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Abstract 

 

This paper uses data provided by three major real estate advisory firms to investigate the 
level and pattern of variation in the measurement of historic real estate rental values for the 
main European office centres. The paper assesses the extent to which the data providing 
organizations agree on historic market performance in terms of returns, risk and timing and 
examines the relationship between market maturity and agreement. The analysis suggests that 
at the aggregate level and for many markets, there is substantial agreement on direction, 
quantity and timing of market change.  However, there is substantial variability in the level of 
agreement among cities.  The paper also assesses whether the different data sets produce 
different explanatory models and market forecast. It is concluded that, although disagreement 
on the direction of market change is high for many market, the different data sets often 
produce similar explanatory models and predict similar relative performance.      
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1.  Introduction 

 

Possibly uniquely, real estate forecasting organisations disagree about historic, current and 

future market levels and returns.  Clearly, given the fundamental methodological linkage 

between past trends and future extrapolations1, variations in recording historic time series are 

likely to result in forecast variation as well.  This problem seems to be fairly distinctive to real 

estate forecasting.  Although the preliminary nature of and subsequent revisions to estimates 

of real output provide a source of data uncertainty to macro-economic forecasters, many 

macro-economic data (e.g. exchange rates, interest rates and commodity prices) are easily 

available and not subject to measurement error.  In contrast, real estate forecasters are faced 

with substantial hindsight uncertainty.  Whilst Hendry and Clements (2003, 303) state that 

“all econometric models are mis-specified”, this paper focuses on the potential contribution of 

data uncertainty to model mis-specification and consequent forecast uncertainty in real estate 

markets.  Using data provided by three major real estate advisory firms, we investigate the 

level and pattern of variation in the measurement of historic real estate values and market 

indicators for the main European office centres.   

 

The remainder of the paper is organized as follows.  Section 2 reviews the literature on 

sources of disagreement in forecasting with particular reference to the role of data and 

discusses the nature of data production in European real estate markets.  This is followed in 

Section 3 by a discussion of the research data and objectives.  Section 4 discusses the findings 

focussing on the extent and effects of disagreement among the data collection organisations 

on the forecasting process.  Finally, conclusions are drawn. 

  

2. Literature Review 

 

Research suggests that the dominant approach to real estate market forecasting in the UK and 

US is based upon a combination of econometric and financial modelling techniques (see 

Gallimore and McAllister, 2004 and Guilkey, 1999).2 For econometric models, it is axiomatic 

                                                 
1 An underlying assumption of econometric forecasting is that past patterns will continue into the 
future - or, to paraphrase Guilkey’s (1999) more vivid image: better econometric modelling only 
forecasts the past with greater precision.   
2 Although undocumented, the authors are confident that the vast majority of global property advisory 
firms and major investing organisations use econometric techniques to produce rental growth forecasts 
for most major real estate markets.  However, approaches to forecasting shifts in capitalisation rates 
tend to be more diverse. 
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Exhibit  1 

Schematic Representation of Forecasting Process 
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that a purely objective forecast is unattainable.  Previous research within and outside real 

estate indicates that subjectivity is intrinsic to economic and property forecast formation and 

is likely to generate disagreement among forecasters.  It has been recognised that differences 

in property forecasts occur due to differences in the structure of the econometric models, 

statistical procedures and data used (Mitchell and McNamara, 1997).  As highlighted by the 

following discussion, judgement also explains some variations between forecasts.   

 

In terms of the specification, “mathematical models involve smoothing constants, coefficients 

and other parameters that must be decided by the forecaster” (Walonick, 2004, 2).  The 

forecaster will also have to make decisions about forecast horizon, forecast interval, choice of 

computational model, as well as data selection and treatment.  Quality of data also has 

implications for model development in the forecasting process.  .There will be a trade-off 

between the benefits of improving the explanatory power of a model in the context 

uncertainty about the data inputs.  In terms of model formation, Pascual, Stiber and 

Sunderland (2003) explore the interaction of uncertainty about whether the model 

incorporates complete knowledge of the factors that control the behaviour of the system 

(specification uncertainty) and uncertainty due to measurement errors and limited sample 

sizes (data uncertainty).  Their central point is that there is an inherent trade-off between 

specification and data uncertainty and, therefore, optimal level of complexity for every model.  

Exhibit 2 illustrates how the level of data uncertainty can place limits on the benefits of 

additional model complexity.   

 

Guilkey (1999) investigated the practice of US property market forecasters in terms of their 

parameters, methodology and output, and identified significant differences in the variables 

used, model specifications and the exogenous variables obtained from macro-economic 

forecast providers.  He found disagreement amongst forecasters, concluding that property 

forecasters “get to their conclusions using very different methodologies and obtain very 

different MSA rankings” (Guilkey, 1999, 40).  Similarly, in the UK, Gallimore and 

McAllister (2005) found that judgement was pervasive in the real estate forecast formation 

process occurring in (econometric) model formation, due to variations in choice of causal 

variables, data selection and treatment, and constant and parameter specification.  It is the 

effect of the data selection that is the focus of this paper.   
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Exhibit 2 
 
Data Uncertainty and Model Formation 
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It is clear that there are multiple sources of forecast disagreement.  In explaining forecast 

disagreement, some commentators have focussed on differences in data in terms of 

availability and processing.  Linden (2003, 5) emphasises the importance of data availability 

and physical and economic constraints on its collection arguing that “forecasters have both 

different types and different amounts of information to form their beliefs”.  Williams (2003) 

draws upon theories of rational heterogeneity of beliefs which assume that agents have at their 

disposal a range of forecasting models, but are uncertain as to which model or models to use.  

Consequently, they adaptively update their model choice or priors over the various models 

based on forecasting performance.  In essence, it is argued that idiosyncratic differences in 

agents’ characteristics (e.g. different initial conditions in model priors and costs to learning 

new models) implies that a range of models will be in use at any point in time.  The result is 

forecast disagreement. Essentially variations in data are inherent and forecasters will have 

different types and amounts of information with which to form their beliefs.  For example, 

research by Mankiw and Reis (2002) places ‘sticky information’ due to the costs of collecting 

and processing data as being an important explanatory variable of economic forecast 

disagreement. However, disagreement about historic and current real estate market data 

means that data issues often require critical forecaster attention.   
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The fundamental reasons that forecasting organisations disagree about the past relate to the 

nature of real estate markets.  Estimates of market levels (of rents) are produced by 

professionals who must interpret ‘noisy’ market pricing signals.  In essence, these estimates 

are real estate appraisals and there is a substantial body of research literature analysing the 

nature, causes and extent of appraisal uncertainty (see Quan and Quigley, 1991; Webb, 1994; 

Newell and Kishore, 1998; RICS, 2006 for examples of theoretical analysis and empirical 

investigation of appraisal uncertainty)3.  In addition, rental appraisers are faced with the 

problem of interpreting pricing signals from actual buildings when applying them to 

hypothetical assets.  As a result, most researchers would agree that some disagreement 

between the organisations recording market levels is, therefore, largely unavoidable.  Given 

this inevitability of uncertainty and disagreement in real estate appraisals, the most interesting 

questions relate to the quantity and patterns of disagreement and uncertainty rather than their 

existence.    

 

However, there are also institutional issues in the configuration of the real estate industry that 

tend to exacerbate the intrinsic data uncertainty associated with real estate market.  Gallimore 

and McAllister (2005) found that for UK forecasters obtaining consistent and reliable time 

series for real estate rents was a recurring problem.  In particular, forecasters emphasised the 

definitional problems with particular emphasis on disagreement about: What geographical 

area is being measured?  How are centres/districts defined? What is the quality of building 

being measured?  Do the data reflect prime or average quality stock? Are rents and 

capitalization rates reported net or gross? Are rental values effective or headline rents4?  How 

have effective rents been calculated? Has the rental estimate been observed or is it a pure 

estimate?  Sources of data uncertainty due to these inconsistencies are avoidable. It can be 

eliminated by a combination of firm cooperation and harmonisation of standards. 

 

Data on the European real estate market are collected by the main agency companies.  

Typically, basic data are used for marketing purposes (e.g., market reports) while more 

detailed data are reserved for clients to support transactions.  Most data providers started out 

as with a predominantly domestic (UK) client base.  As a result, data were seldom used to 

                                                 
3 Although probably more relevant here, there has been much less empirical research on appraisal 
disagreement.    
4 The distinction between headline and effective rents concerns whether leasing incentives e.g. rent free 
periods, taking on tenants’ previous lease liabilities inter alia have been monetised to estimate an 
effective rent.  There is no consensus on how leasing incentives should be monetised.    
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compare investment opportunities across borders.  One consequence of this was the 

development of local conventions for measurement and definitions associated with key time 

series. As a result, approaches used to define rents, yields and other key time series often 

varied by country and, sometimes, by market, sector and data provider (see Kennedy et al., 

2004; Sanderson and Farrelly, 2005; Haddock, 2005; and Arend et al 2005).   In addition to 

variations due to definition, variations in levels of market access and judgement often led to 

data inconsistencies.   

 

Recently, some data providers have started to allow access to detailed market data via 

subscription.  This process has been driven by the growth of pan-European real estate 

investment and the associated demand for pan-European research and investment strategies. 

Perhaps more importantly this trend has led advisers to move towards definitions that are 

consistent across borders (Kennedy, 2006).  In addition, some advisers are starting to 

consider sharing market data.  Taken together these two changes may lead to a reduction in 

both definitional and market access based data variations.   

 

Data and Research Questions 

 

Market rental data on 13 European cities (Vienna, Lisbon, Amsterdam, Athens, Berlin, Paris 

Centre West, Milan, Madrid, London West End, Stockholm, Dublin, Copenhagen and 

Brussels) has been provided by three leading pan-European real estate advisers.  All data are 

either quarterly or annual € headline rents from 1990.  As noted above, the use of headline 

rents means that there is almost certainly a systematic upward bias in the estimates of rental 

values.  In particular, downside variance is likely to under-estimated due to the fact that 

leasing incentives tend to be more prevalent in market downturns.  As a result the relative 

performance of markets that have not experienced significant downturns is likely to be 

underestimated compared to markets that have had.5 

 

                                                 
5 However, since the problem of different approaches to monetising to leasing incentives is avoided, a potential 
source of disagreement in the data is not present.  It should also be noted that since the euro was introduced in 
1999, two data collection organizations have used a synthetic euro series for the period 1990-1999.  One 
organization did not convert non-Euro countries (UK, Denmark and Sweden) and we used a spliced euro exchange 
rate series.    
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There are a number of potential approaches to assessing the degree of disagreement.  We 

focus on whether the recording organizations agree on market performance in terms of 

returns, risk and timing and also investigate whether there is any evidence to suggest that any 

organizations are systematically optimistic or pessimistic in their measurements. More 

specifically, this generates a number of questions:-  

• Is there agreement on the level of rental growth? 

• Is there agreement on the level of volatility?   

• Has the degree of agreement changed over time?  

• Is there agreement on market direction? 

• Is any single organization biased?  

 

Summary statistics are presented in Appendix 1.  In order to preserve the confidentiality of 

the data collection organizations, we have labelled them - A, B and C.    

 

Results 

 

It is clear that there have been significant differences in performance among the cities 

analysed. As we can see, all organizations agree that during this period, Dublin has been the 

best performing city in terms of rental performance with nominal growth of over 7% per 

annum.  There seem to be three broad groups.  London, Amsterdam and Brussels (with 

Dublin) seem to have had relatively strong performance.  Notably, weak performers have 

been, Lisbon, Berlin and Vienna.  For instance, all organizations agree that Lisbon has on 

average experienced rental falls during the sample period.   The third group consists of Milan, 

Madrid, Athens, Stockholm and Paris – all seem to have experienced positive nominal rental 

growth which has, however, typically below the rate of consumer price inflation in the Euro-

zone.  Copenhagen is one of the few markets where there is a major disagreement between the 

data collection organizations.  

 

It is clear from Appendix 1 that there is substantial agreement about rental growth at the 

aggregate level.  The un-weighted mean rental growth of the 13 European cities is used to 

estimate mean rental growth for Europe.  All data collection organizations produce similar 

figures.  However, at the city level, there are wide variations in terms of the level of 

agreement about historic rental performance.   At one end of the scale are Dublin and London 
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where there is little variation amongst the three organizations.  Whilst at the other end are 

Berlin, Stockholm and Copenhagen.  In a number of cases, the organizations disagree about 

whether the average rate of rental value growth has been negative or positive (Vienna, Milan 

and Vienna).  Prima facie, this suggests that the effects of data uncertainty may vary between 

markets.    

 

In order to assess whether correlations between markets were changing over time, Appendix 2 

shows the average Pan-European rental growth correlations using the approach of Solnik and 

Roulet (2000) which provides estimates of correlations at each point in time for the three data 

providing organizations over the period 1991 to 2006 and for the two sub-period 1991 to 1998 

and 1999 to 2006.  As Solnik and Roulet (2000) make plain cross-sectional dispersion is 

inversely related to cross-sectional correlation, i.e. higher dispersion implies low cross-

sectional correlation and low dispersion implies high correlation.  Hence Appendix 2 shows a 

general increase in European rental growth correlation over the period corresponding to the 

general decline in dispersion.  Rising from a low of about 0.4 in 1991 to about 0.8 in 1998 and 

then falling back to a low of 0.4 again before rising to about 0.8 in 2006. 

 

In order to assess the degree of dispersion among data collection organisations, we calculated 

the Mean Absolute Percentage Error (MAPE) for each organization.  The ‘true’ observation 

was taken as the simple mean of the three rental observations.  In Appendix 3, the thick black 

line represents the trend in the average MAPE for Europe.  At the aggregate level, from the 

data users’ perspective the results seem to be positive in that the trend in rental dispersion is 

downwards.  However, a large proportion of the high level of dispersion at the beginning of 

the period is due to three outliers (Milan, Madrid and Copenhagen).  Within a few years of 

1990, there was convergence in MAPE of the rental estimates to the average for all three.  

When the first 2-3 years are excluded, there is little evidence of change in the aggregate 

MAPE.  When we examine the period 1996 to 2006 only, there seems to be a relatively stable  

approximately 4% MAPE in the estimates of rental growth at the aggregate level.  However, 

when focussing on individual cities, no clear pattern emerges.  Over the last 10 years, there 

are three cities, where the MAPE is consistently below average – Paris, Lisbon and Brussels.  

Five cities are close to the average – Amsterdam, Milan, Madrid, Dublin and London and five 

are well above the average – Vienna, Berlin, Copenhagen, Athens and Stockholm.  Below, we 

investigate whether there is a link between market transparency and the level of agreement 

between organizations. 
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Appendix 1 also shows that there are similar patterns when data providers’ estimates of 

market volatility are examined.  At the aggregate level (Europe), the standard deviation of 

rental growth rates are similar for the three organizations.  However, it is clear that there are 

marked differences among the individual cities.  All firms record similar levels of volatility 

for London, Madrid and Stockholm but disagree substantially about Berlin, Paris and 

Copenhagen.  It is not possible to explain differences in volatility by differences in rental 

growth levels.  For instance, Stockholm had high levels of disagreement in rents but little 

disagreement on the level of market volatility.  On the other hand, there were low levels of 

disagreement about rental levels in Paris but high levels of disagreement on market volatility. 

 

Next we follow previous studies in using a number of criteria to evaluate the relative 

importance of firm and city effects.  First, we follow Rouwenhorst (1999) in using the mean 

absolute deviations (MADs) of the firm and city coefficients.  Second, the relative importance 

of the distinct factors can be measured by the time-series volatility of the factor estimates 

(Heston and Rouwenhorst, 1995).  So that if the variance of the city effects is greater than that 

of the firm effects, this is indicative of the greater importance of city factors in determining 

rental growth during that period.  Finally, we follow Beckers et al (1996) and compare the 

explanatory power of the individual factors, as measured by their adjusted R2 values relative 

to that of the full model including both factors.   

 

The results are presented in Appendix 4.  When we compare the absolute average of the firm 

coefficients (0.01) to that for the city coefficients (4.09), we find a ratio of 311:1.  In other 

words, city effects are 300 time more important in determining rental growth than any factor 

due to difference in firm estimates.  In a similar vein, when we compare the average variance 

of the firm factors (2.5) to the average variance of the sector effects (326.7), we find a ratio of 

130:1, i.e. city effects are more than a hundred times more important in determining rental 

growth than any difference in firm estimates.  Finally, the adjusted R2 statistics show that the 

firm effects explain nothing, where the city factor explains about two thirds of the annual 

cross-sectional rental growth.   

 
In terms of agreement about market direction, the correlation coefficients between the three 

organizations provide a measure of disagreement.  The coefficients are presented in Appendix 

1. Once again a similar pattern emerges.  Whilst cut-offs are inevitably arbitrary in describing 

correlations as strong or weak, at the aggregate level mean correlations are marginally weak.  

Once again at the individual city level, there are marked differences.  Although we need to be 

careful about statistical significance given the sample size, there is strong correlation (>0.8) 
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for only 16 of the 39 possible combinations.  Generally for cities with low levels of 

disagreement about rental growth (in terms of MAPE) e.g. Paris, London and Dublin, there is 

strong correlation (Brussels is a notable exception here).  Similarly for cities with high levels 

of disagreement, there tends to be weak correlation (again with Stockholm as a notable 

exception).  In a small number of cases, correlation coefficients were not significantly 

different from zero.  These findings suggest that there is a substantial amount of disagreement 

among data collection organizations about the direction of market movement.  

 
In terms of modelling past relationships with explanatory variables, agreement on the 

direction of change seems fundamental.  In order to investigate further, we simply examined 

whether there was consensus among the three data collection organizations on the direction of 

market movement in a given period.  Three possible outcomes were stipulated – market rise, 

market fall and no change.  Where at least one organisation differed from the other two, 

disagreement was recorded.  One-year and three-year horizons were examined.  The results 

are displayed in Appendices 5 and 6.  Over the sample period, in 32% of total observations, 

there was disagreement.  There are notable variations over time.  In 1996 for over 60% of the 

cities, at least one data collection organization disagreed on the direction of market change in 

that year.  In contrast, in 1998, 1999 and 2000 there was disagreement on the direction of 

change for only one city (Lisbon, Stockholm and Copenhagen respectively).  Even over the 

three year horizon, there is still substantial disagreement.  For instance, in the period 2004-

2006, there was disagreement about the direction of market change for over half the cities.  As 

ever, there are notable variations between cities.  For Paris and London, there was 

disagreement about the direction of rental growth change over one year in 13% and 19% of 

years.  In contrast, the figure for Milan and Copenhagen was 44%. For some periods and for 

some cities, the extent of disagreement about the direction of market rental change seems to 

be providing inconsistent and/or incorrect signals of market conditions and the effects of 

causal variables on rental levels 

 

In order to examine whether the nature of the market has any effect on disagreement, we plot 

the average rental growth correlation across firms, for each city, against the transparency of 

each market as measured by the Global Real Estate Transparency (GRET) index produced by 

Jones Lang LaSalle (JLL).  The GRET index is based on a structured survey conducted within 

LaSalle Investment Managers (LIM) of their global network of researchers and covers the 

following five key attributes of real estate transparency: (1) legal factors; (2) regulatory 

burden; (3) availability of information on market fundamentals; (4) listed vehicle financial 

disclosure and governance; and (5) availability of investment performance indexes. 
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Questions were developed for each attribute and countries assigned a score of 1 to 5, with 

“1”representing the highest level of transparency and “5”the lowest level of transparency.  A 

composite index was then calculated by using a neutral weighting scheme.  The composite 

scores range between 1 and 5.  A country with a perfect 1.00 would be the country with the 

highest level of transparency.  A country with a total of 5.00 would be a country with total 

opacity, i.e. the lower the GRET score the higher the transparency within a countries real 

estate market.  We use the JLL GRET Index for 2006 in the following analysis (JLL, 2006).   

 

From a casual inspection of Appendix 7 it is easy to see that the lower the level of 

transparency the lower the correlation between rental growth figures for each city from the 

different firms.  For instance, Athens with the lowest transparency score of 3.13 shows the 

lowest mean cross-firm correlation, which indicates that investors looking for information as 

to what rental growth was actually achieved in Athens have received widely different view 

from firm to firm.  In contrast, in the West End of London which shows the highest level of 

transparency (1.25) firms will be providing almost identical rental growth figures over time.  

In other words, transparency matters when interpreting and using information about the rental 

performance in each city (Brounen et al., 2001). 

 

Finally, we investigate whether any single data collection is systematically biased in terms of 

its measurement of rental levels.  It has already been noted that there were minor differences 

between the three organizations in terms of their aggregate mean level of rental growth for 

Europe (see Appendix 1).  Although Company A records the highest rate of growth - this is 

attributable to one major outlier (Berlin 1990-1) at the beginning of the sample period.  This 

level of agreement at the aggregate level would suggest that it is at the level of individual 

cities that differences may be significant.   For instance, it was clear from Appendix 1 that in 

some cases the estimates were very similar, whilst for other cities there was notable 

divergence.  

 

Appendix 8 shows the results of a simple ranking of the rental estimates of each data 

collection company.   However, the results are potentially misleading.  For a number of cities, 

it seems that Company B is consistently optimistic.  For Milan, Lisbon and Amsterdam they 

are ranked top in terms of rental estimates for 82%, 82% and 76% of the 17 years.  However, 

perhaps surprisingly, this does not necessarily mean that they have the highest average level 

of rental growth.  For instance, for Milan and Lisbon, their mean rental growth rate for the 
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whole sample period is the lowest of the three companies.  Given these issues, it is difficult to 

state that any organisation is consistently biased in their estimates.   

 

Clearly, some of the specific examples of hindsight uncertainty identified above could 

undermine user’s confidence in the value of historic data as a basis for econometric modelling 

and also in the forecast outputs.  In order to assess the extent to which the different data sets 

select the same explanatory variables, generate similar explanatory power and produce similar 

forecasts, the different data sets are used in a relatively simple explanatory model.  The 

change in rent of the different datasets are regressed against changes in each countries 

contemporaneous national GDP, inflation and the unemployment rate, variables which 

previous studies have shown to explain office rents6.   

 

   jjjjj,i UnemInfGDPntRe ε+∆β+∆β+∆β+α=∆    1 

where: j,intRe∆ , the change in rent of dataset i in country j, jGDP∆ is the change in national 

GDP of country j, jInf∆  is the inflation rate of country j, jUnem∆  is the unemployment rate 

of country j and jε is the error term.  We assess the extent to which the different data sets 

‘select’ the same explanatory variables, have similar explanatory power and produce similar 

forecasts.  Using forecasts of the independent variables obtained from Experian, we also 

generate three-year forecasts for the individual markets. The results are summarised in 

Appendix 9. 

 

Although simple, the model has reasonable explanatory power for a number of the cities.  

Overall, the average R2 for all cities and all data providers is just over 50%.  The model has 

no significant explanatory power at the 5% level in only seven of the 39 possibilities (13 cities 

x three data sets).  An R2 of over 60% was generated in at least one instance for seven of the 

13 cities.  However, not unexpectedly, there are notable differences among cities and the data 

sets.  For Madrid, all data produce high levels of explanatory power, whilst for Athens none 

of the data set generates strong explanatory power.  The results confirm that GDP is typically 

the key driver of office rents.  It was significant in 29 of the 39 models tested.  The figures for 

inflation and unemployment are four and six out of 39 respectively.  As a result, all three data 

sets have GDP as the sole significant explanatory variable for all cities except Vienna, 

Brussels, Athens and Milan.  Given the similarity of the model selected in many cases, 

differences in the forecast outputs will tend to be produced by differences in the coefficients. 
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Research on the use of forecasts (see Gallimore and McAllister, 2005) indicates that many 

forecasters consider that their ability to add value in the investment process does not lie in the 

absolute accuracy of their outputs (ability to predict absolute performance) but in their ability 

to identify ‘winners’ (ability to predict relative performance).  However, it is also clear that 

forecasts are used both in the pricing of individual assets and in decisions about where and 

when to invest.  At the asset level, the absolute accuracy of forecasts is important, whilst at 

the tactical or strategic level identify the best relative performance is much more important.    

An unequivocal finding is that using an identical model for the three data sets produces 

substantial degree of agreement about the relative performance of individual cities.  Both A 

and B ‘pick’ Milan, London (WE), Stockholm and Paris and numbers 1,2,3 and 4 respectively 

whilst C ‘picks’ the same cities but reverses the rankings of Stockholm and Paris.  The only 

cities about which there is notable disagreement on relative performance are Dublin and 

Athens.  This disagreement is also reflected in the marked differences in the actual rental 

growth forecasts.  Apart from the stark disagreements in absolute performance for Athens, 

Dublin and possibly Copenhagen, it is difficult to assign much significance to the relatively 

small differences in the forecasted absolute performance.  As discussed earlier, an element of 

forecast uncertainty is accepted and, in addition, ‘raw’ numbers produced by models are 

likely to be amended within forecasting organizations compared to predictions of relative 

performance. 

      

Conclusion 

 

Whilst the quality, range, depth and consistency of European real estate market data has 

improved dramatically over the last decade, real estate forecasters and analysts are faced with 

a large degree of hindsight uncertainty compared to many other categories of economic 

forecaster.  Given the intrinsic linkage between analysing historic relationships and 

forecasting future market outcomes, uncertainty about the past will contribute to forecast 

uncertainty.   The issue has practical consequences for forecast production.  In an 

environment where there is a great deal of data uncertainty, there will be limited benefits in 

increasing model complexity.   However, it is important to bear in mind that there are other 

sources of ex post uncertainty in real estate forecasts e.g. forecasts of explanatory variables.   
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For estimates of rental levels, there are both preventable and inescapable sources of data 

uncertainty.  The former are caused by differences in market and corporate practices and can 

be reduced by a combination of co-operation and harmonisation. The latter are due to intrinsic 

attributes of real estate markets which tend to provide ‘noisy’ signals of market prices inter 

alia.  In addition, there is unavoidable subjectivity in applying these ‘noisy’ signals from 

actual buildings to hypothetical buildings.      

 

The data suggest that at the aggregate level and for many markets, there is substantial 

agreement on direction, quantity and timing of market change.  However, there is substantial 

variability in the level of agreement among cities.  Probably the most concerning finding is 

that the extent of disagreement on the direction of market change is high for many markets.  

This suggests that econometric models could produce much different specifications and 

forecast outcomes dependent upon choice of data.  Despite the notable levels of disagreement 

on the direction of market change, the findings suggest that there are no strong effects on the 

explanatory model and forecast outputs.  In the majority of cases, the different data sets 

‘picked’ GDP as the key driver of the office market.  Whilst it is possible to point to a small 

number of exceptions, the data sets generated similar expectations of relative and absolute 

performance.   Clearly there is scope for more in-depth analysis of data set.  In addition, given 

the data set similar analyses can be performed for take-up/absorption, vacancy and 

capitalisation rates.  It would also be interesting to explore the potential benefits to be gained 

from data pooling in the context of such disagreement.   
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Appendix 1 

    Summary Statistics: Disagreement in European Rental Trends 1990-2006 
                       
  Dispersion Rental performance Volatility Market timing 

  Mean MAPE Mean Rental Growth p.a. SD of Rental Growth 
Correlation co-

efficients 
  1990-2006 1996-2006 A B C A B C A-B A-C B-C 
                      
Vienna 6.3% 5.3% -1.35% 0.60% -0.50% 5.27% 7.21% 10.72% 0.60 0.49* 0.59 
Brussels 2.8% 2.6% 2.68% 2.39% 2.01% 7.58% 4.61% 6.99% 0.64 0.44* 0.69 
Milan 7.9% 4.0% 1.79% 1.81% -0.01% 13.97% 11.30% 18.47% 0.75 0.84 0.87 
Madrid 5.6% 3.8% 1.36% 0.29% 0.04% 20.06% 20.55% 22.76% 0.88 0.89 0.89 
Berlin 5.1% 5.0% 0.66% -1.22% -0.50% 23.19% 15.44% 19.67% 0.86 0.75 0.72 
Copenhagen 8.3% 5.1% 0.91% 0.54% 4.78% 3.74% 12.77% 11.97% 0.70 0.62 0.37* 
Athens 6.5% 6.1% 0.90% 1.72% 1.12% 7.19% 9.60% 16.32% 0.53 0.46* 0.42* 
Dublin 4.3% 3.1% 7.19% 7.12% 7.06% 11.61% 14.51% 14.90% 0.80 0.86 0.79 
Amsterdam 3.5% 3.4% 3.01% 3.60% 4.10% 6.93% 8.14% 9.02% 0.84 0.69 0.72 
Lisbon 2.5% 1.9% -2.13% -2.80% -3.13% 10.44% 9.80% 7.71% 0.80 0.91 0.84 
Stockholm 6.8% 7.2% 2.13% 1.54% 0.74% 20.58% 19.92% 22.26% 0.96 0.85 0.88 
London 4.6% 4.6% 4.19% 4.26% 4.05% 20.93% 20.31% 19.28% 0.95 0.95 0.91 
Paris 2.4% 2.5% 0.80% 0.60% 1.14% 17.71% 12.80% 14.74% 0.97 0.92 0.94 

                       
Europe 5.1% 4.2% 1.70% 1.57% 1.61% 13.02% 12.84% 14.99% 0.79 0.74 0.74 

                       

 

 

* Not significantly different from zero at the 95% significance test 

 



Appendix 2 Cross-sectional Correlation in Rental Growth for European Office 

Markets 

 

Correlation Average Average Average 
A 0.658  0.621  0.695  
B 0.673  0.641  0.705  
C 0.616  0.569  0.662  

 



Appendix 3 

 

Disagreement in Rental Value Estimates 

Mean Absolute Percentage Error of Rental Value 
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Appendix 4:  The Relative Importance of Firm and City Effects in Determining Rental 

Growth: Annual Data 1991 to 2006 

 
 Average Variance
Europe 1.59 79.6 
A -0.01 2.9 
B -0.01 1.8 
C 0.02 2.8 
Absolute 
Average 0.01 2.5 
Vienna 2.00 53.6 
Brussels 4.78 111.4 
Milan 3.62 338.1 
Madrid 2.98 572.3 
Berlin 2.07 374.8 
Copenhagen 4.50 184.2 
Athens 3.63 309.4 
Dublin 9.54 354.6 
Amsterdam 5.99 119.4 
Lisbon -0.26 135.5 
Stockholm 3.89 577.3 
WE 6.59 680.6 
Paris (CW) 3.27 436.6 
Absolute 
Average 4.09 326.7 
R-sq Firms 0.04  
R-sq Cities 0.65  
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Appendix 5: Direction of Market Change 
Proportion of Years in which Disagreement Occurred   

 

City 1 year 3 yr 
   
Vienna 38% 29% 
Brussels 31% 29% 
Milan 44% 29% 
Madrid 31% 7% 
Berlin 31% 29% 
Copenhagen 44% 21% 
Athens 31% 21% 
Dublin 31% 21% 
Amsterdam 38% 36% 
Lisbon 31% 7% 
Stockholm 31% 29% 
WE 19% 14% 
Paris (CW) 13% 0% 
   
Average 32% 21% 

 

 

 

 

 

 

 

 



Appendix 6 

Disagreement in Market Direction
Proportion of Cities with Disagreement on Direction of Rental 
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Appendix 7  Proportion of Periods in Given Ranking 

City  Ranking   City  Ranking  
Vienna 1 2 3  Dublin 1 2 3 

A 53% 47% 0%  A 47% 41% 12% 
B 71% 18% 12%  B 24% 35% 41% 
C 0% 12% 88%  C 29% 24% 47% 
          
Brussels 1 2 3  Amsterdam 1 2 3 
A 53% 12% 35%  A 24% 41% 35% 

B 18% 53% 29%  B 0% 47% 53% 

C 53% 29% 18%  C 76% 24% 0% 
           
Milan 1 2 3  Lisbon 1 2 3 
A 18% 41% 41%  A 29% 29% 41% 
B 12% 41% 47%  B 18% 35% 47% 
C 82% 12% 6%  C 82% 18% 0% 
         
Madrid 1 2 3  Stockholm 1 2 3 
A 35% 47% 18%  A 6% 24% 71% 
B 6% 24% 71%  B 88% 12% 0% 
C 59% 29% 12%  C 12% 59% 29% 
          
Berlin 1 2 3  WE 1 2 3 
A 24% 53% 24%  A 71% 29% 0% 
B 65% 24% 12%  B 35% 24% 41% 
C 24% 18% 59%  C 12% 35% 53% 

          
Copenhagen 1 2 3  Paris (CW) 1 2 3 
A 56% 44% 0%  A 41% 41% 18% 
B 6% 38% 56%  B 24% 53% 24% 
C 38% 19% 44%  C 41% 6% 53% 
         
Athens 1 2 3  Overall 1 2 3 
A 15% 38% 38%  A 36% 38% 26% 

B 69% 8% 15%  B 33% 32% 34% 
C 8% 46% 38%  C 40% 25% 34% 
         

 

 



Appendix 8: Average Cross Firm Rental Growth Correlation versus Market Transparency 
 

y = -0.1912x + 1.1112
R2 = 0.3503
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Appendix 9 
 

European office market forecasting: model specification, explanatory power and forecast output  

 Explanatory power F-test   
Variables 
selected* Rental Growth Forecasts 2007-2009 

 A B C Range A B C A B C A B C A B C 
City R-sq R-sq R-sq  Sig Sig Sig Coeff Coeff Coeff % p.a. % p.a. % p.a. Rank Rank Rank 
                   
Vienna 62 47 46 16 1% 5% 5% 3 1 3 -0.64 -0.65 0.21 9 10 11 
Brussels 57 54 46 11 2% 2% 5% 2 2,3 2 5.14 3.84 4.04 6 8 9 
Milan 55 59 48 12 2% 1% 4% 3 1,3 3 12.36 10.33 15.25 1 1 1 
Madrid 75 68 86 18 0% 0% 0% 1 1 1 -7.31 -5.81 -11.85 13 13 13 
Berlin 56 49 37 19 2% 5% 16% 1 1 - -2.22 -1.42 1.09 11 11 10 
Copenhagen 45 23 69 46 6% 36% 0% 1 - 1 1.79 4.31 4.68 8 7 7 
Athens 22 47 7 40 42% 6% 85% - 2 - -0.69 5.93 4.31 10 5 8 
Dublin 52 58 29 30 3% 1% 24% 1 1 - 5.22 -0.55 4.97 5 9 5 
Amsterdam 65 43 35 30 0% 7% 15% 1 1 1 3.49 4.77 4.95 7 6 6 
Lisbon 50 48 58 10 3% 4% 1% 1 1 1 -4.52 -3.51 -4.02 12 12 12 
Stockholm 63 70 52 17 1% 0% 3% 1 1 1 7.85 7.24 6.15 3 3 4 
WE 60 59 49 11 1% 1% 4% 1 1 - 10.68 9.35 10.74 2 2 2 
Paris (CW) 49 48 67 18 4% 4% 0% 1 1 1 6.30 7.04 9.60 4 4 3 

 
 
* The numbers represent: 

1- contemporaneous change in national GDP 
2- contemporaneous change in national inflation 
3- contemporaneous change in national unemployment 

 


