolio of assets, presumably as a result of the benefits of 

diversification in reducing the number of extreme observations that lead to an exceedence of the VaR. The 

typical proportion of exceedences is reduced to around 1.2%, and although only the multivariate GARCH 

model has fewer than 1% exceedences, several models are acceptable according to the UCF test statistic. 

Similar patterns are revealed at the 1-day and longer horizons. The models fare much better when only 95% 

coverage is desired; more than half of the models achieve their nominal rate. In terms of model rankings, the 

long term mean and the linear regression in volatility models seem preferable, although again, there is no 

uniformly most accurate model. The GARCH model seems to provide reasonably accurate VaR estimates, 

evidenced by its actual coverage rate being close to the nominal rate, although there is a tendency to over-

estimate the VaR, a result also observed by Brooks, Clare and Persand (2000). 

 

6. Conclusions 

                                                 
15

 The rankings according to FT and UCF will of course by definition be identical. 
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This paper has sought to re-examine the volatility forecasting literature in the context of a relatively new use 

of volatility forecasts - for financial (market) risk assessment. A number of our results are worthy of further 

note. First, the gain from using a multivariate GARCH model for forecasting volatility, which has not been 

previously investigated, is minimal. This result is true both under standard statistical and risk management 

evaluation measures. Given the complexity, estimation difficulties, and computer-intensive nature of 

MGARCH modelling, we conjecture that unless the conditional covariances are required, the estimation of 

mutlivariate GARCH models is not worthwhile. In the context of portfolio volatility, more accurate results 

can be obtained by aggregating the portfolio constituents into a single series, and forecasting that, than 

modelling the individual component volatilities and the correlations between the returns.  

 

Second, it appears that some models are poor performers irrespective both of the series on which they are 

estimated, and the loss function used to evaluate their forecasts. The random walk in volatility, the EGARCH 

and to a lesser extent the EWMA models, fall into this category.  

 

When it comes to selecting the “best” model for forecasting, however, the particular evaluation measure 

employed plays a predominant role. Whilst there seems to be little difference in the model rankings when the 

ex post measure is changed from low-frequency to high-frequency squared returns, the differences between 

rankings under statistical and risk management procedures are substantial. Although generalising across data 

series (asset classes) and investment horizons is difficult, overall the statistical measures preferred the 

GARCH(1,1) model over simpler techniques and over its extensions and variants. On the other hand, when 

evaluated in the context of VaR estimates which achieve an appropriate out of sample coverage rate, the 

simplest models, such as the long term mean (historical average) or the autoregressive volatility model, are 

preferred. We thus concur with Dacco and Satchell (1999) in arguing that the choice of loss function can 

have an over-riding effect upon volatility forecasting accuracies; thus the debate on superior volatility 

forecasting models should be considered far from resolved. 
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Table 1 

Summary Statistics 

 

 Long Govt Bond FTSE All Share Reuters Commodities Portfolio 

Mean 0.000233 0.000301 -0.000219 0.000171 

Variance 6.50 X 10
-6

 1.410 X 10
-5

 6.210 X 10
-6

 3.691 X 10 
-6

 

Skewness 0.0132 -1.063** -0.5663** -0.291** 

Kurtosis 3.37** 14.654** 18.369** 4.446** 

Bera-Jarque Statistic 2300** 44400** 68700** 4080** 

Notes: The Bera Jarque statistic is distributed asymptotically as a 
2
(2) under the null of normality. * and ** 

indicate significance at the 5% and 1% levels respectively. 
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Table 2: Description of Models Used for Forecasting 

Model Arcronym Equations for Model Equation # 

1. Random walk in 

volatility 

RW  f t n t,  2 2
                                                 (2) 

2. Long term mean LTM 
 f t n

j t

t

t j, 

 

 2

1249

21

1250
 

(3) 

3. Short term moving 

average  

MA5 
 f t n

j

t j, 



 2

0

4
21

5
 

(4) 

4. Long term moving 

average  

MA100 
 f t n

j
t j, 


 2

0

99

2
1

100
 

(5) 

5. Linear regression with 

1 lag 

AR1     f t n t t,    2

0 1

2
 (6) 

6. Linear regression with 

AIC lags 

ARAIC 
    f t n j t j

j

p

t,  





  2

0

2

0

1

 
(7) 

7. GARCH(1,1) GAR rt t t   1 1 1  , N(0, t1

2
),   

     f t n t t,    2

0 1

2

2

2
  

(8) 

8. GJR(1,1) GJR        f t n t t t tS, 

   2

0 1

2

2

2

3

2
  

St


=1for t  0 and 0 otherwise  

(9) 

9. EGARCH(1,1) EGAR 
log( ) log( ),    








 

f t n t

t

t

t

t

   

 














2

1 2

2

3 2

4 2

2
 

(10) 

10. Long exponentially 

weighted moving 

average 

EMA5 
  f t n

t

t

t

r r, ( ) ( )





  2

1 1

1

1

5

1  
(11) 

11. Short exponentially 

weighted moving 

average 

EMA100 
  f t n

t

t

t

r r, ( ) ( )





  2

1 1

1

1

100

1  
(12) 

12. GARCH with t-

distributed errors 

GART rt t t   1 1 1  , tk (0, t1

2
),   

     f t n t t,    2

0 1

2

2

2
  

(13) 

13. Multivariate 

GARCH 

MGAR See text for model description. - 

Notes:  Forecast equations are given for n = 1 step ahead, and recursions can easily be computed from these 

for the 2,3,…,20 step ahead forecasts.  The model order p for ARAIC is determined individually for each 

forecast iteration by the minimisation of Akaike’s information criterion, with maximal lag 5. All  model 

parameters are estimated using quasi-maximum likelihood. The exponentially weighted moving average 

coefficients (i) are chosen to produce the best fit by minimising the sum of the squared in-sample forecast  

errors. 
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Table 3: Statistical Loss Functions for Government Bond (Same frequency squared returns as ex post measure) 

Steps 1 5 10 20 

Models %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank 

RW 49.88 1 0.036 12 0.082 12 45.31 2 0.927 13 0.425 13 43.09 3 3.146 13 0.854 13 41.59 5 14.25 13 1.903 13 

LTM 76.97 13 0.020 1= 0.069 9= 70.82 11 0.485 3= 0.337 10 69.35 11 1.357 3 0.673 6= 67.12 10 6.362 1= 1.494 6 

MA5 67.01 3 0.021 8 0.068 7= 59.36 3 0.545 9 0.352 11 57.02 4 1.693 10 0.717 11 55.74 3 7.923 10 1.617 12 

MA100 73.63 6 0.020 1= 0.066 3= 67.23 9 0.485 3= 0.329 5= 64.34 9 1.406 5 0.673 6= 62.42 7 6.777 4 1.515 9 

AR1 76.44 11= 0.020 1= 0.069 9= 70.90 12 0.484 2 0.336 9 69.37 12 1.354 2 0.672 5 67.15 11 6.362 1= 1.493 5 

ARAIC 75.22 10 0.020 1= 0.068 7= 69.76 10 0.481 1 0.334 7= 68.73 10 1.349 1 0.668 4 66.98 9 6.393 3 1.495 7= 

GAR 73.85 7 0.020 1= 0.066 3= 65.95 7 0.489 6 0.327 4 60.89 5 1.440 4 0.661 3 57.33 4 7.071 6 1.482 4 

GJR 76.44 11= 0.024 10= 0.076 11 62.78 5 0.547 10 0.343 2 54.35 1 1.565 8 0.674 8= 46.57 2 7.618 8 1.480 2 

EGAR 69.96 5 0.170 13 0.135 13 48.01 1 0.796 12 0.412 12 37.83 6 2.000 12 0.772 12 28.76 12 8.324 11 1.640 10 

EMA5 43.48 2 0.022 9 0.056 1 37.89 4 0.542 8 0.302 1 35.86 8 1.628 9 0.627 1 34.38 8 7.870 9 1.440 1 

EMA100 31.77 4 0.024 10= 0.061 2 26.87 13 0.597 11 0.334 7= 25.76 13 1.860 11 0.702 10 24.53 13 8.765 12 1.576 11 

GART 74.16 8 0.020 1= 0.066 3= 67.20 8 0.485 3= 0.329 5= 63.42 7 1.430 6 0.674 8= 60.33 6 6.920 5 1.495 7= 

MGAR 74.83 9 0.020 1= 0.067 6 63.67 6 0.496 7 0.321 3 56.58 2 1.486 7 0.654 2 51.02 1 7.418 7 1.481 3 

 

Table 4: Statistical Loss Functions for Equities (Same frequency squared returns as ex post measure) 

Steps 1 5 10 20 

Models %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank 

RW 50.21 1 0.420 9= 0.175 11 45.54 1 18.26 13 1.032 12 43.14 6 103.2 13 2.308 13 41.03 6 440.2 13 5.344 13 

LTM 75.19 13 0.415 7= 0.156 9= 69.01 12 15.02 6 0.906 8= 65.90 12 78.87 3 1.925 9 62.39 9 313.3 4 4.442 9 

MA5 63.95 3 0.389 5 0.148 3 57.89 4 15.26 9 0.904 7 54.88 4 79.81 8 1.913 8 50.38 1 315.9 5 4.333 4 

MA100 69.37 6 0.412 6 0.156 9= 63.03 9 15.07 7 0.906 8= 60.25 7 79.38 4 1.977 11 56.44 5 313.0 2= 4.352 5 

AR1 71.85 11 0.387 4 0.151 5 67.87 11 14.57 1 0.886 5 65.81 11 78.21 1 1.908 7 62.20 8 313.0 2= 4.432 8 

ARAIC 70.32 8 0.415 7= 0.153 7 67.01 10 14.97 4 0.890 6 65.48 10 78.77 2 1.907 6 62.11 7 312.7 1 4.427 7 

GAR 70.68 9 0.342 1 0.142 2 61.25 8 14.93 3 0.842 3 55.36 5 79.47 6 1.808 3 44.70 4 318.9 7 4.275 1 

GJR 72.05 12 0.420 9= 0.149 4 57.52 3 15.13 8 0.830 1 46.98 1 80.05 9 1.796 2 34.94 10 323.8 10 4.363 6 

EGAR 66.15 4 0.796 12 0.274 12 45.40 2 15.54 10 0.929 11 36.97 8 80.81 10 1.984 12 30.63 12 323.5 9 4.610 12 

EMA5 43.98 2 2.859 13 0.443 13 39.50 6 17.38 12 1.147 13 35.10 9 80.89 11 1.897 5 32.63 11 324.1 11 4.517 10 

EMA100 32.18 5 0.475 11 0.155 8 29.35 13 15.91 11 0.922 10 26.98 13 81.37 12 1.943 10 24.56 13 325.7 12 4.533 11 

GART 70.18 7 0.343 2 0.139 1 60.83 7 14.90 2 0.834 2 54.74 3 79.52 7 1.793 1 44.98 3 319.8 8 4.286 2 

MGAR 71.74 10 0.370 3 0.152 6 60.20 5 15.01 5 0.857 4 54.24 2 79.42 5 1.850 4 45.70 2 317.2 6 4.321 3 
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Table 5: Statistical Loss Functions for Commodities (Same frequency squared returns as ex post measure) 

Steps 1 5 10 20 

Models %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank 

RW 50.07 1 0.146 11 0.091 10 45.40 5 2.683 13 0.446 12 43.59 2 10.78 13 0.956 12 40.95 4 45.63 13 2.124 13 

LTM 78.25 13 0.082 1= 0.076 2= 73.63 13 0.831 3 0.334 7 69.85 10 3.086 4 0.705 6= 66.31 8 16.17 4 1.575 5= 

MA5 67.23 4 0.095 7= 0.084 8= 61.53 7 1.049 9 0.369 9 59.11 5 3.736 9 0.781 11 55.58 2 17.51 7 1.712 10 

MA100 76.97 8 0.083 5 0.079 5= 72.13 10 0.835 4 0.345 8 68.71 9 3.076 1 0.721 8 64.23 5 15.89 1 1.616 8 

AR1 77.41 11 0.082 1= 0.075 1 73.35 11 0.830 2 0.333 5= 69.96 13 3.085 3 0.705 6= 66.20 6 16.16 3 1.576 7 

ARAIC 77.25 9 0.082 1= 0.076 2= 73.46 12 0.829 1 0.333 5= 69.90 11= 3.084 2 0.704 5 66.23 7 16.14 2 1.575 5= 

GAR 76.55 6 0.095 7= 0.081 7 54.94 6 0.894 8 0.296 3 41.98 3 3.349 7 0.641 2 29.07 10 17.85 8 1.534 1 

GJR 77.75 12 0.108 9 0.084 8= 46.20 4 0.887 7 0.290 2 34.44 8 3.341 6 0.643 3 23.84 13 17.86 9 1.553 3 

EGAR 72.63 5 0.344 12 0.156 13 53.10 3 1.472 10 0.430 10 41.64 4 3.783 10 0.751 9 32.85 9 18.28 11 1.635 9 

EMA5 55.97 2 0.124 10 0.115 11 50.54 1 1.796 11 0.530 13 47.84 1 5.455 12 0.993 13 44.40 3 16.68 5 1.785 12 

EMA100 37.36 3 0.353 13 0.125 12 31.15 9 1.838 12 0.434 11 30.10 11= 3.786 11 0.758 10 27.65 11 18.87 12 1.713 11 

GART 77.27 10 0.082 1= 0.077 4 51.41 2 0.865 5 0.284 1 39.03 7 3.374 8 0.639 1 26.29 12 18.00 10 1.546 2 

MGAR 76.80 7 0.093 6 0.079 5= 66.68 8 0.881 6 0.330 4 60.42 6 3.289 5 0.697 4 51.43 1 17.07 6 1.565 4 

 

Table 6: Statistical Loss Functions for Portfolio (Same frequency squared returns as ex post measure) 

Steps 1 5 10 20 

Models %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank 

RW 49.88 1 0.036 12 0.082 12 47.57 1 0.399 13 0.245 12 44.84 3 1.637 13 0.520 12 42.17 3 6.637 13 1.144 12 

LTM 76.97 13 0.020 1= 0.069 9= 70.40 10 0.200 1 0.196 7 68.46 10 0.756 1 0.408 6 62.87 7 2.927 1 0.900 4= 

MA5 67.01 3 0.021 8 0.068 7= 60.81 4 0.259 10 0.209 11 58.03 4 0.955 10 0.441 10 53.21 1 3.420 8 0.969 9 

MA100 73.63 6 0.020 1= 0.066 3= 66.98 7 0.201 2 0.193 6 63.89 7 0.764 2 0.405 5 58.72 4 3.035 4 0.914 8 

AR1 76.44 11= 0.020 1= 0.069 9= 69.65 9 0.212 5 0.197 8= 68.26 9 0.772 3 0.409 7 62.92 8 2.950 3 0.902 6 

ARAIC 75.22 10 0.020 1= 0.068 7= 69.40 8 0.218 6= 0.197 8= 68.01 8 0.777 4 0.410 8 62.70 6 2.930 2 0.900 4= 

GAR 73.85 7 0.020 1= 0.066 3= 60.89 5 0.210 4 0.182 3= 51.63 1 0.823 7 0.387 4 40.39 5 3.399 7 0.894 3 

GJR 76.44 11= 0.024 10= 0.076 11 54.08 2 0.224 8 0.161 1 39.94 5 0.784 5 0.327 1 28.10 10 3.064 5 0.795 1 

EGAR 69.96 5 0.170 13 0.135 13 44.70 3 0.218 6= 0.171 2 36.16 6 0.864 8 0.380 2 29.79 9 3.581 10 0.907 7 

EMA5 43.48 2 0.022 9 0.056 1 28.43 11 0.231 9 0.191 5 25.40 11 0.900 9 0.415 9 22.03 12 3.700 11 0.971 10 

EMA100 31.77 4 0.024 10= 0.061 2 20.22 12 0.289 12 0.203 10 18.47 12 1.164 12 0.445 11 15.94 13 3.888 12 0.994 11 

GART 74.16 8 0.020 1= 0.066 3= 62.87 6 0.205 3 0.182 3= 54.27 2 0.802 6 0.383 3 43.39 2 3.334 6 0.885 2 

MGAR 74.83 9 0.020 1= 0.067 6 87.82 13 0.282 11 0.346 13 83.20 13 0.997 11 0.659 13 75.74 11 3.489 9 1.261 13 
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Table 7: Statistical Loss Functions for Government Bond (Sum of Daily Squared Returns as ex post measure) 

Steps 1 5 10 20 

Models %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank 

RW 49.88 1 0.036 12 0.082 12 35.27 6 0.553 13 0.344 13 32.18 7 2.052 13 0.660 13 30.40 9 8.042 13 1.308 13 

LTM 76.97 13 0.020 1= 0.069 9= 71.07 10 0.143 7 0.232 8 68.65 9 0.376 6 0.406 8 68.29 6 1.042 5 0.725 7 

MA5 67.01 3 0.021 8 0.068 7= 51.18 1 0.181 8 0.231 7 46.62 2 0.561 10 0.407 9 43.26 3 1.716 9 0.788 9 

MA100 73.63 6 0.020 1= 0.066 3= 64.17 5 0.137 5 0.214 4 61.14 5 0.359 4 0.369 4 60.67 4 1.016 3 0.667 3 

AR1 76.44 11= 0.020 1= 0.069 9= 71.10 11 0.141 6 0.230 6 68.51 8 0.372 5 0.403 7 68.32 7 1.036 4 0.722 6 

ARAIC 75.22 10 0.020 1= 0.068 7= 70.38 9 0.136 4 0.222 5 68.82 10 0.354 3 0.387 5 68.35 8 1.001 1 0.705 5 

GAR 73.85 7 0.020 1= 0.066 3= 62.45 4 0.130 2 0.201 2 56.05 3 0.347 2 0.341 1 47.43 1 1.077 6 0.633 2 

GJR 76.44 11= 0.024 10= 0.076 11 57.41 2 0.186 10 0.233 9 43.87 4 0.472 8 0.401 6 29.74 10 1.495 8 0.761 8 

EGAR 69.96 5 0.170 13 0.135 13 32.10 8 0.421 12 0.333 12 20.47 11 0.908 12 0.603 12 15.08 11 2.690 12 1.180 12 

EMA5 43.48 2 0.022 9 0.056 1 18.89 12 0.184 9 0.237 10 14.63 12 0.544 9 0.458 10 12.74 12 1.737 10 0.896 10 

EMA100 31.77 4 0.024 10= 0.061 2 9.040 13 0.228 11 0.277 11 6.898 13 0.731 11 0.549 11 6.370 13 2.535 11 1.093 11 

GART 74.16 8 0.020 1= 0.066 3= 65.31 7 0.128 1 0.204 3 61.25 6 0.336 1 0.345 2 55.16 2 1.008 2 0.628 1 

MGAR 74.83 9 0.020 1= 0.067 6 58.80 3 0.135 3 0.200 1 47.90 1 0.377 7 0.347 3 35.74 5 1.204 7 0.671 4 

 

Table 8: Statistical Loss Functions for Equities(Sum of Daily Squared Returns as ex post measure) 

Steps 1 5 10 20 

Models %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank 

RW 50.21 1 0.420 9= 0.175 11 36.47 6 9.775 13 0.774 12 34.72 6 40.40 13 1.550 13 33.02 4 161.3 13 3.147 13 

LTM 75.19 13 0.415 7= 0.156 9= 72.16 11 4.833 7 0.582 9 70.77 7 13.00 6 1.065 9 71.99 8 34.24 7 2.001 8 

MA5 63.95 3 0.389 5 0.148 3 51.18 1 4.898 9 0.522 5 46.43 4 13.17 8 0.937 5 41.47 1 33.72 3 1.734 4 

MA100 69.37 6 0.412 6 0.156 9= 64.03 7 4.891 8 0.541 7 62.75 5 13.28 9 0.991 7 58.67 2 32.30 1 1.657 3 

AR1 71.85 11 0.387 4 0.151 5 71.10 8 4.614 1 0.552 8 70.63 8 12.62 1 1.029 8 71.57 6 33.84 4 1.961 7 

ARAIC 70.32 8 0.415 7= 0.153 7 71.29 9 4.729 4 0.531 6 71.82 10 12.69 3 0.985 6 71.79 7 33.67 2 1.899 6 

GAR 70.68 9 0.342 1 0.142 2 59.39 5 4.677 3 0.450 2 47.96 1 12.67 2 0.789 1 26.90 9 34.12 5 1.587 1 

GJR 72.05 12 0.420 9= 0.149 4 51.41 2 4.773 6 0.464 3 29.93 9 13.10 7 0.888 4 6.65 12 36.79 9 2.031 9 

EGAR 66.15 4 0.796 12 0.274 12 27.96 10 5.257 10 0.678 11 20.75 11 14.02 11 1.275 12 17.58 10 37.93 11 2.495 12 

EMA5 43.98 2 2.859 13 0.443 13 20.83 12 7.328 12 0.867 13 14.08 12 13.88 10 1.145 10 12.02 11 37.82 10 2.270 10 

EMA100 32.18 5 0.475 11 0.155 8 10.35 13 5.540 11 0.663 10 7.455 13 14.06 12 1.204 11 6.175 13 38.01 12 2.369 11 

GART 70.18 7 0.343 2 0.139 1 59.05 4 4.674 2 0.443 1 47.34 3 12.79 5 0.792 2 28.93 5 34.35 8 1.603 2 

MGAR 71.74 10 0.370 3 0.152 6 58.47 3 4.743 5 0.475 4 47.84 2 12.74 4 0.867 3 36.89 3 34.16 6 1.741 5 
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Table 9: Statistical Loss Functions for Commodities (Sum of Daily Squared Returns as ex post measure) 

Steps 1 5 10 20 

Models %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank 

RW 50.07 1 0.146 11 0.091 10 34.55 7 2.425 13 0.423 12 30.52 4 8.999 13 0.828 12 27.40 7 34.21 13 1.630 13 

LTM 78.25 13 0.082 1= 0.076 2= 73.83 12 0.508 1= 0.268 5= 71.13 7 1.059 1 0.466 3 68.57 4 2.293 3 0.802 3 

MA5 67.23 4 0.095 7= 0.084 8= 51.13 1 0.735 9 0.320 9 45.31 2 1.739 10 0.587 9 40.72 1 3.746 9 1.044 6 

MA100 76.97 8 0.083 5 0.079 5= 68.23 8 0.523 4 0.289 8 64.70 3 1.120 4 0.508 6 60.36 2 2.557 4 0.890 5 

AR1 77.41 11 0.082 1= 0.075 1 73.27 9= 0.508 1= 0.267 4 71.24 8 1.060 2= 0.465 1= 68.65 5 2.292 2 0.801 2 

ARAIC 77.25 9 0.082 1= 0.076 2= 73.27 9= 0.508 1= 0.268 5= 71.10 6 1.060 2= 0.465 1= 68.76 6 2.291 1 0.800 1 

GAR 76.55 6 0.095 7= 0.081 7 41.25 2 0.586 8 0.255 2 16.63 10 1.306 6 0.501 5 3.143 12 3.378 6 1.086 7 

GJR 77.75 12 0.108 9 0.084 8= 26.70 11 0.575 6= 0.260 3 7.677 13 1.312 7 0.542 8 2.337 13 3.472 8 1.152 9 

EGAR 72.63 5 0.344 12 0.156 13 36.33 4 1.156 10 0.396 10 19.94 9 1.758 11 0.634 10 11.60 9 3.902 10 1.195 10 

EMA5 55.97 2 0.124 10 0.115 11 35.13 5 1.556 12 0.519 13 29.46 5 3.817 12 0.891 13 24.42 8 4.358 12 1.329 12 

EMA100 37.36 3 0.353 13 0.125 12 14.47 13 1.510 11 0.421 11 11.27 12 1.688 9 0.655 11 10.13 10 4.208 11 1.250 11 

GART 77.27 10 0.082 1= 0.077 4 34.99 6 0.550 5 0.249 1 13.07 11 1.313 8 0.520 7 4.534 11 3.456 7 1.113 8 

MGAR 76.80 7 0.093 6 0.079 5= 61.31 3 0.575 6= 0.271 7 50.04 1 1.240 5 0.477 4 38.61 3 2.927 5 0.881 4 

 

Table 10: Statistical Loss Functions for Portfolio (Sum of Daily Squared Returns as ex post measure) 

Steps 1 5 10 20 

Models %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank %OP Rank MSE Rank MAE Rank 

RW 49.88 1 0.012 9= 0.045 11 35.86 5 0.257 13 0.199 12 33.10 4 0.997 13 0.388 12 31.43 6 3.850 13 0.765 12 

LTM 74.91 10 0.009 1= 0.038 7= 71.10 9 0.088 2 0.123 6 69.04 7= 0.208 1 0.212 6 68.10 5 0.494 2 0.368 3 

MA5 65.09 3 0.010 4= 0.039 9 51.07 2 0.136 10 0.140 9 46.62 1 0.379 10 0.250 7 43.53 1 0.837 9 0.462 7 

MA100 71.54 5 0.009 1= 0.037 4= 64.62 6 0.090 3 0.118 3 63.17 3 0.217 4 0.206 3 60.06 2 0.543 4 0.371 4 

AR1 72.35 9 0.010 4= 0.038 7= 69.68 8 0.093 4 0.122 5 68.99 6 0.214 2 0.210 5 67.73 4 0.495 3 0.364 2 

ARAIC 71.93 6= 0.018 11 0.040 10 69.21 7 0.097 6 0.121 4 69.04 7= 0.216 3 0.209 4 67.37 3 0.490 1 0.362 1 

GAR 72.21 8 0.010 4= 0.037 4= 50.77 1 0.095 5 0.109 2 32.99 5 0.242 6 0.203 2 14.35 9 0.669 6 0.439 6 

GJR 75.05 11 0.044 13 0.046 12 36.41 4 0.111 8 0.137 8 22.31 9 0.275 8 0.269 9 16.36 8 0.770 7 0.538 8 

EGAR 60.33 2 0.010 4= 0.033 1 17.86 10 0.100 7 0.125 7 4.089 12 0.273 7 0.261 8 0.362 13 0.788 8 0.548 9 

EMA5 30.71 4 0.010 4= 0.035 2 8.567 11 0.112 9 0.159 10 5.953 11 0.309 9 0.317 10 5.007 11 0.917 10 0.636 10 

EMA100 22.09 12 0.012 9= 0.036 3 4.367 13 0.163 11 0.175 11 3.282 13 0.531 12 0.352 11 2.976 12 0.964 11 0.655 11 

GART 71.93 6= 0.009 1= 0.037 4= 54.13 3 0.087 1 0.107 1 37.58 2 0.219 5 0.191 1 16.94 7 0.612 5 0.407 5 

MGAR 91.32 13 0.032 12 0.081 13 94.55 12 0.173 12 0.299 13 91.29 10 0.484 11 0.525 13 85.79 10 1.276 12 0.910 13 
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Table 11:  Government Bond (Risk Management Evaluation - 1% VaR) 

Steps 1 5 10 20 

Models TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank 

RW 3 12.41 640.7 12 1 11.77 588.6 12 1 10.96 524.6 10 1 9.990 450.1 11 

LTM 33 1.613 5.004 7= 396 0.967 0.011 1 437 0.974 0.011 1= 429 1.168 0.424 1= 

MA5 23 3.255 50.33 9 98 3.227 49.29 9 94 2.726 31.94 8 3 3.004 41.25 7 

MA100 23 1.530 3.811 4= 22 1.307 1.359 4 22 1.335 1.603 5 429 1.474 3.095 4 

AR1 33 1.613 5.004 7= 397 0.946 0.047 2 437 0.974 0.011 1= 429 1.168 0.424 1= 

ARAIC 33 1.530 3.811 4= 397 1.196 0.571 3 437 0.946 0.047 3 429 1.196 0.571 3 

GAR 23 1.502 3.445 2= 22 1.586 4.590 6 267 1.808 8.309 6 428 2.281 18.99 6 

GJR 23 1.446 2.762 1 22 2.782 33.73 8 397 3.922 77.49 9 14 5.814 172.9 9 

EGAR 121 3.394 55.65 10 20 8.734 359.3 10 6 12.13 617.9 12 3 14.52 821.2 12 

EMA5 15 11.21 544.2 11 20 11.66 579.6 11 21 11.49 566.3 11 4 9.847 439.7 10 

EMA100 3 18.55 1195 13 1 18.05 1147 13 1 18.11 1152 13 1 16.16 969.0 13 

GART 23 1.502 3.445 2= 22 1.335 1.603 5 434 1.224 0.738 4 14 1.558 4.193 5 

MGAR 23 1.558 4.193 6 21 2.031 12.90 7 21 2.420 22.76 7 90 3.727 69.16 8 

 

Table 12:  Equities (Risk Management Evaluation 1% VaR) 

Steps 1 5 10 20 

Models TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank 

RW 9 11.79 590.8 12 30 10.99 526.7 12 44 10.24 468.9 10 64 9.708 429.4 10 

LTM 444 1.697 6.334 7 440 1.752 7.293 2 713 1.502 3.445 3 703 1.975 11.68 3 

MA5 44 2.420 22.76 9 122 3.700 67.99 9 397 3.477 58.93 7 117 3.978 79.93 5 

MA100 23 1.641 5.432 5= 30 2.197 16.86 4 713 1.725 6.806 4 703 2.197 16.86 4 

AR1 23 1.641 5.432 5= 440 1.780 7.794 3 713 1.446 2.762 2 703 1.947 11.08 2 

ARAIC 397 1.780 7.794 8 440 1.613 5.004 1 713 1.252 0.925 1 703 1.780 7.794 1 

GAR 23 1.391 2.148 2 132 2.420 22.76 5 397 2.865 36.48 6 118 4.840 120.8 6 

GJR 23 1.419 2.446 3 30 3.366 54.57 8 126 4.590 108.4 9 109 7.594 281.8 9 

EGAR 16 3.115 45.20 10 30 8.651 353.4 10 44 13.05 694.0 12 65 15.83 938.5 12 

EMA5 23 10.79 511.6 11 30 11.13 537.6 11 119 12.10 615.6 11 114 10.85 515.9 11 

EMA100 16 17.16 1062 13 30 17.25 1070 13 68 17.83 1125 13 108 16.33 984.5 13 

GART 23 1.474 3.095 4 132 2.531 25.96 6 397 2.698 31.06 5 118 5.007 129.3 7 

MGAR 23 1.307 1.359 1 30 2.587 27.62 7 121 3.533 61.15 8 109 6.203 195.4 8 
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Table 13:  Commodities (Risk Management Evaluation 1% VaR) 

Steps 1 5 10 20 

Models TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank 

RW 1 15.02 865.6 12 1 16.69 1018 12 55 17.39 1083 12 45 20.17 1355 9 

LTM 1 1.697 6.334 1 36 1.280 1.132 1= 67 1.725 6.806 1 59 2.392 21.99 1 

MA5 36 4.312 95.08 10 36 4.256 92.49 6 61 5.035 130.7 5 53 7.510 276.4 5 

MA100 1 2.114 14.83 8 36 1.864 9.379 4 69 2.142 15.49 4 355 2.615 28.47 4 

AR1 1 1.864 9.379 2= 36 1.280 1.132 1= 67 1.752 7.293 2= 59 2.420 22.76 2= 

ARAIC 1 1.864 9.379 2= 36 1.280 1.132 1= 67 1.752 7.293 2= 59 2.420 22.76 2= 

GAR 1 2.003 12.28 6 36 6.231 197.0 7 60 13.41 724.7 8 50 22.84 1630 10 

GJR 36 1.947 11.08 5 36 8.679 355.4 9 36 16.86 1033 11 36 26.15 1988 12 

EGAR 36 3.282 51.38 9 36 8.790 363.2 10 36 14.38 808.9 9 36 22.06 1548 8 

EMA5 1 9.513 415.1 11 36 10.85 515.9 11 36 12.71 666.1 7 36 15.27 888.0 7 

EMA100 1 19.69 1307 13 36 23.39 1689 13 36 24.45 1802 13 36 26.26 2001 13 

GART 1 1.919 10.50 4 36 6.843 233.9 8 36 14.99 863.1 10 36 24.42 1799 11 

MGAR 36 2.031 12.90 7 36 3.255 50.33 5 36 5.480 154.4 6 36 8.734 359.3 6 

 

Table 14:  Portfolio (Risk Management Evaluation 1% VaR) 

Steps 1 5 10 20 

Models TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank 

RW 12 12.24 626.9 11 12 11.63 577.4 11 36 10.74 507.3 10 36 10.24 468.9 9 

LTM 374 1.140 0.298 2= 370 1.113 0.193 2 367 0.946 0.047 1= 359 1.140 0.298 1 

MA5 16 3.032 42.22 9 75 3.171 47.23 8 132 2.893 37.42 6 117 3.227 49.29 6 

MA100 23 1.502 3.445 8 370 1.168 0.424 5 368 1.252 0.925 5 359 1.391 2.148 5 

AR1 23 1.335 1.603 6 370 1.140 0.298 3 367 0.946 0.047 1= 359 1.168 0.424 2= 

ARAIC 36 1.474 3.095 7 370 1.224 0.738 4 367 0.918 0.109 3 359 1.168 0.424 2= 

GAR 23 1.140 0.298 2= 370 2.448 23.55 7 365 3.588 63.41 8 122 6.704 225.4 8 

GJR 374 1.140 0.298 2= 30 7.566 280.0 10 44 11.27 548.6 11 60 16.30 981.9 12 

EGAR 23 3.672 66.84 10 30 7.510 276.4 9 68 8.039 311.4 9 68 10.40 481.6 10 

EMA5 16 18.19 1160 12 29 16.83 1031 12 36 15.83 938.5 12 116 15.91 946.1 11 

EMA100 3 25.06 1869 13 29 22.69 1615 13 36 22.73 1618 13 59 20.95 1434 13 

GART 23 1.140 0.298 2= 370 1.892 9.934 6 365 2.949 39.31 7 122 5.535 157.4 7 

MGAR 374 0.139 18.43 1 370 0.417 6.862 1 367 0.556 3.698 4 355 1.168 0.424 2= 
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Table 15:  Government Bond(Risk Management Evaluation 5% VaR) 

Steps 1 5 10 20 

Models TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank 

RW 3 15.88 943.6 11 1 15.22 883.0 11 1 14.30 801.6 10 1 12.99 689.4 10 

LTM 23 3.922 77.49 5= 22 3.477 58.93 6 396 3.561 62.28 4 428 3.255 50.33 4 

MA5 3 6.620 220.3 9 1 6.982 242.6 9 1 6.064 187.3 7 3 6.008 184.1 7 

MA100 22 4.729 115.2 1 21 4.506 104.3 2 21 4.006 81.16 2 14 3.950 78.70 2 

AR1 23 3.922 77.49 5= 22 3.449 57.83 5 396 3.477 58.93 5 428 3.227 49.29 5 

ARAIC 23 3.922 77.49 5= 22 3.755 70.33 4 396 3.421 56.74 6 428 3.282 51.38 3 

GAR 23 4.423 100.3 2 21 4.840 120.8 1 21 4.590 108.4 1 4 5.341 146.9 6 

GJR 23 3.950 78.70 8 21 6.314 201.9 8 21 7.566 280.0 9 7 9.013 378.9 9 

EGAR 22 6.843 233.9 10 2 13.29 715.2 10 2 16.55 1005 12 2 18.03 1144 12 

EMA5 3 16.97 1044 12 1 16.58 1008 12 1 16.05 958.9 11 3 14.55 823.6 11 

EMA100 2 23.70 1722 13 1 22.73 1619 13 1 21.92 1534 13 1 19.58 1297 13 

GART 22 4.117 86.13 3= 20 4.451 101.7 3 21 3.978 79.93 3 4 4.423 100.3 1 

MGAR 22 4.117 86.13 3= 20 5.257 142.4 7 21 6.147 192.1 8 12 6.926 239.2 8 

 

Table 16:  Equities(Risk Management Evaluation 5% VaR) 

Steps 1 5 10 20 

Models TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank 

RW 9 15.55 913.2 11 30 15.08 870.6 11 30 13.77 755.7 10 64 13.27 712.9 9= 

LTM 23 3.755 70.33 5 30 4.701 113.8 1 400 3.644 65.69 1 122 3.866 75.07 3 

MA5 16 6.314 201.9 9 74 7.733 290.9 9 74 7.010 244.4 6 113 7.371 267.4 5 

MA100 23 4.339 96.38 2 30 5.369 148.4 4 126 5.090 133.6 4 118 5.508 155.9 4 

AR1 23 3.811 72.69 4 30 4.618 109.7 2 400 3.616 64.54 2 122 3.922 77.49 2 

ARAIC 23 4.395 99.00 1 30 4.506 104.3 3 127 3.449 57.83 3 118 3.950 78.70 1 

GAR 23 3.588 63.41 6= 30 6.064 187.3 5 121 6.815 232.3 5 114 8.818 365.1 6 

GJR 23 3.588 63.41 6= 30 7.650 285.5 8 119 9.374 404.9 9 108 13.27 712.9 9= 

EGAR 15 6.426 208.6 10 30 13.38 722.3 10 30 17.64 1107 12 30 18.94 1234 12 

EMA5 16 16.41 992.2 12 30 15.16 878.1 12 44 16.13 966.5 11 108 14.79 845.8 11 

EMA100 9 22.70 1616 13 30 22.17 1560 13 68 21.75 1517 13 65 20.39 1378 13 

GART 23 3.978 79.93 3 30 6.092 188.9 6 121 7.177 254.9 7 114 9.013 378.9 7 

MGAR 16 3.477 58.93 8 30 6.592 218.6 7 44 7.622 283.7 8 108 10.43 483.8 8 
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Table 17: Commodities(Risk Management Evaluation 5% VaR) 

Steps 1 5 10 20 

Models TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank 

RW 1 19.11 1250 12 1 21.53 1494 12 55 22.17 1560 10 45 24.81 1842 8 

LTM 1 4.061 83.63 8 36 4.506 104.3 3 36 4.951 126.4 1 36 6.314 201.9 1= 

MA5 1 8.484 341.8 10 36 8.957 374.9 6 36 10.54 492.3 5 50 13.57 738.9 5 

MA100 1 4.701 113.8 3 36 4.896 123.6 1 36 5.647 163.6 4 36 7.483 274.6 4 

AR1 1 4.618 109.7 5 36 4.562 107.0 2 36 4.784 117.9 3 36 6.370 205.2 3 

ARAIC 1 4.534 105.7 6 36 4.478 102.9 4 36 4.812 119.4 2 36 6.314 201.9 1= 

GAR 1 4.951 126.4 1 36 12.63 659.1 7 36 20.95 1434 8 36 30.35 2469 10 

GJR 36 4.312 95.08 7 36 15.83 938.5 10 36 24.45 1803 12 36 32.16 2684 12 

EGAR 1 6.787 230.5 9 36 14.74 840.8 9 36 21.28 1468 9 36 27.82 2177 9 

EMA5 1 14.72 838.4 11 36 17.33 1078 11 36 18.97 1236 7 36 22.03 1546 7 

EMA100 1 24.84 1845 13 36 29.40 2359 13 36 31.13 2561 13 36 32.38 2711 13 

GART 1 4.673 112.4 4 36 13.57 738.9 8 36 22.56 1601 11 36 31.15 2565 11 

MGAR 1 4.784 117.9 2 36 7.177 254.9 5 36 10.65 500.8 6 36 15.52 910.7 6 

 

Table 18:  Portfolio(Risk Management Evaluation 5% VaR) 

Steps 1 5 10 20 

Models TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank TUFF FT UCF Rank 

RW 12 15.66 923.3 11 12 15.27 888.0 11 36 14.55 823.6 10 36 13.38 722.3 9 

LTM 23 3.922 77.49 6 342 3.505 60.04 2 352 3.060 43.21 3 342 2.865 36.48 4 

MA5 16 6.871 235.7 9 74 6.843 233.9 8 68 5.925 179.3 6 116 7.121 251.4 6 

MA100 23 4.534 105.7 3 30 4.451 101.7 1 352 3.644 65.69 1 342 4.117 86.13 1 

AR1 23 4.590 108.4 2 342 3.394 55.65 4 352 3.115 45.20 2 342 3.004 41.25 3 

ARAIC 23 4.868 122.2 1 342 3.477 58.93 3 352 3.004 41.25 4 342 3.060 43.21 2 

GAR 23 4.284 93.78 5 74 5.675 165.1 7 69 7.872 300.2 8 116 11.96 604.3 8 

GJR 23 3.755 70.33 7 30 12.79 673.0 9 44 17.11 1057 11 60 21.25 1465 12 

EGAR 16 7.844 298.4 10 30 12.99 689.4 10 68 13.55 736.6 9 68 15.74 930.9 10 

EMA5 3 23.62 1713 12 29 21.70 1511 12 36 21.22 1463 12 113 20.75 1414 11 

EMA100 1 29.32 2349 13 29 26.40 2017 13 36 26.59 2038 13 59 24.73 1833 13 

GART 23 4.395 99.00 4 74 5.563 158.9 6 69 6.759 228.8 7 116 10.13 460.5 7 

MGAR 23 0.640 2.346 8 370 0.695 1.638 5 366 1.029 0.013 5 119 2.754 32.83 5 

  

 


