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Summary 

Securing wheat production is of prime importance with regard to feeding the earth’s 

growing population. Wheat is threatened by a lot of abiotic and biotic factors leading to 

severe yield losses. One important disease is Fusarium Head Blight (FHB), caused by 

different Fusarium spp. The disease leads to yield losses up to 40 %, a reduction in quality 

and a health risk for mankind due to toxic secondary metabolites that arise during the 

infection process. Therefore, FHB belongs to the most important wheat diseases and is 

extensively studied worldwide. To improve resistance of wheat to Fusarium spp., this 

study was conducted to get detailed information on the genetics of a new source of 

resistance, detcted in Triticum monococcum, which is a close relative of bread wheat. To 

achieve this, a DH-population based on a cross between Triticum monococcum accession 

mon10-1, which is moderately resistant to FHB and the FHB susceptible Triticum 

monococcum L. conv. sinskayae (Sinskayae) comprising of 94 DH-lines was analysed. 

The population was phenotyped in two years field trials and genotyped by DArT analyses 

resulting in a genetic map of 1987.55 cM. Based on these data, two neighbouring QTLs 

were mapped in an interval of 45.1 cM on the short arm of chromosome 2A. Further 

analyses aimed at shortening the QTL interval and the identification of closely linked 

markers and candidate genes by a map-based cloning approach. A high-resolution 

mapping population was developd out of 1991 F2-plants, that traced back to crosses 

between three susceptible and two resistant DH-lines of the original population. 333 RILs 

were developed of which 268 were used for phenotypic evaluation with F. culmorum 

(Isolate: Fc46) in field and greenhouse trials. Marker saturation was conducted based on 

the 90K iSelect chip, genotyping-by-sequencing (GBS) and known genetic maps of 

Triticum monococcum. Out of these, 21 KASP markers were developed and mapped 

within the QTL interval. Assigning these markers to the physical map of T. aestivum 

resulted in an interval of 31.4 Mbp. However, by phenotyping respective segmental RILs, 

the resistance locus was not located within this interval. A new QTL analysis with a 

reduced marker set of the DH-mapping population using their physical postitions was 

conducted and resulted in a switch of the peak markers to a proximal region of 

chromosome 2A into an interval between 499.25 – 607.96 Mbp. This QTL mapped in the 

same region like the soft glume (sog)-gene, but it is unclear if the QTL effect is due to 

tight linkage between sog- and FHB resistance gene or pleiotropy.   
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Zusammenfassung 

Die Sicherstellung und Erhöhung des Weizenertrags hat heutzutage weltweit große 

Bedeutung, um die Ernährung der stetig wachsenden Gesellschaft zu sichern. Eine sehr 

bedeutende Krankheit im Weizen ist die Ährenfusariose (engl. Fusarium Head Blight, 

FHB), die durch verschiede Fusarium spp.- Pilze hervorgerufen wird. Diese kann zu 

Ertragsverlusten bis zu 40% führen und durch die Bildung von Mykotoxinen während 

des Infektionszyklus, die Qualität mindern sowie die Gesundheit von Mensch und Tier 

gefährden. In der folgenden Studie wurde das Resistenzverhalten im Einkorn (Triticum 

monococcum) gegenüber Fusarium untersucht. Dazu wurde eine DH-population, 

bestehend aus 94 DH-Linien, erstellt und analysiert, die auf eine Kreuzung zwischen 

Triticum monococcum L. (mon10-1: moderates Resistenzverhalten) und Triticum 

monococcum  L. conv. sinskayae (Sinskayae: anfällig) zurückgeht. Die DH-Population 

wurde in zweijährigen Feldversuchen phänotypisiert und mit DArT und SSR-Markern 

genotypisiert, was in einer genetischen Karte von 1987.55 cM resultierte. In einer 

anschließenden QTL-Analyse wurden zwei benachbarte QTL auf Chromosom 2A in 

einem Intervall von 45.1 cM (31.4 Mbp) kartiert. Mit der Methode der kartengestützten 

Genisolierung wurde das QTL Intervall verkleinert um eng gekoppelte Marker oder 

Kandidatengene zu identifizieren, die diese Variation bewirken. Dazu wurde eine 

hochauflösende Kartierungspopulation, bestehend aus 1991 F2-Pflanzen erstellt, die auf 

eine Kreuzung zwischen zwei resistenten und drei anfälligen DH-Linien der 

ursprünglichen DH-Population zurückgeht. Es konnten 333 rekombinante Inzuchtlinien 

(RIL) identifiziert werden. Von diesen wurden 268 RILs in Gewächshaus- und 

Feldversuchen mit dem Fusarium-Isolat Fc46 phänotypisiert und mit 21, durch 

genotyping-by-sequencing (GBS), den 90K iSelect Chip und der genetischen Karte von 

Triticum monococcum, neu entwickelten KASP-Markern genotypisiert. Dennoch war es 

nicht möglich den Resistenzlocus innerhalb des Intervalls zu kartieren. Eine neue QTL-

Analyse mit den physikalischen Positionen eines reduzierten Markersets aus der 

ursprünglichen DH-Population zeigte, dass sich die Peak-Marker in eine Region 

zwischen 499.25 – 607.96 Mbp verschieben. Ebenfalls wird das sog-Gen in dieser Region 

vermutet, welches verantwortlich für die Ährenform von Triticum sinskayae ist. Es ist 

unklar, ob der beobachtete Effekt durch eine enge Kopplung beider Gene in dieser 

genomischen Region hervorgerufen wird oder durch Pleiotropie.   
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Chapter I | General introduction  

1. Bread wheat (Triticum aestivum L.)   

Bread wheat (Triticum aestivum L.) is one of the most important crops worldwide with 

an acreage of 214.8 million hectares and a global annual production of 735.2 million tons 

(FAOSTAT 2018). It is mainly used for human food and livestock feed. The largest wheat 

producers in the world are China and India with 131.4 and 99.7 million tons and in 

summary an acreage of 53 million hectares (FAOSTAT 2018). Germany is still under the 

top ten wheat producers with a total production of 20.2 million tons and a wheat acreage 

of 3.03 million hectares (FAOSTAT 2018). Next to maize (Zea mays) and rice (Oryza 

sativa), wheat serves as one of the key crops for food security in the world. Wheat covers 

about 17 % of the arable land worldwide, mainly in the temperate and sub-temperate 

zone, and about 35 % of the global population take wheat as staple food (IDRC 2010, 

FAOSTAT 2018). Wheat grain contains starch and protein, dietary fibre, minerals, 

vitamins, phytochemicals and antioxidants and it is processed into breads, biscuits, 

noodles, cakes, couscous and beer for human diet (CURTIS & HALFORD 2014, SHEWRY & 

HEY 2015). Moreover 85 % and 82 % of the human population use wheat as a 

fundamental calorie and protein source, respectively (CHAVES ET AL. 2013), in total wheat 

provide ~15% of the world’s kcal intake (PELEG ET AL. 2011, TILMAN ET AL. 2011). So in 

the light of future challenges, i.e. a continuous growing of the human population in the 

background of climate change, stabilizing and improving wheat production is one of the 

major goals in agriculture. Since the green revolution in the mid 1960s, wheat yield per 

hectare increased steadily due to new disease-resistant and genetically improved wheat 

varieties as well as modern agronomic practices (CURTIS 2002, AHRENDS ET AL. 2018). 

But in the last two decades wheat yield is stagnating, because of e.g. climate change which 

is affecting cereal productivity. Especially rising temperatures during the reproductive 

phase and problems with drought and soil degradation in many regions as well as changes 

in cultivation management due to political restrictions have negative impact on yield 

(BRISSON ET AL. 2010, AHLEMEYER & FRIEDT 2011). However, annual wheat yield must 

rise from below 1 % to 1.6 % (LUCAS 2012) to nourish mankind in the future. There are 

two possible solutions dealing with this challenge. On the one hand arable land may be 

expanded and though the wheat growing area increased or the yield per unit area must be 

improved and pre- and post-harvest losses avoided (CURTIS 2002). Actually, in the last 
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50 years the portion of arable land increased by only 9 % globally, so the main focus is 

on the enhancement of grain yield and the implementation of modern agrotechnical 

practices, which get along with new environmental situations (GODFRAY ET AL. 2010). 

Crops and respective yields are threatened by lots of biotic and abiotic stresses, so 

important aims in wheat breeding today are improving the resistance against insects, 

viruses and fungi as well as the tolerance against heat, drought and soil salinity using 

conventional and new biotechnological methods. In this respect, genetic resources, e.g. 

other wheat species like close relatives such as einkorn wheat, wheat landraces as well as 

wild relatives represent a promising reservoir for the improvement of wheat 

(MWADZINGENI ET AL. 2017). Moreover, the recently published reference genome of 

wheat is of high importance for the improvement of wheat cultivars (APPELS ET AL. 2018).  

Bread wheat (Triticum aestivum L., 2n=6x=42, AABBDD) has a genome size of 17.4 Gb 

and belongs to the family Poacaea and the genus Triticum. Present studies divide the 

genus Triticum in six species: two diploid species, Triticum monococcum L. and Triticum 

urartu Tum. Ex Grand., two tetraploid species, Triticum turgidum L. and Triticum 

timopheevii (Zhuk.) Zhuk., and two hexaploid species, Triticum aestivum L. and Triticum 

zhukovskyi Men. & Er. (FELDMANN & LEVY 2015). Triticum aestivum is the most widely 

grown species of the Triticae (95%) today, next to tetraploid durum wheat (Triticum 

turgidum ssp. durum (Desf.) Husn., AABB) (5%) (SHEWRY 2009). First evidence of 

wheat is dated back to over 10.000 years ago in the ‘Fertile crescent’, a region spanning 

nowadays Turkey, Syria, Israel, Jordan, Iran and Iraq. Firstly, at this time only diploid 

and tetraploid wheat forms were detected in this area, but hexaploid species arise 2000 

years later in the Caucasian region (CHARMET 2011, SHEWRY 2018, HAAS ET AL. 2019). 

Today’s bread wheat (Triticum aestivum L.) originated from natural, independent 

hybridization of domesticated tetraploid wheat Triticum turgidum (AB-Genome) with the 

progenitor of the D-genome Aegilops tauschii (MATSUOKA 2011, MCFADDEN & SEARS 

1946). This polyploidization event was very rare in the past and domestication and 

breeding led to a genetic narrowing of hexaploid wheat (PRZEWIESLIK-ALLEN ET AL. 

2019). It is assumed that for bread wheat only a cultivated form and no wild form exist in 

contrast to einkorn or emmer wheat (MATSUOKA 2011).  
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2. Einkorn wheat (Triticum monococcum L.)  

Einkorn wheat (Triticum monococcum L.) is a cultivated diploid wheat species (AmAm, 

2n=14) with a genome size of 4.95 Gb (LING ET AL. 2018). The domestication took place 

10.000 years ago in the northern ‘Fertile crescent’, mainly in the Karacadag mountains of 

South-Eastern Turkey from the wild ancestor Titicum monococcum ssp. boeticum 

(ALLABY ET AL. 2017, HEUN ET AL. 1997).  It was the time of the Neolithic revolution, 

resulting in a change from hunting and gathering to the settlement of  humans and the 

beginning of agriculture (SHEWRY 2018). So, einkorn wheat was a founder crop and staple 

food  in the past and it was used for bread and beer making as well as for animal feed 

(ZAHARIEVA & MONNEVEUX 2014). Beginning in the bronze age, the hulled einkorn 

wheat was replaced by higher yielding, free-threshing tetraploid and hexaploid wheat 

species (BÉKÉS ET AL. 2017). The growing area of einkorn wheat today is <1000 ha and 

it is cultivated mainly in the Balkans and the Mediterean regions, showing the minor 

importance of this crop for agricultural economy and human and livestock consumption 

(POURKHEIRANDISH ET AL. 2018, ZAHARIEVA & MONNEVEUX 2014).  

However, in the last years there is increasing renewed interest in ancient wheat species 

like Triticum monococcum L. due to some positive qualities/traits, e.g. the possibility to 

grow on poor soils and in harsh environments, as well as the social demand for healthy 

food (WATANEBE 2017, DINU ET AL. 2018). Thus, einkorn wheat is lower in dietary fibre, 

but has a higher protein and lipid content, as well as high quantities of carotenoids and 

tocols (tocopherols and tocotrienols) in comparison to common wheat (LACHMAN ET AL. 

2013, HIDALGO ET AL. 2014). Morevoer, einkorn wheat is high in important minerals like 

iron (Fe), zinc (Zn), phosphor (P), mangan (Mn) and copper (Cu) (CAKMAK ET AL. 2000, 

HLISNIKOVSKÝ ET AL. 2018). Possibly, Triticum monococcum can alter the gluten 

structure and is consequently well-tolerated by gluten-intolerant people (HLISNIKOVSKÝ 

ET AL. 2018). Nevertheless the benefit of einkorn wheat consumption in comparison to 

modern bread wheat varieties regarding nutrition affected diseases is still not proven until 

now (DINU ET AL. 2018). Next to these nutritional effects, einkorn wheat is as a valuable 

genetic resource for the improvement of bread wheat, especially with respect to 

resistance. Many resistances to different diseases like stem rust (ROUSE & JIN 2011, CHEN 

ET AL. 2018), stripe and leaf rust (ZAHARIEVA & MONNEVEUX 2014) as well as powdery 

mildew (YAO ET AL. 2007, SCHMOLKE ET AL. 2012) were already identified in Triticum 
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monococcum. Moreover, einkorn wheat possesses also interesting genes for abiotic stress 

tolerance, e.g. the salt tolerance gene TmMnSOD, which was recently isolated and gained 

much interest in wheat breeding (TOUNSI ET AL. 2019). Suitable genes can be introgressed 

into bread wheat via direct hybridization and homologous recombination with following 

repeated backcrossing and selection steps. In some cases tetraploid species as bridge 

species or ‘embryo rescue’ may be needed (KAUR ET AL. 2008, SCHMOLKE ET AL. 2012, 

WULFF & MOSCOU 2014, RATHER ET AL. 2017). Triticum monococcum is closely related 

to Triticum urartu, the A-genome donor of hexaploid bread wheat and thus often used for 

comparative wheat genomic studies (ZHAO ET AL. 2016). The genome sequence of 

Triticum urartu Tumanian ex Gandilyan, published in 2018 (LING ET AL. 2018), as well as 

the construction of high-resolution linkage einkorn wheat maps by advanced next-

generation sequencing techniques (MARINO ET AL. 2018) may facilitate efficient map-

based cloning of important genes as well as marker-assisted selection in Triticum 

monococcum. This opens the way for einkorn wheat to be an important source for future 

wheat breeding programs.  

Einkorn wheat is a hulled species, so the glume 

has to be removed during milling, which costs 

enormous effort and time. Thus, free-threshing 

was an important domestication trait and is 

controlled by two Tg-genes and the Q-locus on 

chromosome 5 of bread wheat and by the sog-

gene in einkorn wheat (HAAS ET AL. 2019). The 

sog-gene is responsible for soft glumes and was 

mapped on the short arm of chromosome 2A 

(TAENZLER ET AL. 2002, SOOD ET AL. 2009). As 

first assumed, sog and Tg are no orthologs and the lack of the free-threshing trait in 

einkorn wheat may be due to the negative correlation between the ear length and the sog-

gene, which can not be compensated by the presence of additional B and D-genomes 

(DUBCOVSKY & DVORAK 2007, HAAS ET AL. 2019). There is one variety among the 

diploid wheats possessing this free-threshing trait: Triticum monococcum L. conv. 

sinskayae A. Filat. et Kurkiev (MIELKE & RODEMANN 2007). It was detected in one 

accession K-20970 of Triticum monococcum in Turkey by Prof. Zhukovskii (FILATENKO 

Figure 1 | Ear shape of Triticum monoccocum (left) 

and Triticum monococcum L. conv. sinskayae 

(right) (VALLEGA 1992) 
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& KURKIEV 1975, AMAGAI ET AL. 2014). In comparison to T. monoccocum L., Triticum 

monococcum L. conv. sinskayae has a semi-compact ear shape and soft, longer and wider 

glumes and a lighter spike color (GONCHAROV ET AL. 2007). Moreover it is smaller in 

height and ear length. Both varieties were utilized in this study, analysing their reaction 

to Fusarium Head Blight.  

3. Fusarium Head Blight (FHB) 

Fusarium Head Blight is one of the most important diseases in wheat and other small 

grain cereals (e.g. barley, triticale, rye, oat) worldwide when considering yield and quality 

losses. The causal agents are different Fusarium species, particularly a complex of 17 

species, which are more or less aggressive (MESTERHÁZY 1984, PARRY ET AL. 1995). 

They are ubiquitous soil-borne fungal pathogens and it is known that they infect cereals 

in a broad temperature range, so their appearence range from temperate to semi-tropical 

regions (ARSENIUK ET AL. 1999). The most prominent ones with high pathogenity in 

cereals are Fusarium graminearum Schwabe (teleomorph Gibberella zeae [Schwein] 

Petch.) and Fusarium culmorum (W.G.Smith) Sacc. (no teleomorph) (WAALWIJK ET AL. 

2003, FERNANDEZ & CHEN 2005). Their occurrence depends on the respective climate 

with Fusarium graminearum being more abundant in warmer regions and Fusarium 

culmorum in cooler environments. Thus in Germany, F. culmorum is predominant in 

North-Western Germany, while F. graminearum occurs in higher frequency in Southern 

Germany (MUTHOMI ET AL. 2000, AUFHAMMER ET AL. 2000). Nevertheless the presence 

of Fusarium graminearum in Central and Northern Europe is slowly increasing due to 

changing weather conditions and rising maize cultivation (PARIKKA ET AL. 2011).  

Both are filamentous ascomycetes and hemibiotrophic, i.e. there is a short biotrophic 

interaction with the host, followed by a necrotrophic phase in which the fungus lives on 

dead tissue (GOSWAMI & KISTLER 2004). Furthermore, Fusarium spp. change between a 

saprophytic and a pathogenic way of living (SUTTON 1982, MIEDANER ET AL. 2001). In 

the saprophytic phase, particulary in winter times, the fungi live on crop debris for 

nutrient uptake, whereas in the pathogenic phase during the vegetation period, they live 

on living plant tissues (PARRY ET AL. 1995, AUDENAERT ET AL. 2013). Fusarium 

graminearum can reproduce in a sexual way with ascospores and in an asexual way with 

conidia, while for Fusarium culmorum no sexual stage is known (MIEDANER ET AL. 

2008). The fungi can overwinter as mycelia or chlamydospores. During the growing 
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season, when optimal temperature und humidity conditions are present, growth and 

sporulation is promoted. They produce conidia (asexual stage) and ascospores (sexual 

stage), which are the main inoculum for the infection of plants (PARRY ET AL. 1995, 

OSBORNE & STEIN 2007). The favorable mycelia growth temperature ranges from 20 – 

25 °C for F. culmorum and is about 25°C for F. graminearum (WAGACHA & MUTHOMI 

2007, OSBORNE & STEIN 2007). Infection is in general supported by high humidity, 

whereas F. culmorum has the lowest need of humidity for successful infection (BEYER ET 

AL. 2005, KLIX ET AL. 2008, SCHERM ET AL. 2013). The ascospores or conidia are 

transferred via air and/or rain splash to the ears of host plants (JENKINSON & PARRY 1994). 

They enter the plant tissue through natural openings, like stomata or anthers during 

anthesis (BUSHNELL ET AL. 2003). After the initial contact, the spores begin to germinate 

and develop germ tubes and a dense hyphae network on the inner surface of the lemma 

(KANG & BUCHENAUER 2000, WAGACHA & MUTHOMI 2007, GUNUPURU ET AL. 2017). 

The fungi spread inside the plant internally through vascular bundles in the rachis and 

rachilla or via the exterior surface of the glumes and lemma (through stomata openings) 

(RIBICHICH ET AL. 2000, GOSWAMI & KISTLER 2004, GURUNUPU ET AL. 2017).   

Figure 2 | Life cycle of Fusarium spp. (TRAIL 2009)  
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First symptoms of an infection arise during flowering (BBCH 65) in form of brown, 

nectrotic spots on the surface of the glume (KANG & BUCHENAUER 2000). Other typical 

FHB symptoms, i.e. bleaching of spikelets and bleached heads above the infection site, 

as well as shriveled grains are visible after milk ripeness (BBCH 71-75) and arise from 

the disruption of nutrient and water transport in the xylem and phloem tissue of the rachis 

(GOSWAMI & KISTLER 2004). In case of long periods with high humidity, salmon-pink-

colored sporodochia on the edge of glumes or base of spikelets as a result of sporulating 

mycelium are observed (RUCKENBAUER ET AL. 2001, SCHERM ET AL. 2013).  

 

Figure 3 | Symptoms of F. culmorum in Triticum monococcum (left) with bleached spiekelets and sporodochia and 

bleached spikes of wheat in the field (right)  

 

FHB can lead to yiel losses up to 40 % in years of severe epidemcis (BAI & SHANER 

1994). Next to economic losses, an infection with Fusarium spp. also affects the grain 

quality and contaminates food and feed due to the production of mycotoxins, harmful 

secondaray fungal metabolites, that arise during the infection process (MCMULLEN ET AL. 

1997, AUDENAERT ET AL. 2013). Trichothecenes are an important group of mycotoxins 

and divided into four different types (A,B,C,D) (TALAS 2011). F. graminearum and F. 

culmorum are both main producers of trichothecene type B including the important 

Nivalenol (NIV), Deoxynivalenol (DON) and its acetylderivatives 3-acetyl-

deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON), whereas F. 

culmorum is only able to synthesize 3-ADON (JESTOI 2008, CASTIBLANCO ET AL. 2017). 

Nevertheless DON is economically most important and often detected with highest 

concentration in cereals (CANADY ET AL. 2001, PIACENTHENI ET AL. 2019). The legal 



Chapter I | General introduction 

10 

 

threshold in Europe for grain contamination with DON is 1.25 mg/kg in unprocessed 

wheat for human consumption to prevent accumulation of mycotoxins during food 

production (PIACENTINI ET AL. 2019). Trichothecenes suppress the eukaryotic protein 

synthesis and lead to mycotoxicosis in man and animal with severe health risks (PERAICA 

ET AL. 1999). An uptake of mycotoxins can cause liver cancer, convulsions or respiratory 

problems (DA ROCHA ET AL. 2014, FREIRE & DA ROCHA 2017). Animals, especially mice 

and pigs are also very sensitive towards mycotoxins and growth and weight gain 

suppression, anorexia (PESTKA 2010, PENG ET AL. 2018) and immunosuppression are 

observed (FINK-GREMMELS 1999). Yield reduction and DON contamination lead to 

economic losses and high risks for farmers when growing wheat, resulting in an observed 

shift towards other crops in the recent years instead of using costly management practices 

(DAHL & WILSON 2018). In summary, there is still an urgent need for an effective FHB 

control reducing the risks for farmers/growers and securing the worldwide wheat 

production.  

Control measures in fighting FHB are an adapted crop management, fungicide treatment, 

biological control and resistance breeding. However, the best results will be achieved by 

an integration of two or more methods (WEGULO ET AL. 2015), whereas resistance 

breeding seems to be the most economic and ecological promising one to reduce losses 

(BAI & SHANER 2004). It is known that the Fusarium species need crop debris as an 

inoculum source, so conventional tillage is an effective agronomic method to decrease 

the frequency of Fusarium Head Blight infection as well as the inoculum level in the soil 

by reducing crop residues (CHAMPEIL ET AL. 2004), but in the last years conservation 

tillage methods are frequently used. Moreover, a short crop rotation interval with 

susceptible preceeding host plants like maize, which has risen in acreage considerably 

e.g. in Germany in the last decades, provide a continuous inoculum for the pathogens and 

lead to an increase in FHB infection in the following growing period (MCMULLEN 1997, 

LENC 2015). Thus, crops that are non-hosts for Fusarium spp. in the rotation can minimize 

spore production (FATIMA 2016). In summary, tillage and crop rotation are important 

factors, that should be taken into account in reducing FHB infection. Some attempts were 

done in identifying biological control agents, like Trichoderma spp.-isolates., that turned 

out to reduce the growth of Fusarium graminearium and Fusarium culmorum as well as 

the DON production (MATARESE ET AL. 2012). In addition, some bacterial Pseudomonas 
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strains reduce disease symptoms by more than 23 % and losses in 1000-grain weight by 

more than 16 % (KAHN & DOHAAN 2009, DWEBA ET AL. 2017). Another frequently used 

method in plant protection is the application of fungicides despite their moderate success 

in controlling FHB infection (DWEBA ET AL. 2017). There is a broad range of fungicides 

available, whereby most of these belong to the triazoles (WEGULO ET AL. 2013). 

Fungicides with tebuconazole as active ingriedient or in a mixture with prothioconazole 

seem to be very effective to reduce FHB (MESERHAZY ET AL. 2003, PAUL ET AL. 2008, 

WEGULO ET AL. 2013). However, metaconazoles appear to be more efficient for the 

reduction of DON (PAUL ET AL. 2008). Consequently, a combination of active agents is 

the best fungicide strategy to prevent yield losses as well as high toxin levels in the grain 

and to prevent that Fusarium spp. become insensitive or even resistant to specific active 

substances (SERFLING ET AL. 2014). There is high variation concerning the success of 

FHB suppression, e.g. MESTERHÁZY ET AL. (2003) reported that the successful application 

not only depends on the respective product, but also on the application date and sufficient 

fungicide coverage on the plants. Even variability between wheat species was observed, 

e.g. the efficiacy of fungicides was higher in spring wheat than in soft winter wheat (PAUL 

ET AL. 2008). Moreover, the interval for the application of fungicides is only a few days 

during anthesis (WEGULO ET AL. 2013) and should only be conducted when favorite 

infection conditions for the pathogens are given, which is before rain fall in the critical 

period to avoid potential environmental contamination (REIS ET AL. 2016). In summary, 

these results support that resistance breeding should be preferred for FHB control.   

Genetic host resistance is the most effective mode of integrated wheat protection for FHB. 

But Fusarium culmorum and Fusarium graminearum are not host specific and the 

resistance is inherited in a quantitative manner, so the complex nature of resistance and 

genotype x environment (GxE) interactions render breeding challenging and it is diffictult 

to identify completely resistant genotypes (MESTERHÁZY ET AL 1999, BUERSTMAYR ET 

AL. 2013). Two types of resistance were recently described: morphological (passive) and 

physiological (active) resistance (RUDD ET AL. 2001). Morphological traits like plant 

height (SCHMOLKE ET AL. 2005), ear shape (RUDD ET AL. 2001) or flowering time as well 

as early grain filling (BAI ET AL. 2001) are often associated with FHB resistance. Thus 

shorter plants tend to be more susceptible for FHB due to microenvironmental effects, as 

taller plants dry faster resulting in a drier microclimate which may be considered as a 
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passive resistance mechanism (MESTERHÁZY 1995, BUERSTMAYR ET AL. 2000). RhtD-1b 

und RhtB-1b are reducing plant height alleles and widely used in wheat breeding 

programmes, although their use results in an increase of FHB susceptibility 

(BUERSTMAYR ET AL. 2012). However, there might be semi-dwarf genes like Rht-24, 

which reduce height without increasing FHB susceptibility (HERTER ET AL. 2018). 

Moreover, a negative relationship between heading date/flowering time and FHB severity 

was demonstrated, i.e. later heading genotypes are more successful in escaping an 

infection (PAILLARD ET AL. 2004, SCHMOLKE ET AL. 2005). Also traits like spike density 

and spike length are correlated with increased FHB resistance (BUERSTMAYR ET AL. 

2011). In addition, compact spikes seems to be more susceptible against infection (PRAT 

ET AL. 2014). In contrast, physiological (active) resistance describes mechanisms on the 

cellular or molecular level during host-pathogen interaction to inhibit an infection or a 

distribution of infection. Five components of resistance were described (MESTERHÁZY 

1995) for FHB, whereas Type I and II are the most commonly investigated mechanisms 

of FHB disease assesement in different studies (STEINER ET AL. 2004, BUERSTMAYR ET 

AL. 2013, ARRUDA ET AL. 2016). When using traditional spray inoculation methods for 

evaluation both types of resistances are assessed, whereas direct spikelet infection focuses 

on type II (PRAT ET AL. 2014). Type II resistance research is more common due to the 

difficult and complex evaluation of type I resistance (SUN ET AL. 2016). But, the most 

effective approach is combining multiple resistance types: initital infection by the 

pathogen, spread of fungal growth and inhibition of  mycotoxin accumulation (YU ET AL. 

2008).  

Lots of efforts were done in the last decades to identify chromosomal regions being 

responsible for FHB resistance resulting in 250 QTLs with mostly small effects 

distributed over all 21 wheat chromosomes (BUERSTMAYR ET AL. 2009, JIA ET AL. 2018).  

Most prominent and designated QTLs are Fhb1, Fhb2, Fhb3, Fhb4, Fhb5, Fhb6 and 

Fhb7. Main sources are wheat genotypes with Asian origin, but also European material 

and close and wild relatives (BUERSTMAYR ET AL. 2019).  
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4. Molecular markers 

Moelcular markers are a powerful tool to detect and trace genes or QTLs of interest during 

the breeding process (JIANG 2013). Since the 1990s molecular markers are applied in plant 

breeding and reveal lots of advantages in comparison to morphological markers, like seed 

colour or yellow streak. They are available in unlimited numbers (JONES ET AL. 2009) and 

they can be used for screening at any develeopmental stage, especially in the seedling 

stage to shorten long phenotypic selection steps. They are divided into DNA markers, 

which differ due to variations in the DNA sequence, and protein markers, in which the 

variation between genotypes results from structural variants or forms of enzymes (HURKA 

1993). The most common used marker type are the DNA markers, which are mainly 

applied in human genetics as well as in animal and plant breeding. For the implementation 

in plant breeding programmes the markers should be polymorphic to discriminate 

genotypic differences between individuals and co-dominant, to distinguish between the 

homozygous and heterozygous state. Moreover, they should be equally distributed across 

the whole genome, have no pleiotropic effects and a high reproducibility as well as low 

costs (WEISING ET AL. 2005). 

First generation DNA markers were the RFLP markers (BOTSTEIN ET AL. 1980), which 

are based on the detection of different restriction fragments generated by mutations in 

restriction sites or deletions/insertions between those sites. Restriction enzymes cut 

specific sequences in the DNA resulting in fragments with varying length which are size-

separated via gel electrophoresis (BECKMANN & SOLLER 1983). The fragmets are then 

analysed by southern blotting, so they are transferred to a filter membrane and visualized 

by hybridization of complementary sequences with fluorescence- or radioactive-labelled 

DNA probes. They are co-dominant, reliable and have a high reproducibility, but the 

application of these markers is very time and larbour intensive and a large amount of 

DNA is needed (WEISING ET AL. 2005). Nonetheless, they were predominantly used in 

the 1980s/1990s for the construction of genetic linkage maps or genetic fingerprinting, as 

well as for comparative and synteny studies (NAM ET AL. 1989, TANKSLEY ET AL. 1992, 

MOORE ET AL. 1995) before the development of PCR-based DNA markers.  

PCR-based DNA markers like cleaved amplified polymorphic sequences (CAPS)-, 

randomly amplified polymorphic DNA (RAPD)-, amplified fragment length 

polymorphism (AFLP)-, and simple sequence repeats (SSR)-markers are the second 
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generation of DNA markers. CAPS technique also uses restriction enzymes, which cleave 

the PCR product on specific sites like RFLPs, and the polymorphism is shown through 

presence/absence of restriction sites (KONIECZNY & AUSUBEL 1993). In comparison to 

the RFLP method there is no need of radioactivity or blotting (JONES ET AL. 2009), so the 

results can be easily interpreted via gel electrophoresis and also shared between 

laboratories. RAPD markers were a common marker system, which is cheap, quick and 

simple. Important is here the use of single, arbitrary primers which amplify random 

genomic DNA segments in PCR (WILLIAMS ET AL. 1990). PCR products are seperated on 

agarose gels and stained with ethidium bromid for visualization (KARP ET AL. 1996). For 

the design of PCR primers, no further sequence information is necessary and only small 

amounts of DNA are needed. They were used for molecular ecology, population studies 

and resistance breeding, although they have some disadvantages like a low reproducibility 

and a dominant character (SCHACHERMAYR ET AL. 1994, KARP ET AL. 1996, KELLY & 

MIKLAS 1998, JONES ET AL. 2009). AFLP marker technique was developed by VOS ET AL. 

(1995) and its application results in the identification of variations in the resitriction sites 

of DNA sequences. That means, AFLPs produce restriction fragments with different 

lengths, that occur due to mutations in restriction sites. Suitable oligonucleotide adapters 

are ligated to  restriction fragments, followed by a specific amplification with different 

primer combinations using PCR and subsequently visualization via gel electrophoresis 

(BECKER ET AL. 1995). The AFLP technique analyses a much larger number of loci for 

polymorphism than other PCR-based techniques and it reveals a higher number of 

sequenes amplified per reaction as well as a high reproducibility, some reasons why they 

were frequently used for high-density linkage maps and positional cloning of interesting 

genes in the past (THOMAS ET AL. 1995, KEIM ET AL. 1997, QI ET AL. 1998). However, 

they are dominant and purified, high molecular weight DNA is necessary and their 

application is time-consuming and larbourios (TOMAR 2015). SSR markers are widely 

used in plant genetic research for the construction of genetic linkage maps, QTL analysis 

or marker assisted selection since their discovery in the 1980s (VIEIRA ET AL. 2016, 

TAUTZ & RENZ 1984). Although they are costly in development, there are a lot of 

advantages like a high reproducibility, co-dominant nature, genome-wide distribution and 

a high reproducibility (JONES ET AL. 2009). Hence they are often applied in Fusarium 

Head Blight research (WEI ET AL. 2005) and high-density genetic maps for wheat were 

developed (SOMERS ET AL. 2004). SSRs are short repeats of nucleotides in coding and 
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mainly non-coding regions of the genome. The polymorphism is based on the varying 

number of repitive sequences between individuals in one population. These are amplified 

in a PCR using primers flanking those sequences and seperated by length with kapillar 

electrophoresis systems (ENGELMANN 2014).  

Today’s marker system of choice are the single nucleotide polymorphism (SNP) markers. 

They belong to the third generation of markers and are based on DNA seuqencing (JONES 

ET AL. 2009). Polymorphisms between individuals originate from single nucleotide 

alteration. These can be classified in two categories: transversions, purine-pyrimidine 

exchanges (C/G, T/A, C/A, G/T) and transitions, purine-purine or pyrimidine-pyrimidine 

exchanges (C/T, G/A) and are distinguished from insertions/deletions (indels) (VIGNAL 

ET AL. 2002, HAYWARD ET AL. 2012). SNPs occur in coding and non-coding regions of 

wheat and a frequency of one SNP per 540-569 bp in the entire genome and one SNP per 

335-613 bp in different genes of interest was reported (SHAVRUKOV 2016). They are 

usually bi-allelic, because two allelic variants are segregating in the population (CASCI 

2010) and have a co-dominant character. In addition, they have high genomic abundance, 

locus specifity and the potential for high-throughput analysis. Thus SNPs serve as a 

powerful tool for molecular breeding, especially for QTL mapping, genome-wide 

association studies (GWAS), marker assisted selection (MAS) and genomic selection 

(GS), where a large number of markers are needed to increase accuracy (SEMAGN ET AL. 

2014, ALIPOUR ET AL. 2019). In the beginning, SNP detection methods in wheat research 

take resource on known nucleotide sequences of popular RFLPs/CAPs and EST-

sequences (expressed sequence taqs), but this limited knowledge of the nucleotide 

sequence hindered the development of SNP markers in the past (KLESTHKINA & SALINA 

2006). 

Since the discovery of next-generation sequencing techniques, e.g. Hiseq/Miseq 

(Illumina, San Diego), Ion Torrent (Life Technologies,, Carlsbad) or Roche454 (Roche, 

Applied Science, Indianapolis) that produce up to millions of sequences simultaneously, 

SNP detection increases extremely and pave the way for high-throughput genotyping (HE 

ET AL. 2014, FATIMA 2016). Actually the costs of DNA sequencing are decreasing steadily 

due to new technologies whereas the number of genome-wide SNPs is increasing. Over 

50 SNP arrays and 15 different GBS protocols have been established up to now in more 

than 25 crop species and perennial trees (RASHEED ET AL. 2017). For wheat the 90K 
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(WANG ET AL. 2014) and 9K Illumina SNP chip are available (CAVANAGH ET AL. 2013). 

A consensus map was constructed out of eight biparental populations and 40.267 SNP 

markers were mapped out of 81.587 SNPs, providing an essential resource for  genomics 

based breeding (WANG ET AL. 2014, WEN ET AL. 2017). Today GBS is a low-cost, simple 

and powerful application to genotype and generate SNP markers in almost all species, not 

only for species with low genetic diverse and small genomes, but even for high genetic 

diverse and large genome species as wheat (ELSHIRE ET AL. 2011). For those species, 

target enrichment or reduction of genome complexity has to be conducted to ensure 

sufficient overlap in sequence coverage (ELSHIRE ET AL. 2011). In a first step, genome 

complexity has to be reduced by single (original: ApeKI) or two (PstI/Msp) restriction 

enzymes, dividing the genome into smaller fragments. Next, adapters with a bar-coding 

sequence in one of them are ligated to ends of DNA fragments for library preparation. 

Then the sequences are enriched by PCR and the resulting products are pooled for library 

preparation. The sequences of the library are processed with NGS sequencing systems 

and finally evaluated using bioinformatical pipelines (HE ET AL. 2014). GBS increases 

marker resolution for trait mapping through high density SNP marker detection and 

genome-wide marker coverage and is consequently used in genomic-assisted breeding 

efforts like GWAS, genomic diversity studies and genomic selection (GS), as well as 

ordering and anchoring physical maps (POLAND ET AL. 2012, HE ET AL. 2014). It is a cost-

effective approach, but lots of missing data due to a low sequence coverage are produced, 

so complex bioinformatics analyses are required (BERNARDO ET AL. 2015, WICKLAND ET 

AL. 2017). Nevertheless, reference sequences can increase haplotype imputation of 

missing data and succesful physical mapping of interesting genes/traits (POLAND ET AL. 

2012) 

 

5. Genetic and physical maps  

Genetic and physical maps are essential resources in molecular breeding research. Both 

maps display the marker arrangement and their distance to each other along chromosomes 

(COLLARD ET AL. 2005). Whereas genetic maps are constructed on the recombination 

frequency between two marker loci, the distance in a physical map is based on the number 

of nucleotides (O’ROURKE 2014). Hence, the genetic distance is based on the likelihood 

that a crossing-over occurs between two marker loci (genes) during meiosis. The distance 
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unit in genetic maps is called map units or centiMorgans (cM) with one mu/cM being 

equivalent to 1 % frequency of recombination. When two loci are far apart, a crossover 

is very likely and thus the recombination frequency is very high. If the recombination 

frequency is over 50 %, then the two genes/loci are unlinked (COLLARD ET AL. 2005). For 

conversion of recombination frequencies into map units, mapping functions like the 

Kosambi (KOSMABI 1944) or Haldane (HALDANE 1919) function are used (TAN & 

FORNAGE 2007). The ratio of genetic and physical distances is varying along 

chromosomes, because there are so called “hot spot” (proximal) and “cold spot” 

(centromeric) regions, where recombination events occur more or less and therefore 

distorting the real physical distance (PETES 2001, PETERS ET AL. 2003). For example, 

mean recombination rates in wheat range from 16.7 Mbp/cM in proximal/centromere 

regions to 1.1 Mbp/cM in distal regions of the chromosome (AKHUNOV ET AL. 2003). For 

bread and einkorn wheat high-density genetic maps are nowadays available (YU ET AL. 

2017, WEN ET AL. 2017). While sequencing costs are decreasing, physical maps become 

more and more important in breeding research to order and join sequence data as well as 

marker positions on the genetic map and they serve as an efficient tool for cloning projects 

and candidate gene identification as well as for comparitve genomic studies (MEYERS ET 

AL. 2004).  A physical map at highest resolution is a whole genome sequence of a species, 

which is nowadays available for lots of species, e.g. Arabdiopsis (AGI 2000), rice (IRGSP 

2005) and even for species with large and complex genomes like barley (MASCHER ET 

AL. 2017), maize (SCHNABLE ET AL. 2009) and wheat (APPELS ET AL. 2018), due to the 

large progress in next generation sequencing technologies. Recently the genome sequence 

of wheat variety Chinese Spring was published and further wheat varieties like Robigus, 

Paragon, Claire and Cadenza and durum wheat Kronos are released, although they are not 

advanced to the quality of Chinese Spring (APPELS ET AL. 2018, UAUY 2017). Also for 

wheat relatives like Triticum urartu a fully seqenced genome was published in 2018 

(LING ET AL. 2018).  

6. QTL-analysis, map-based-cloning (MBC) and marker-assisted selection (MAS)  

Marker-assisted selection (MAS) describes an indirect selection method and is nowadays 

a common procedure in wheat breeding programs due to many advantages in comparison 

to conventional breeding. For example, the accumulation of favorable alleles during the 

selection process through DNA-markers and the identification of suitable individuals 
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solely by genotypic data already at the seedling stage is time saving and cost effective in 

comparison to long traditional phenotypic assessments (FRANCIA ET AL. 2005, COLLARD 

& MACKILL 2008). Moreover, MAS gained increasing interest since the emergence of 

new high-troughput genoyping technologies, that cause a high marker density and 

increase the accuracy of marker-trait associations and thus the identification of markers 

tightly linked or even within the target gene (PÉREZ-DE-CASTRO ET AL. 2012), e.g.  

markers for broad-spectrum resistance gene Lr34 (LAGUDAH ET AL. 2009, FANG ET AL. 

2020). Thus, this facilitates the introgression of desired traits into breeding material by 

reducing undesired linkage drag. The use of MAS may be very easy for simply inherited 

monogenic traits, but is more complex for many agronomic traits being important for 

wheat improvement like yield, some disease resistances or abiotic stress tolerance, which 

are inherited in a quantitative manner. While qualitative traits are monogen and 

discontinious, quantitative traits show a continous phenotypic variation between two 

extreme characteristics of a given phenotype and are controlled by several genes (ASINS 

ET AL. 2009). Next to this polygenic nature, they are highly influenced by environmental 

factors and interacting epistatic effects (XU 2002). Moreover, they have a medium to low 

heritability and occasionally lots of small effect genetic loci are responsible for one 

phenotype. However, both traits are subjected to the same Mendelian laws of inheritance 

(BECKER 2011). A quantitative trait locus (QTL) defines genomic regions which 

significantly affect a quantitative trait (ALQUADH ET AL. 2019). QTLs are referred to 

major QTLs, when they explain a percentage of variation higher than 10 %  and as minor 

QTLs, when explaining less (FATIMA 2016, COBB ET AL. 2019). The identification of 

closely linked markers to the gene of interest is a prerequisite for MAS to reduce linkage 

drag. A bulked segregant analysis (MICHELMORE ET AL. 1991) together with high 

troughput sequencing has great potential for the isolation of candidate genes for 

qualitative, simple traits, while linkage-based QTL analyses in bi-parental populations 

were traditionally performed for quantitative traits (LANGRIDGE ET AL. 2001, ZHANG ET 

AL. 2019).  

Linkage-based QTL analyses are often used in molecular breeding research and result in 

the identification of genetic loci with their respective effects contributing to the 

phenotypic variation in a bi-parental population. Following fine-mapping and alignment 

of genetic marker with the physical map lead to identification and cloning of candidate 
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genes. The whole procedure is called map-based cloning (BETTGENHAEUSER & 

KRATTINGER 2019, JAGANATHAN ET AL. 2020). A perquisite for QTL mapping in bi-

parental populations is the construction of genetic linkage maps, which was done in the 

past with AFLP- or SSR markers and is facilitated nowadays by high-throuhput 

genotyping technologies. Genotypic data (marker data) and phenotypic results, 

segregating for a specific trait within this population, are linked by statistical procedures 

like simple-interval-mapping SIM or composite-interval-mapping CIM (SALVI & 

TUBEROSA 2005/2007, FATIMA 2016). Traditionally bi-parental populations are used for 

the QTL mapping, i.e. F2/F3-populations, DH- (doubled haploid)-populations and RIL 

(recombinant inbred lines)-populations as well as BC (backcross)-populations (SHI ET AL. 

2019). The required size of the population in classical mapping approaches is usually 

between 100-250 genotypes, but nowadays larger mapping populations are preferred, 

especially to detect QTLs with small effects on a target trait (COLLARD ET AL. 2005, 

TOMAR 2015). In bi-parental populations, QTLs are generally mapped at low resolution 

in a confidence interval between 10 – 30 cM, including hundreds of genes, which makes 

it difficult to identify the functional one (SALVI & TUBEROSA 2005). Thus the limitations 

of the bi-parental QTL mapping are a small allele richness and a low mapping resolution, 

that results from the respective population size. The small population size leads to a lower 

number of recombination events that originate during the construction of the mapping 

population (ALQUADH ET AL. 2019). Nevertheless, the QTL interval can be narrowed and 

the genetic resolution increased by a higher number of recombination events in a second 

step.  

To achieve this, a high-reolution mapping population (HRM-population) comprising 

several thousands of F2-plants (500-10.000 progenies), that are traced back to crosses 

between parental lines varying in their allelic constitution at a QTL position, is 

constructed (SALVI & TUBEROSA 2007).  Ideally, the HRM-population consists of near-

isogenic lines (NIL), because of their isogen/similar genetic background except of the 

variations within the target interval that lead to an accurate control of the QTL effect and 

allow to see the QTL as a single Mendalian factor (RAM  2014, JAGANATHAN ET AL. 2020). 

Another suitable population are RILs, but they always have a small amount of 

heterozygosity and segregate at different loci in the genetic background and not only at 

the QTL site. The HRM-population is screened with markers flanking the QTL interval 
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of interest to identify plants that have a recombination event within this interval. 

Heterozygous recombinant plants are further selfed to identify homozygous, fixed 

recombinant plants. After one additional selfing step, selected plants can be used for 

phenotypic and genotypic analysis. It is important that phenotypic analyses are conducted 

in multiple environments to proof the stability and repeatability of this QTL and to obtain 

robust assesments of phenotypic data (BOREVITZ & CHORY 2004, JAMANN ET AL. 2015). 

Additionally the interval is saturated with markers to delimit recombinational 

breakpoints. Suitable marker systems for fine mapping in the past were also AFLP- and 

SSR markers, but to date e.g. flourescencse-based PCR KASP assays, which are 

developed from SNP markers, are well suited for high-throughput recombinant screening 

(JAMANN ET AL. 2015, ALQUADH ET AL. 2019). In a next step, the high-resolution genetic 

map is anchored to the physical map (SILVA & TUBEROSA 2007). In the past, BAC contigs 

covering the target interval were used, but nowadays genome sequences are available for 

many species and facilitate the anchoring process. To date, well annotated reference 

sequences of many crop species, even for the large and complex wheat genome (APPELS 

ET AL. 2018) facilitate the selection of candidate genes due to predicted functions of the 

genes and gene ontologies (BOREVITZ & CHORY 2004). Especially genes with 

polymorphisms should be regarded as potential candidate genes, causing the phenotypic 

variation (JAMANN ET AL. 2015). Then the function of chosen candidate genes is validated 

using e.g. virus-induced gene silencing (VIGS) (BAULCOMBE 1999, DINESH-KUMAR ET 

AL. 2003), gene knockdown through RNAinterference (KUSABA 2004) or 

mutagenesis/tilling studies (MCCULLUM ET AL. 2000). Commonly used methods to date 

are rather zinc finger nucleases (ZFNs) (OSAKABE ET AL. 2010) or the Crispr/Cas9 system 

(KUMAR & JAIN 2015, BAO ET AL. 2019) mediating a gene knockout. Today’s 

improvements in biotechnological and genomic methodologies, like NGS-based 

genotyping platforms contribute to rapid and inexpensive genotyping of large mapping 

populations, resulting in a higher genetic resolution as well as to the construction of high-

density or consensus genetic maps (LI ET AL. 2015, WEN ET AL. 2017), that facilitate, 

together with complete reference sequences, cloning of genes/QTLs and reduce the time-

span for gene cloning by half (JAGANATHAN ET AL. 2020).  

Another possibility for successful marker-trait identification are genome-wide 

association studies (GWAS), based on linakge-disequlibrium (LD) mapping. GWAS 
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provides a higher allelic diversity and a higher number of recombination events and thus 

a higher mapping resolution compared to classical bi-parental QTL mapping. Moreover 

there is no need to construct a segregating mapping population or a linkage map 

(ALQUADH ET AL. 2019). Nevertheless, GWAS also has some drawbacks like the 

requirement of a large population size or spurious associations due to the population 

structure (ALQUADH ET AL. 2019). Moreover, todays multi-parent approaches like NAM- 

or MAGIC-populations try to combine both advantages of linkage- and LD mapping 

while overcoming their drawbacks and therefore were employed in several studies 

(BAJGAIN ET AL. 2016, SANNEMANN ET AL. 2018, STADLMEIER ET AL. 2018, KIDANE ET 

AL. 2019).   

Finally, it can be stated, that bi-parental QTL mapping studies with following fine-

mapping procedure as well as LD-based association mapping are powerful tools to 

identify candidate genes, which are responsible for phenotypic trait variation, and 

consequently to develop functional markers for MAS that accelerate and support wheat 

breeding research. However, a shift is observed in practical breeding from MAS to 

genomic selection (GS), which seems to be quite more efficient in improving complex 

quantitative traits with small effects (HEFFNER ET AL. 2009, CROSSA ET AL. 2017).  
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7. Aim of this study 

The aim of this study was the investigation of FHB resistance in a Triticum monococcum 

DH-population, derived from a cross between Triticum monococcum L. accession mon10-

1 and Triticum monococcum L. conv. sinskayae (Sinskayae) up to fine mapping and 

identification of suitable markers and/or candidate genes. Genetic resources like Triticum 

monococcum provide a powerful gene reservoir for the improvement of modern wheat 

varieties. Therefore two neighbouring QTLs on chromosome 2A, which explain 81.8 % 

and 34.7 % phenotypic variance, respectively for FHB resistance act as basis for further 

map-based cloning. In more detail goals of this study were 1) to map QTL for FHB 

resistance in a Triticum monococcum DH-population with a genetic map comprising 

1987.55 cM and two-years-field trials 2) to construct a high-resolution mapping 

population out of segregating F2-plants that were developed by crossing three susceptible 

(A37, A39, B22) and two resisant DH-lines (C35, C42) to enhance genetic resolution, 3) 

to generate new molecular markers within the target interval for the genotyping of the 

HRM-population and to saturate this interval, 4) to phenotype recombinant inbred lines 

(RILs) in the F4-generation of the HRM-population to locate the resistance loci in the 

interval and finally 5) to identify closely linked markers and/or candidate genes for MAS. 
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Chapter II |  

Mapping of QTL for Fusarium Head Blight resistance in a Triticum monococcum doubled 

haploid population and development of a high-resolution mapping population  

 

Breidenbach C, Luthard L, Krämer I, Kopahnke D, Perovic D, Schliephake E, Ordon F  

 

1. Abstract  

The causal agents of Fusarium Head Blight (FHB), a devastating disease in wheat and 

other small grain cereals worldwide are different Fusarium species, predominantly 

Fusarium graminearum and Fusarium culmorum. The infection leads to high yield losses 

up to 40 % and a decreased seed quality due to the production of mycotoxins during the 

infection cycle. In this study, a Triticum monococcum doubled haploid (DH)-population 

comprising 94 lines based on a cross between Triticum monococcum L. (mon10-1) and 

Triticum monococcum L. conv. sinskayae (Sinskayae) was analysed for resistance to 

FHB. To achieve this, the DH-population was phenotyped in two-years field trials (2008 

and 2009) by an artificial infection with Fusarium culmorum Fc46 and genotyped with 

DArT-, SNP-, and SSR markers resulting in a genetic map of 1987.55 cM. Two 

neighbouring QTLs were mapped on chromosome 2A in an interval of 45.1 cM. The first 

QTL interval comprises 29.8 cM and explains 81.8 % (LOD = 19.7) of the phenotypic 

variance on average of both years (2008/2009). The second QTL interval is 15.3 cM and 

explains 34.7 % (LOD=7.45) of the phenotypic variance on average of both years 

(2008/2009). Both QTLs are used for a following map based cloning approach, including 

the development of a high-resolution mapping population with 1991 F2-plants and a 

genetic resolution of 0.025 % recombination.  

 

2. Introduction   

Cultivated einkorn wheat, Triticum monococcum L., an ancient diploid wheat species (2n 

= 2x = 14, AmAm) with hulled grains and a genome size of 4.94 Gb was one of the first 

domesticated crops and widely used in the beginning of agriculture for bread making and 

feed until the bronze age (ABBASOV ET AL. 2018). The domestication process started about 
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10.000 years ago in the Fertile Crescent, especially in South-Eastern Turkey from the 

wild species Titicum monococcum ssp. boeticum (HARLAN 1980, DUBKOVSKY & 

DOVARK 2007). Today, there are only small regions in Turkey, Southern Europe and the 

Balkans where einkorn wheat is grown (SUCHOWILSKA ET AL. 2009, ZAHARIEVA & 

MONNEVEUX  2014). Nevertheless, the importance of einkorn wheat as a genetic resource 

in wheat breeding should not be neglected due to the adaptation to low-input conditions 

and a high level of resistance as well as the high amount of beneficial compounds for 

man’s health and nutrition (CAKMAK ET AL. 2000, MIELKE AND RODEMANN 2007, TIWARI 

ET AL. 2009, SAHIN ET AL. 2017). In this respect, resistance to Fusarium Head Blight was 

detected in einkorn wheat (KOPAHNKE ET AL. 2008, LUTHARD 2012, KONVALINA ET AL. 

2016, GÓRAL ET AL. 2017), while in other studies it turned out to be susceptible to FHB 

(MIELKE AND RODEMANN 2007). Fusarium Head Blight was first described by W. SMITH 

in 1884 and is one of the most damaging diseases in wheat (Triticum aestivum L.) and 

other small grain cereals worldwide (WEGULO ET AL. 2015). Fusarium culmorum (W.G. 

Smith) is one of the causal agents of  Fusarium Head Blight (FHB). The occurrence was 

mainly reported in Northern, Western and Central Europe in the past, but recently there 

are already cases of infestation with F. culmorum in the Mediterranean region. In 

Germany, F. culmorum accounts for 20 % of all isolated Fusarium species from wheat 

next to F. graminearum with 67 % (LIENEMANN 2002, TALAS 2011, MIEDANER ET AL. 

2013). Infected plants show brownish spots on the glumes, prematurely bleached 

spikelets and orange-salmon coloured sporodochia at the base of the spikelets resulting 

in shriveled kernels and high yield losses (SCHERM ET AL. 2013). The infection intensity 

depends on environmental conditions, so humidity and warm temperature higher 25°C 

during flowering are advantageous, although F. culmorum is the one with the lowest 

demand for humidity within the Fusarium species (WAGACHA & MUTHOMI 2007). It is 

no real sexual stage known for this pathogen, but two mating types (TÓTH ET AL. 2004) 

indicating a cryptic sexual stage or a loss of this stage in recent time (MIEDANER ET AL. 

2013). Two chemotpypes are known for F. culmorum, chemotype I (DON and its 

derivative 3-ADON) and chemotype II (NIV and/or FusarenoneX (FUS)) (SCHERM ET 

AL. 2013). Both are toxic, secondary metabolites with fatal consequences for man and 

animals after consumption.  
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Control measures are fungicide application during early flowering or wide crop rotations, 

but the most cost effective and environment friendly approach is breeding of resistant 

cultivars, although this is difficult due to the polygenic inheritance and the strong 

influence of environmental conditions (SNIJDERS & PERKOWSKI 1990, SHANER 1995, 

KONVALINA ET AL. 2016, MESTERHÁZY ET AL. 2018). In addition to some passive 

resistance mechanisms like plant height, spike compactness or time of flowering 

(MESTERHÁZY 1995, SCHMOLKE ET AL. 2005, EMRICH ET AL. 2008), five active resistance 

responses to FHB are described: type I: resistance against initial infection (SCHROEDER 

& CHRISTENSEN 1963), type II: resistance against pathogen spreading (SCHROEDER & 

CHRISTENSEN 1963), type III: resistance to mycotoxin accumulation (MILLER ET AL. 

1985), type IV: resistance to kernel infection (MESTERHÁZY 1995, MESTERHÁZY ET AL. 

1999), type V: tolerance (MESTERHÁZY 1995, MESTERHÁZY ET AL. 1999). Although a 

combined resistance to DON accumulation and decreased FHB severity is advantageous 

and preferred by breeders, most QTL studies focused on resistance type I or II (BAI ET 

AL. 2001, MESTERHÁZY ET AL. 2017). At the moment, more than 250 QTLs are known 

for FHB resistance in wheat with Fhb1 being the most stable and prominent one for 

resistance type II (JIA ET AL. 2018, STEINER ET AL. 2017). Fhb1, which was discovered in 

Sumai-3 and other Chinese landraces is located on chromosome 3BS and explains 6-60% 

of the phenotypic variance (BAI ET AL. 1999, WALDRON ET AL. 1999, CUTHBERT ET AL. 

2006, LIN ET AL. 2006). It is widely used in western wheat breeding programmes, even 

though the usage of non-adapted material is still in discussion due to undesirable linkage-

drag effects (BUERSTMAYR 2014, BAI ET AL. 2018). Some other important QTLs for 

resistance type II are Fhb2 (YANG ET AL. 2003, CUTHBERT ET AL. 2007) and Fhb3 (QI ET 

AL. 2008). Fhb2 was also detected in Sumai-3, mapped on chromosome 6BS and accounts 

for 21 % of the phenotypic variance, whereas Fhb3 originated from Leymus racemosus, 

a wild grass species, and was successfully transferred into wheat chromosome 7A 

(ANDERSON ET AL. 2001, CUTHBERT ET AL. 2007, QI ET AL. 2008). Fhb4 and Fhb5 both 

derived from Whangshuibai, a Chinese landrace unrelated to Sumai 3, and confer 

resistance type I, although they have also been associated with type II resistance in other 

populations (LIU ET AL. 2009). They are located on chromosome 4BL and 5AS (XUE ET 

AL. 2010, XUE ET AL. 2011). The two newest designated FHB-QTL are Fhb6 (CAINONG 

ET AL. 2015) on chromosome 1A and Fhb7 (GUO ET AL. 2015) on chromosome 7D, both 

from alien species Elymus tsukushiensis and Thinopyrum ponticum, respectively and they 



Chapter II | 

26 

 

were also successfully transferred into wheat. With regard to this study, there are also 

some minor QTLs detected on chromosome 2A in a tetraploid wheat population 

BGRC3487 x DT735 (RUAN ET AL. 2012) as well as in durum wheat (GHAVAMI ET AL. 

2011), hexaploid wheat (ZHOU ET AL. 2002, MA ET AL. 2006) and in an interspecific wheat 

population (GIANCASPRO ET AL. 2016). Lots of research was also done with well-adapted 

European elite material to avoid linkage drag, when introducing QTL from non-adapted 

Asian germplasm (BUERSTMAYR ET AL. 2019). Although there was some research on 

Fusarium resistance in related wheat species like Triticum spelta, Triticum timopheevii 

and Triticum dicoccum (BUERSTMAYR ET AL. 2019), little is known on the genetics of 

resistance to FHB of Triticum monococcum. Thus, the main objectives of the study were 

i) to evaluate a doubled haploid Triticum monococcum population for FHB resistance ii) 

to identify QTL for FHB resistance in this population and iii) to construct a high-

resolution mapping population for these QTL for fine-mapping thereby reducing linkage 

drag. 

 

3. Material and Methods  

QTL mapping  

3.1. Plant material  

For QTL analysis, a doubled haploid (DH)-population comprising 94 doubled haploid 

(DH)-lines derived from a cross between Triticum monococcum L. accession mon10-1 

and Triticum monococcum L. conv. sinskayae A. Filat. & Kurkiev (Sinskayae) providided 

by GEORGE FEDAK was used. Mon10-1 is moderately resistant to Fusarium Head Blight 

while Sinskayae is highly susceptible (LUTHARD 2012).  

3.2. Phenotyping: Field trials  

All DH-lines and parental lines were sown in plots of 1 m2 size on the field of the Julius 

Kuehn-Institute in Quedlinburg, Saxony-Anhalt (51.7694 N, 11.147 E, 140 m altitude) in 

2008 and 2009 for evaluating Fusarium Head Blight resistance type I. Each genotype was 

inoculated by artificial infection with the highly aggressive Fusarium culmorum- Isolate 

Fc46, kindly provided by THOMAS MIEDANER, UNIVERSITY OF HOHENHEIM using a 

conidia suspension of 1.000.000 C/ml. The inoculum of Fusarium culmorum Fc46 was 
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produced with Fusarium-infected wheat grains. In a first step, wheat grains were washed 

with water and soaked in water over night. Surplus water was removed and 850 ml of 

grains were filled in 1000 ml glass flasks. These were sealed with a plug and aluminium 

foil and autoclaved three times for 1h at 120°C within 24h. After 3-4 days in the brood 

chamber (20°C), grains were infected by dropping a half potato-dextrose agar (PDA)-

plate of Fusarium culmorum isolate Fc46 into the grains. The flasks were incubated at 

20°C in the dark until the grains were fully covered with Fusarium mycelia. Then, wheat 

grains were placed into a plastic bowl and dried for 7-14 days. To determine the 

concentration of the spore suspension, 0.1 g of dried wheat grains of each plastic bowl 

were dissolved in water and the number of spores was counted with a Fuchs-Rosenthal-

chamber. The average values of three samples of each plastic bowl as well as of all plastic 

bowls were calculated and the amount of infected wheat grains for a 10 l suspension with 

a concentration of 1.000.000 C/ml was calculated. Before inoculation, the wheat grains 

were dissolved in water with one drop of Tween 20 to produce the conidia suspension. 

The conidia suspension was sprayed directly on the ears with a backsprayer, when 50% 

of each plot were flowering (BBCH65). The inoculation was replicated once in an interval 

of three to four days to compensate for different flowering times and to guarantee optimal 

infection conditions for the pathogen. Fusarium Head Blight severity was visually 

recorded as percentage infestation of each plot according to MOLL ET AL. (2010) at four 

to five different timepoints. The screening started ten days after the second infection (10 

dpi) and was repeated every four days until the yellow ripening state was reached, usually 

after 22 dpi or 26 dpi. The scoring data were used to calculate the Area under disease 

progress curve (AUDPC) and out of these the Average Ordinate (AO) as described by 

VATTER ET AL. (2017) with following formula: 

 

 

 

where (N) is the total number of observations, (yi) the disease level at the ith observation, 

(ti) the time at the ith observation and (tp) the trial period in days.  
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3.3. Statistical analyses  

Statistical analyses of phenotypic data were performed using the software SAS 9.4 (SAS 

Institute Inc., Cary, NC, USA). Frequency distribution of phenotypic data was tested for 

a Gaussian distribution employing the Kolomogorov-Smirnow- and the Saphiro-Wilk-

tests using proc univariate. Analysis of variance (ANOVA) was carried out using proc 

GLM to examine significant differences between AO-values. Broad sense heritability 

across years was calculated using the  following formula (in detail described by VATTER 

ET AL. 2017): 

 

 

Where VG is genotypic variance, VGY is genotype x year variance, VR is residual variance 

and y and r indicate the number of years and replicates, respectively.   

 

3.4. DNA Extraction  

For genotyping, DNA was isolated from all 94 DH-lines of the mapping population as 

well as from parental lines with the CTAB-extraction method according to STEIN ET AL 

(2001). DNA concentration was measured with a NanoDrop ND 1000 Spectrophotometer 

(PEQLAB Biotechnology GmbH, Erlangen) and adjusted to 50 ng/µl for PCR analyses.  

 

3.5. Genotyping: Marker analyses  

SSR markers for the genotyping of the DH-population derived from already published 

genetic maps of chromosomes 1A,2A,3A,4A,5A,6A and 7A of bread wheat (Triticum 

aestivum L.) (RÖDER ET AL. 1998, SOURDILLE ET AL. 2001, SHI ET AL. 2003, SOMERS ET 

AL. 2004, JING ET AL. 2009) were selected and tested for polymorphism between the 

resistant and susceptible parent. Selected polymorphic marker were screened on the 

whole DH-population. PCR analyses were performed using a thermal cycler GeneAmp 

PCR System 9700 or 2700 (Applied Biosystems by Life Technologies Corporation, 

Carlsbad, California). PCR reaction volumes comprised 15 µl consisting of 1.5 µl 50 ng 

DNA and a Mastermix containing PCR reaction buffer, MgCl2, dNTPs, polymerase, 
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forward Primer (Primer F), reverse Primer (Primer R) and fluorescence labeled M13-

tailed Primer in different quantities (Table 1).   

 

Table 1 | Composition of PCR mixtures used for SSR analyses  

 

 

 

PCR reactions were conducted with four different programs (Table 2) and subsequently 

visualized by gel electrophoreses. For checking the PCR-products 1.5 % agarose gel was 

produced and loaded with a 10 µl-mix (5 µl PCR-product/5 µl DNA loading Dye). The 

imaging was done by gel documentation system GEL DOC XR (Bio-Rad Laboratories 

GmbH, München) and the „Quantity One“- software v4.6.3 (Bio-Rad Laboratories 

GmbH, München). The fragment size of PCR products was estimated by loading D2, D3 

and Cy5 flourescence labeled fragments on a CEQ 8000 Genetic Analysis System 

(Beckmann Coulter GmbH, Krefeld). For the detection and evaluation of fragments the 

software CEQ Systems (v9.0.25/v10.2.3) was used. Fragment analyses with 3130xL 

Genetic Analyzer system (Applied Biosystems by Life Technologies Corporation; 

Carlsbad, California) were performed for FAM, HEX and NED labeled PCR products 

and evaluated with the software GeneMapper (v4.0). In addition, the DH mapping 

population and the parental lines were genotyped using the DArT array and DArT seq 

(1.) conc. approach  (2.) conc. approach  (3.) conc. approach  

tdW 
 

9.33 µl tdW 
 

8.73 µl tdW 
 

9.07 µl 

BufferB 

without MgCl2 
10x 1.50 µl 

BufferB 

without MgCl2 
10x 1.50 µl 

BufferB 

without MgCl2 
10x 1.50 µl 

dNTPs 10 mM 0.30 µl dNTPs 10 mM 0.60 µl dNTPs 10 mM 0.30 µl 

Primer F 10 µM 0.23 µl Primer F 10 µM 0.30 µl Primer F 10 µM 0.40 µl 

Primer R 10 µM 0.38 µl Primer R 10 µM 0.30 µl Primer R 10 µM 0.40 µl 

M13-Tail  10 µM 0.15 µl M13-Tail  10 µM 0.27 µl M13-Tail  10 µM 0.40 µl 

Polymerase 

FIRE 
5U 0.12 µl 

Polymerase 

FIRE 
5U 0.30 µl 

Polymerase 

HOTFIRE 
5U 0.12 µl 

MgCl2 25 mM 1.50 µl MgCl2 25 mM 1.50 µl MgCl2 25 mM 1.31 µl 

DNA 
 

1.50 µl DNA 
 

1.50 µl DNA 
 

1.50 µl 
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technologies resulting in 4912 DArT- and 3821 SNP markers by Triticarte (Triticarte 

P/L,Yarralumla, Australia, http://www.triticarte.com.au).  

 

Table 2 | PCR programs for SSR marker analyses  

 

td 62 - 56_30'' td 62 - 56_30''_1 wms 50 hs wms 50 

94°C 5' 95°C 10' 96°C 10' 94°C 5' 

94°C 30'' 94°C 30'' 94°C 1' 94°C 1' 

62°C 30'' (12x -0.5°C) 62°C 30'' (12x -0.5°C) 50°C 1' (45x) 50°C 1' (45x) 

72°C 30'' 72°C 30'' 72°C 2' 72°C 2' 

94°C 30'' 94°C 30'' 72°C 7' 72°C 10' 

56°C 30'' (35x) 56°C 30'' (35x) 4°C 20' 4°C 20' 

72°C 30'' 72°C 30'' 15°C ∞ 15°C ∞ 

72°C 7' 72°C 7'         

4°C 20' 4°C 20'         

15°C ∞ 15°C ∞         

 

 

3.6. Genetic map construction 

Based on the resulting A/B matrix, genetic map construction was performed with the 

software JoinMap v4.0 (VAN OOIJEN 2006) using the Kosambi function with a minimum 

LOD (logarithm of odds) threshold of 3.0. Mapped SSR markers from already published 

wheat genetic maps served as anchor markers for each linkage group. Monomorphic 

markers and markers with more than two missing values were excluded from mapping.  

 

3.7. QTL mapping  

QTL mapping was conducted for Fusarium Head Blight resistance using MapQTL v5.0 

(VAN OOIJEN 2004). For a clear distinction of neighboured QTLs and improved 

localization, the multiple QTL mapping (MQM) procedure was used with prior identified 

significant markers for FHB resistance acting as co-factors. The permutation test was 

conducted to determine the logarithm of the odds (LOD)-score threshold (p>0.05) for the 

detection of significant QTLs. QTL analysis was done with 10 cM, 5 cM and 2 cM marker 

distances to get an exact position of the QTL interval.  
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Construction of a high-resolution mapping population  

3.8. Plant material  

A segregating F2-population, consisting of 1991 F2-plants, based on crosses between 

selected resistant (C35, C42) and susceptible DH-lines (A37, A39, B22), derived from 

the recent DH mapping population (see above), was used for the construction of the high-

resolution mapping population (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

3.9. Marker development  

For genotyping of the F2-population three polymorphic SNP markers, flanking both 

QTL_mon1 and QTL_mon2 (SNP_1216, SNP_0667, SNP_0833, Figure 5) on 

chromosome 2A were selected from the genetic map of the DH-population and were 

converted into co-dominant competitive allele-specific PCR markers. KASP assays were 

generated by LGC-Customer-Technologies (http://www.lgcgenomics.com).  

Figure 4 | Resistant (left: C35, C42) and susceptible (right: A37, A39, B22) parental 

lines used for the construction of the high resolution mapping population 



Chapter II | 

32 

 

3.10. Construction of a high-resolution mapping population  

 The F2-plants were sown in 96 quick-pot-trays 

in the greenhouse and plant material was 

harvested in the two leaf stage for DNA 

extraction according to DOROKHOV & KLOCKE 

(1997). For the identification of plants, 

showing a recombination event within the 

interval, the F2-plants were analysed with the 

developed KASP markers using the real-time 

PCR system BIO-RAD CFX-96 with the 

following protocol: 15 min at 94°C, followed 

by 20 min at 94°C and 1 min at 65°C for 

annealing (annealing temperature was reduced 

during 10 cycles to 57°C), then 20 min at 94°C 

and 1 min at 57°C for 26 cycles and a finishing 

post-PCR-step with 1 min at 30°C. The PCR 

reaction was set up in 10 µl volumes with 5 µl 

50ng DNA and 5 µl Mastermix, composed of 

5 µl KASP-ReactionMix and 0.14 µl SNP-

PrimerMix (LGC GENOMICS). Identified 

heterozygous recombinant F2-plants were 

selfed and 12 F3-plants per genotype 

screened again with the same flanking KASP markers to detect homozygous recombinant 

plants, which were used as segmental homozygous recombinant inbred lines (RILs) for 

subsequent phenotypic and genotypic studies. Homoyzgous recombinant plants, already 

identified in the F2-generation were directly used for further analyses. The flanking SNP 

markers were subsequently compared to the physical positions in the reference maps of 

Triticum aestivum (APPELS ET AL. 2018) Therefore the SNP sequences were blasted as 

fasta files against the T. aestivum reference sequence: IWGSC RefSeq CS v1.0 (URGI 

2018) The best hit (expected threshold = 0.0001) was chosen to determine physical 

marker positions. However, the SNP markers derive from T. monococcum and if there 

Figure 5 | Genetic map of chromosome 2A, QTL 

interval with selected SNP markers, genetic (left, 

cM) and physical (right, Mpb) map positions of 

selected SNP markers 
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was no match for one SNP marker on the wheat reference map (URGI 2018) the expected 

threshold was continously increased up to 1.  

4. Results  

4.1. Phenotypic evaluation  

Fusarium inoculation resulted in AO-values ranging from 5 – 50 %. The population shows 

a bimodal distribution of the phenotypic traits with a peak at 15 % and 35 % infestation 

in 2008 and at 10 % and 40 % infestation in 2009, respectively (Figure 6, Table 3)  

 

Table 3 | Performance of parents and DH-population for FHB-trait AO-value for both years and mean  

 

A normal distribution of phenotypic data is opposed for both years by Saphiro-Wilk- and 

Kolmogorow-Smirnow-tests at α=0.05 (Figure 6). The general linear model indicates 86 

% variation of the AO-values between DH-lines (R2=0.8605, GLM) with highly 

significant differences between genotypes (p<0.001) and significant differences between 

years (p<0.0209) (Table 4). Two year broad-sense heritability was estimated at h2 = 0.83. 

 

Table 4 | Analysis of variance for AO-values in DH-population  

 

 

AO-Values (FHB severity)  

Source DF MS F-value  P 

Genotypes 93 207,59336 5,58 <.0001 

Years 1 206,03525 5,54 0,0209 

Error  85 37,20236   

Total  179    

    DH-population  

Trait  Year mon10-1 [R] Sinskayae [S] Min  Max Mean SE 

AO-value  2008 13.25 40 5.75 48.75 27.09 10.70 

 2009 10.5 40 4.67 41.67 24.92 11.90 

 Mean  11.88 40 5.21 45.21 26.01 11.30 
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Table 5 | Characteristics of genetic mapping  

 

Linkage Groups Markers mapped Map length Density (N/cM) 

1A 112 228.87 0.49 

2A_1 143 138.34 1.03 

2A_2 117 179.95 0.65 

3A_1 31 263.54 0.12 

3A_2 28 159.67 0.18 

4A 131 251.45 0.52 

5A 104 303.62 0.34 

6A 127 221.18 0.57 

7A 231 240.95 0.96 

Total 1.024 1.987.554  
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Figure 6 | Distribution of AO-values of parents and DH population in 2008/2009, normal distribution is opposed 

by Saphiro-Wilk and Kolmogorov-Smirnov Tests for both years  
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4.2. Genetic linkage maps  

A number of 180 SSR-, 4912 DArT- and 3821 SNP markers were screened for 

polymorphisms between the parental lines, resulting in 38 (21.1 %) polymorphic SSR 

markers, 1803 (36.7 %) DArT markers and 1665 (43.5 %) SNP markers. Out of these, 

1248 polymorphic SSR, DArT and SNP markers were used as input for map construction. 

Based on these data a genetic map of Triticum monococcum with a length of 1987.55 cM 

comprising 1024 markers on nine linkage groups was constructed. They were assigned to 

all seven chromosomes based on common markers with previously published maps.  

Chromosome 2A and 3A are divided into two parts. The respective linkage groups 

consists of numbers of mapped loci from n = 28 (3A_2) to n = 231 (7A) (Table 5).  

 

4.3. QTL analysis  

QTL analysis was performed for Fusarium Head Blight resistance type I using phenotypic 

field data and genotypic data from the marker screening of the DH-population. Maps were 

constructed with on average 10 cM, 5 cM and 2 cM marker distances to get a better 

indication of the exact QTL positions. For each calculation, the average AO-values of 

both years (2008/2009) were used. Moreover, the best position of the QTL was achieved 

using SNP_0797 as co-factor. All QTLs reached the level of significance with α=0.05 

estimated by permutation tests (LOD threshold = 2.4). In addition, the resistance carrying 

allele derived from the moderately resistant parent Triticum monococcum 10-1. 

10 cM  

Two neighbouring QTLs were mapped in an interval of 45.1 cM on chromosome 2A. The 

first QTL, named QTL_mon1, accounts for 81.8 % of phenotypic variance (LOD=19.7) 

and comprises a marker interval from 115.3 cM to 145.1 cM (29.8 cM) between flanking 

markers SNP_1216 and SNP_0667. The peak marker is SSR wmc0644 at position 123.1 

cM. The second QTL interval, named QTL_mon2, ranges between 145.1cM  – 160.1 cM  

(15.2 cM) and is flanked by markers SNP_0667 and SNP_0833 with SNP_0865 as the 

peak marker at position 150.2 cM. QTL_mon2 explains 34.7 % of phenotypic variance 

(LOD=7.45) (Figure 7, Table 6). Both QTLs together cause a 20 % infestation reduction 

of Fusarium Head Blight in the DH-population and on average of both years.   
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5 cM  

QTL analysis with 5 cM map distance shows a separation of the main QTL_mon1 in two 

QTLs (QTLmon1.1 and QTLmon1.2). QTLmon1.1 is located in a marker interval 

between 115.3 cM – 127.2 cM with flanking markers SNP_1216 – SNP_0157. The QTL 

comprises 11.9 cM and explains 24.4 % of phenotypic variance (LOD=2.85) with 

SNP_0805 as closest marker at posisiton 120.9 cM. Whereas the highest QTL peak 

(QTLmon1.2) is flanked by markes SNP_0603 – SNP_0142 and ranges between 131.9 

cM – 140.8 cM with the peak marker SNP_0797 at position 135.0 cM. It explains 78.2 % 

of the phenotypic variance (LOD=13.76). The second QTLmon2.1 was mapped in the 

same genetic region like QTL_mon2, but accounts for a higher phenotypic variance of 

35.9 % (LOD=6.25) with peak marker SNP_0865 (150.2 cM) (Figure 8, Table 6).   

 

Table 6 | Locations and estimates of QTLs for FHB severity on chromosome 2A in T. monococcum  

 

 

 

 

 

Marker 

distance 
QTL Map Interval 

Genetic map 

location (cM) 
LOD R2 

Additive 

effect 
Closest Markers 

10 cM  QTL_mon1 
SNP_1216 - 

SNP_0667 
115.3 - 145.1 19.7 81.8 10.06 wmc0644/SNP_0797 

10 cM  QTL_mon2 
SNP_0667 – 

SNP_0833 
145.1 – 160.4 7.45 34.7 10.04 SNP_0865 

5 cM QTL_mon1.1 
SNP_1216 - 

SNP_0157 
115.3 - 127.2 2.85 24.4 6.53 SNP_0805/wmc0644 

5 cM QTL_mon1.2 
SNP_0603 - 

SNP_0142 
131.9 - 140.8 13.76 78.2 9.93 SNP_0797 

5 cM  QTL_mon2.1 
SNP_0667 – 

SNP_0833 
145.1 – 160.4 6.25 35.9 8.70 SNP_0865 

2 cM QTL_mon1.3 
SNP_1315 - 

SNP_0356 
118.6 - 124.7 3.29 27.9 7.29 SNP_0805/wmc_0644 

2 cM QTL_mon1.4 
SNP_0122 - 

SNP_0790 
134.0 - 137.6 10.67 44.8 7.86 SNP_0797 

2 cM  QTL_mon2.2 
SNP_0111 - 

SNP_0756 
149.1 - 152.5 6.31 35.0 9.98 SNP_0865 
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2 cM  

Three QTLs were mapped with a genetic map of 2 cM marker distances. As before, the 

main QTL_mon1 was divided into two single QTLs (QTL_mon1.3 and QTL_mon1.4). 

QTL_mon1.3 spans an interval of 6.1 cM between flanking markers SNP_1315 – 

SNP_0356 (118.6 cM – 124.7 cM) and explains 27.9 % of phenotypic variance 

(LOD=3.29) with SNP_0805 (120.9 cM) as peak marker. QTL_mon1.4 accounts for 44.8 

% of phenotypic variance (LOD=10.67). It is located between SNP_0122 and SNP_0790 

in a smaller interval of 134.0 cM – 137.6 cM. The peak marker is SNP_0797 (135.0 cM). 

The second QTL_mon2 was further delimited to an interval of 3.4 cM (QTL_mon2.2) 

between SNP_0111 and SNP_0756 and explains 35.0 % phenotypic variance (LOD = 

6.31) with peak marker SNP_0865 at position 150.2 cM (Figure 9, Table 6). 

In summary, all QTLs were mapped in the same region between 115.3 cM – 160.7 cM on 

chromosome 2A in larger or smaller intervals. For further analyses, the QTL analysis with 

10 cM map distance and wider intervals was chosen to ensure that no important genes, 

which are responsible for the trait variation, may get lost by fine-mapping procedure.   

 

 

 

 

Figure 7 | QTL for FHB resistance on chromosome 2A using phenotypic data of two years (2008/2009) and a genetic 

map with an average distance of 10 cM 
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Figure 8 | QTL for FHB resistance on chromosome 2A using phenotypic data of two years (2008/2009) and a genetic 

map with an average distance of 5 cM 

Figure 9 | QTL for FHB resistance on chromosome 2A using phenotypic data of two years (2008/2009) and a genetic map 

with an average distance of 2 cM 
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4.4. Construction of a high-resolution mapping population  

QTL analysis with 10 cM maker distances was chosen as the basis for the construction of 

a high-resolution mapping population. Altogether 1991 F2-plants, resulting in a resolution 

of 0.025 % recombination, were screened with the three flanking KASP markers 

(SNP_1216, SNP_0667, SNP_0833) for recombination events in the target intervals. A 

genetic distance of 11.4 cM was determined for the first QTL interval, 6.4 cM for the 

second QTL interval and 17.8 cM for both intervals (Figure 10). The physical distance is 

shown in Figure 5. In a first step, 23 F2-plants were detected for the whole QTL region to 

be homozygous recombinant and 663 F2-plants to be heterozygous recombinants. 333 

recombinant inbred lines were finally developed out of the recombinant F2-plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

DH-population  F2-population  

SNP_1216  

SNP_0667  

SNP_0833  

29.8 cM 

15.3 cM 

11.4 cM 

6.4 cM 

17.8 cM 45.1 cM 

Figure 10 | Genetic distances between flanking markers (SNP_1216, SNP_0667, SNP_0833) in the DH- and the F2-population  
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5. Discussion  

This study was conducted to get information on the genetics of resistance of einkorn 

wheat to FHB. Toachieve this, the resistance of a Triticum monococcum DH-population 

to Fusarium Head Blight was assessed and QTLs identified. FHB still remains an 

important disease in wheat, because of high economic losses for farmers due to yield 

reduction and contamination with mycotoxins. Resistance breeding is a very promising 

and efficient way to control FHB and reduce mycotoxin production during the infection 

cycle (MCMULLEN ET AL. 2012, SHAH ET AL. 2018). Due to limited genetic variation 

occurring in cultivated hexaploid wheat, the identification of new resistance sources in 

wild relatives is of prime importance (KUMAR & SHUKLA 2014). In this study, two 

neighbouring QTLs were mapped between SNP marker 1216 and SNP marker 0833 on 

the short arm of chromosome 2A. Both derive from resistant parent Triticum 

monococcum-accession 10-1 and explain 81.8 % and 34.7 % of the mean phenotypic 

variance, respectively. This explained phenotypic variance is quite high compared to 

other studies, e.g. 16 % of the explained phenotypic variance for a major effect QTL for 

FHB resistance on chromosome 3A was reported (STEINER ET AL. 2004) or 22.1 % 

explained phenotypic variance for a QTL on chromosome 6DL (PAILLARD ET AL. 2004). 

Moreover, for fungal spread a lower phenotypic variance of 16 % and 36 % was reported 

on chromosome 3BS in two DH-populations (YANG ET AL. 2003). Even the major QTL 

Fhb1 on chromosome 3BS accounts for a lower phenotypic variance of 60 % in 

comparison to our study. Heritability was estimated in this study at h2 = 0.83, which is in 

accordance to other studies in which h2 for FHB resistance was also calculated in a range 

between h2 = 0.79 (MIEDANER ET AL. 2011) to h2 = 0.92 (SCHMOLKE ET AL. 2005), 

although other studies estimated heritability for field severity lower at h2=0.55 (RUAN ET 

AL. 2012) or h2 = 0.23 (SUN ET AL. 2016). In general, heritability for FHB is moderate to 

high in dependence of the population (OLLIER ET AL. 2020). A population size of 94 DH-

lines was investigated comparable to previously published studies (GARVIN ET AL. 2009, 

NISHIO ET AL. 2016). Nevertheless larger populations are needed for a more precise QTL 

detection, e.g. ZHANG ET AL. (2014) used 200 RILs for assessement of FHB resistance in 

field and greenhouse trials, MCCARTNEY ET AL. (2016) took 125 RILs for field evaluation 

of FHB severity and SUN ET AL. (2016) tested 198 RILs for FHB reaction in field and 

greenhouse experiments. FHB is quantitavely inherited and highly influenced by 
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environmental effects like temperature (JUROSZEK & TIEDEMANN 2015), humidity 

(COWGER 2005) or nitrogen availability (CHAMPEIL ET AL. 2004). Moreover, associations 

between a favorable allele and a respective marker genotype, that solely depend on a 

specific genetic background are also limitiations for the use of these markers in breeding 

(YANG ET AL. 2020). Thus, to counteract these effects, investigated QTLs have to be 

validated with respect to stability in different environmental conditions and genetic 

background. Therefore, the QTL detected in this study should be evaluated again in 

different environments as well as in different genetic backgrounds in future research. 

Moreover several morphological traits, which are considered having an influence on FHB 

severity like plant height, spike compactness or date of anthesis (BUERSTMAYR ET AL. 

2019) should be taken into account in further studies to check for correlation in this 

population.  

In the recently published reference sequence Chinese Spring v1.0 of wheat (APPELS ET 

AL. 2018, URGI 2018), our QTL region is located on the short arm of chromosome 2A in 

an interval between approximately 36 Mbp and 69 Mbp (Figure 5). Some other QTLs 

associated with FHB resistance located on chromosome 2A were already published in the 

last decades. In a tetraploid recombinant inbred chromosome line (RICL)-population, a 

QTL region between SSR markers gwm558 and gwm445 was identified for variation in 

FHB resistance, but both markers mapped on chromosome 2AL according to the wheat 

deletion bin map and are consequently not located in our QTL interval (SOURDILLE ET 

AL. 2004, GARVIN ET AL. 2009). In addition, another minor QTL QFhb.rwg-2A for FHB 

resistance deriving from the durum wheat cultivar Ben, with a phenotypic variance 

explained of 8 % was reported in an interval of 3.6 cM between flanking SNP markers 

IWA111 and IWA1103 on chromosome 2A. But this QTL is physically located between 

262.58 Mbp - 341.92 Mbp and is thus positioned in another genomic region than our QTL 

(ZHANG ET AL. 2014). BUERSTMAYR ET AL. (2011) reported a QTL for FHB resistance on 

chromosome 2A in a Triticum macha x Triticum aestivum-population with a peak AFLP 

marker Xs11m24_10, 38 cM distal to SSR marker Xgwm614, a marker also associated 

with the spread of FHB in the hexaploid wheat population Ning 7840 x Clark (ZHOU ET 

AL. 2002). Furthermore, 40 cM proximal to SSR marker gwm425, another marker for 

FHB resistance and lower DON accumulation was detected in the hexaploid Chinese 

landrace Wangshuibai (MA ET AL. 2006). The exact position of gwm614 is not clear, but 
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gwm 425 is located at 113.45 Mbp and is therefore proximal to our QTL interval. Closer 

flanking markers to Xs11m24_10 are SSR markers gwm296a and wmc177, which are 

located at 19.81 Mbp and 33.03 Mbp. This indicates that the QTL of BUERSTMAYR ET AL. 

(2011) and our QTL are not the same. GIANSCAPRO ET AL. (2016) identified a QTL in an 

interspecific wheat population with the closest marker IWB63138 (31.96 Mbp), which 

mapped 5 Mbp distal to our QTL interval. They proposed a wheatPME1 gene being 

responsible for the observed resistance, which encodes for a pectin methylesterase 

enzyme. This could play an important role in defending fungal attacks due to the 

protection effect of the cell walls. In a newly published study by ZHAO ET AL. (2018) a 

minor effect QTL was mapped based on field tests on chromosome 2A with peak marker 

SNP_79083. This marker is located at 33.04 Mbp in the physical map of wheat and thus 

also mapped 3 Mbp distal to our QTL interval. Both QTLs mapped very close to our QTL 

interval, showing the major importance of this genomic region for FHB resistance.   

In next steps, the large QTL region will be fine mapped following a map-based cloning 

approach (KRATTINGER ET AL. 2009a) to provide reliable markers for marker assisted 

selection and to identify possible genes underlying the FHB resistance. A successful 

identification is based on the genetic – physical resolution, so the genetic resolution in 

our QTL region has to be increased having a chance to identify markers in close proximity 

to our resistance locus. This means, the higher the genetic resolution provided by the 

number of analysed gametes, which is increased by a larger population size, the smaller 

is the relation between genetic and physical distance between two loci (PETERS ET AL. 

2003). Ideally, 5000 plants are analysed, resulting in 10.000 analysed gametes and a 

genetic distance between two loci of 0.01 % recombination (0.01 cM). Some studies 

needed less or more plants for the identification of candidate genes, depending on the 

respective species genome size and the chromosomal region where the gene is located 

(PELLIO ET AL. 2004). Telomeric regions on the distal end of a chromosome are so called 

hot spots of recombinations, in comparison to centromeric regions (cold spot regions), 

where recombination rates are 5-10x lower (AKHUNOV ET AL. 2003, THIND 2018). For 

example, only 520 F2-plants (1040 gamtes) were needed for map-based cloning of leaf 

rust resistance gene Lr21, because this gene is located in a highly recombinogenic region 

(HUANG ET AL. 2003), while higher mapping populations of 3120 F2-plants (6240 

gametes) were necessary for the isolation of Lr10 (STEIN ET AL. 2000). Our QTL is located 
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in the telomeric, recombination-rich region of chromosome 2A, so it could be possible 

that the population size of approximately 2000 F2-plants (~4000 ganetes) is sufficient to 

identify candidate genes.  

Through the development of the high-resolution mapping population, the interval of 45.1 

cM in the DH-population was decreased to 17.8 cM in the F2-population. This 

phenomenon is even well known for genetic distanes in DH- and RIL-populations. Here, 

the difference may be due to differences in recombination rates between male and female 

gametes, that arise during meiosis by population development (HE ET AL. 2001). 

Moreover, CUTHBERT ET AL. (2006) stated, that different genetic marker distances in two 

varying populations come from differences in the population size and structure. Although 

map-based cloning is a challenging task in wheat due to the large genome size and a high 

Mbp/cM ratio of physical/genetic distance (4.4 Mbp/cM in wheat) (FARIS & GILL 2002), 

there are still some fine mapped and isolated/cloned resistance genes, e.g. leaf rust 

resistance genes Lr10 (FEUILLET ET AL. 2003), Lr34 (KRATTINGER ET AL. 2009b) and Lr42 

(GILL ET AL. 2019), powdery mildew resistance genes Pm3 (YAHIAOUI ET AL. 2004) and 

Pm52 (WU ET AL. 2019)  as well as stripe rust resistance gene Yr10 (LIU ET AL. 2014) and 

Septoria tritici blotch gene Stb6 (SAINTENAC ET AL. 2018). In Triticum monococcum it is 

quite easier to perform positional cloning of candidate genes due to the diploid genome, 

but there are only few publications known about fine mapping approaches or positional 

cloning of genes, e.g. stem rust resistance gene Sr35 (SAINTENAC ET AL. 2013) and 

powdery mildew resistance gene TmMla1 (JORDAN ET AL. 2011). With respect to 

Fusarium QTLs, e.g. Fhb1, Fhb4, Qfhs.ifa-5A or Fhb7 were recently fine mapped in 

wheat (CUTHBERT ET AL. 2006, XUE ET AL. 2010, BUERSTMAYER ET AL. 2017, WANG ET 

AL. 2020) and with the help of genome sequencing and gene anntotations in wheat, 

possible candidate genes are identified for Fhb1 and Fhb7 (RAWAT ET AL. 2016, 

SCHWEIGER ET AL. 2016, SU ET AL. 2019, WANG ET AL. 2020). Moreover, during the 

process of map-based cloning, tightly-linked or even functional markers for disease  

resistances can be developed and used for marker assisted selection (MAS). As an 

example, STS marker Xumn10, which was recently converted in an user-friendly KASP 

marker (Umn10) and has been widely applied in western wheat breeding programs for 

the prediction of  Fusarium resistance QTL Fhb1 in genetic resources or cultivars (LIU 

ET AL. 2008, SCHWEIGER ET AL. 2016, STEINER ET AL. 2017). Next to this, BERNARDO ET 
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AL. (2012) discovered alternative SNP markers, such as SNP3BS-11 or SNP3BS-8 for 

Fhb1, but with Umn10 there might be problems with false-positives, limiting the 

diagnostic value of these markers (BAI ET AL. 2018) Therefore, SU ET AL. (2018) 

developed two highly diagnostic markers from one putative candidate gene of Fhb1, that 

are either gel-based or non gel-based (KASP) for using it in various laboratories with 

different equipment and research questions. Also for other important wheat diseases the 

development of accurate and diagnostic markers for the employment in breeding 

programs is an ongoing task, when candidate genes are not yet available, e.g. the recently 

developed SNP markers IWA6121 and IWA4096, that flank stripe rust resistance gene Yr5 

and may be used for resistance improvement in wheat (NARUOKA ET AL. 2016). By 

cloning resistance genes even functional markers can be developed, that derive from the 

functionally characterized sequence motifs (ANDERSEN & LÜBBERSTEDT 2003) and 

increase the selection process efficiently and support existing breeding strategies 

(GOUTAM ET AL. 2015). 

Finally, the use of new genomic resources like SNP derived KASP assays or the complete 

genome sequencing of Triticum aestivum (APPELS ET AL. 2018) allow a clear physical 

positioning of our QTL interval and may facilitate a rapid identification of possible 

candidate genes. In summary, this study provides a valuable foundation towards the 

cloning of a FHB resistance locus in T. monococcum. Therefore, future work aims at the 

marker saturation of the target interval and anchoring to the physical map of wheat and 

the identification of candidate genes. 
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Fine mapping of a FHB resistance QTL on chromosome 2A in Triticum monococcum  

 

Breidenbach C., Krämer I., Ordon F.  

 

1.  Abstract 

Diploid wheat like Triticum monococcum L. is a source for new resistance genes or 

quality traits, which may be used for the improvement of bread wheat (Triticum aestivum 

L.). In a recently conducted QTL study, two neighbouring QTLs for resistance to 

Fusarium Head Blight (FHB) were mapped in an interval of 45.1 cM on chromosome 2A 

in a Triticum monococcum DH-population. For this resistance QTL, a high resolution 

mapping population comprising 1991 F2-plants corresponding to a resolution of 0.025 % 

recombination was constructed and used in the present study for marker saturation of the 

interval and phenotyping in field trials and in the greenhouse with Fusarium culmorum 

isolate Fc46. For marker saturation newly available genomic resources, like the recently 

published wheat genome sequence, the 90K iSelect assay as well as genotyping-by-

sequencing (GBS) were applied. By using these resources, 21 markers were developed 

and mapped in a segmental RIL-population. All markers were in perfect collinearity with 

the wheat reference sequence Chinese Spring v1.0. In field trials as well as in additional 

greenhouse trials, phenotypic data revealed a quantitative distribution of FHB resistance. 

However, the localization of the resistance locus within the marker saturated target 

interval was not possible. A new QTL analysis with a reduced marker set conducted on 

the original DH mapping population and the original phenotypic data revealed a switch 

of the peak markers SNP_0797 and wmc0644, causing the major QTL effect, to the long 

arm of chromosome 2A. 
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2. Introduction  

Long domestication and breeding processes of crop plants gradually decreased the genetic 

diversity of cultivated crops like wheat (PRZEWIESLIK-ALLEN ET AL. 2019). Nevertheless, 

continuous varying environmental conditions warrant high genetic potential of plants to 

react to new circumstances. Plant genetic resources are a valuable source for the 

improvement of resistance or quality traits and therefore to obtain the nowadays yield 

level of cultivated species (HALEWOOD ET AL. 2018). Especially ancient wheat like 

Triticum dicoccum (Schrank) Schuebl., Triticum spelta L. or Triticum monococcum L. 

offer lots of opportunities for the identification of useful genes for important agronomic 

traits, e.g. resistance genes for FHB (WIWART 2004, GARVIN ET AL. 2009, KONVALINA 

ET AL. 2016), which have been lost during the evolutionary process of bread wheat. 

Triticum monococcum, a diploid wheat species (AmAm genome) with a set of 2n=2x=14 

chromosomes was domesticated in the Karacadag mountains more than 10.000 years ago 

(HEUN ET AL. 1997). It was wide important for thousands of years for human food and 

livestock feed but was replaced during the Bronze Age by higher yielding and free-

threshing wheat (BÉKÉS ET AL. 2017). Today the cultivation of Triticum monococcum is 

restricted to some small regions in Europe, India or the Balkans, but the advantages of 

einkorn wheat as a source of resistance or improvement of bread wheat quality is still 

important (ZAHRAIVA & MONNEVEUX 2014). Especially in times with rising demand for 

organic and ecological food and with governmental restricitions of insecticide and 

fungicide applications, Triticum monococcum may play again an important role in wheat 

breeding. Thus, genes from wheat relatives may be transferred into bread wheat cultivars 

to improve resistance and/or quality. The Triticeae group consists of 150 species, that can 

be used for screening of desired genes and used for introgressions into wheat (ORTIZ ET 

AL. 2008). These include accessions from the hexaploid, tetraploid and diploid wheat 

group, as well as from Aegolopsis spp. and accessions from Thinopyrum, Hordeum, 

Secale etc., that can be transmitted into bread wheat via direct or bridge crossing and 

hybridization events followed by embryo rescue (RASHEED ET AL. 2018). In recent years 

several successful transfers or hybridization events of chrosmosomal regions from 

relative wheat species into bread wheat have been reported (SHI ET AL. 1998, MIRANDA 

ET AL. 2006, KAUR ET AL. 2008, HUANG ET AL. 2019). Even three QTLs for FHB 

resistance, Fhb3, Fhb6 and Fhb7 were recently introgressed into hexaploid bread wheat 

from alien species Leymus racemosus (QI ET AL. 2008), 1Ets#1S of Elymus tsukushiensis 



Chapter III | 

47 

 

(CAINONG ET AL. 2015) and Thinopyrum ponticum (GUO ET AL. 2015) using chromosome 

engineering and translocation lines.  

Lots of attempts were conducted in the last decades to map FHB resistance in various 

sources, e.g. chinese landraces or breeding lines, CIMMYT material or wheat germplasm 

from gene banks sources. Moreover, map-based cloning procedures were conducted 

which comprise a fine-mapping step and an adjustment with physical maps to identify 

chromosomal regions of importance with responsible candidate genes (KRATTINGER ET 

AL. 2009a). Positional cloning in wheat is a challenging task, because of its high genome 

complexity as well as large amount of repetitive DNA sequences  (>85%) (HUANG ET AL. 

2003, PAUX ET AL. 2006, KELLER ET AL. 2018), while this process is easier in T. 

monoccocum due to its smaller genome size. Nevertheless, some resistance genes were 

fine-mapped and acutally cloned in wheat, like septoria tritici blotch resistance gene Stb6 

(SAINTENAC ET AL. 2018), stem rust resistance genes Sr21 (CHEN ET AL. 2018), Sr33 

(PERIYANNAN ET AL. 2013) and Sr35 (SAINTENAC ET AL. 2013), as well as leaf rust 

resistance genes Lr67 (MOORE ET AL. 2015) and Lr1 (CLOUTIER ET AL. 2007, QIU ET AL. 

2007). In T. monococcum powdery mildew resistance gene TmPm3 (ZHAO ET AL. 2016) 

was recently isolated. Even the major Fhb1 QTL on chromosome 3BS conferring type II 

was fine-mapped and 28 putative candidate genes characterized (SCHWEIGER ET AL. 

2016). A pore-forming toxin-like domain and a gene encoding a chimeric lectin with 

agglutinin domains are being regarded as the potential genes after map-based cloning 

(RAWAT ET AL. 2016), whereas SU ET AL.(2019) reported a potein TaHRC as responsible 

candidate gene. 

 An important requirement for map-based cloning is the availability of informative 

markers, which was limited in the past. Dominant AFLP or locus specific co-dominant 

SSR markers were widely used in plant genetic projects in the past, but with the 

emergence of next generation sequencing techniques the marker systems of choice shifted 

towards SNP markers (BERNARDO ET AL. 2015). The 90K iSelect Infinium wheat chip 

(WANG ET AL. 2014) or genotyping-by-sequencing (GBS) (ELSHIRE ET AL. 2011, POLAND 

ET AL. 2012) are often used high-throughput marker systems in the last years, which is 

shown through the increasing number of SNP genotyping arrays and GBS protocols in 

over 25 crop species (RASHEED ET AL. 2017) and were also applied in this study for marker 

saturation. GBS offers a powerful tool for marker discovery in targeted regions or the 
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whole genome in every species, even in species with high genetic diverse and large 

genomes (HE ET AL. 2014). It is a simple, specific and highly reproducible system 

(ELSHIRE ET AL. 2011, CHUNG ET AL. 2017). For wheat and barley, a two-restriction-

enzyme system was developed and usually applied in plant genetic studies, providing 

appropriate genome complexity reduction and uniform library preparation (POLAND ET 

AL. 2012, HE ET AL. 2014). These multiplex marker technologies are very suitable for 

genome-wide SNP genotyping for genetic mapping or whole genome selection methods, 

whereas for gene identification or MAS flexible, high-throuput, uniplex genotyping 

platforms, like kompetitive allele specific PCR (KASP) (LGC-Genomics) or TaqMan® 

(Applied Biosystems, Forster City, CA) are more appropriate (SEMAGN ET AL. 2014, 

RASHEED ET AL. 2016). KASP is a homogenous, fluorescence-based genotyping 

technology using two competing allele-specific forward primers, one reverse primer and 

a master mix with a FRET cassette and Taq polymerase (SEMAGN ET AL. 2014, THOMAS 

2014). KASP-assays can be done in-house or outsourced by LGC (THOMAS 2014). Thus, 

SNP markers detected by mapping studies can be easily converted into KASP markers to 

facilitate MAS, e.g. for Lr23 (CHHETRI ET AL. 2017), Yr26 (WU ET AL. 2018) or Septoria 

tritici blotch- QTL (DREISIGACKER ET AL. 2015).  Moreover, the current version of the 

wheat reference genome Chinese spring v1.0 (APPELS ET AL. 2018) as well of wheat 

relatives, e.g. Triticum urartu (LING ET AL. 2018), Triticum turgidum spp. diccocoides 

(AVNI ET AL. 2017) and Aegilops tauschii (LUO ET AL. 2017, ZHAO ET AL. 2017) plus the 

development of public open databases like Urgi (http://wheat-urgi.versailles.inra.fr/), 

GrainGenes (https://wheat.pw.usda.gov), Triticeae tool box (https://triticeaetoolbo 

x.org/wheat/) pave the way to a precise and fast identification of informative markers for 

MAS via association mapping or map-based cloning (RASHEED & XIA 2019).   

This study focuses on research towards the isolation of a QTL for FHB resistance by 

saturating the QTL interval with SNP markers and integrating the resistance locus by 

phenotypic evaluation of a population of segmental RILs.   
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3. Material and Methods  

3.1. Plant material & DNA extraction  

A  recombinant inbred line (RIL-) population, comprising 333 lines, was subjected to 

marker saturation and phenotyping. The development of this population was traced back 

to a cross between two resistant (C35, C42) and three susceptible (A37, A39, B22) 

doubled haploid lines from the recent DH mapping population (BREIDENBACH ET AL. 

2020, in prep.). DNA of all developed segmental RILs was extracted according to STEIN 

ET AL. (2001) from plants in the two to three leaf stage and used for genotyping of the 

population. The RILs, at this time in the F3-generation, are then further selfed in the 

greenhouse to get F4 -kernels for the phenotypic analyses.  

 

3.2. Marker development for marker saturation 

 

a. Genetic map 

The first SNP markers for the saturation of the QTL intervals were selected from the 

genetic map of Triticum monococcum (BREIDENBACH ET AL. 2020, in prep.). The 

prerequisite was the correct location within the target region, polymorphism between 

parental lines and available sequence information of at least one hundred nucleotides 

around the SNP site. Then, SNP sequences were send to LGC genomics for allele-specific 

KASP assay design (http://www.lgcgenomics.com).  

 

b. 90K iSelect Chip  

Next genotyping of parental lines as well as of susceptible and resistant bulks of DH-lines 

of the original mapping population with the 90K iSelect SNP Chip was conducted at 

TraitGenetics (Gatersleben). Extracted DNA was diluted to 50ng/µl using a NanoDrop 

ND 1000 Spectrophotometer (PEQLAB Biotechnology GmbH, Erlangen). Genotypic 

data were filtered to polymorphism between susceptible and resistant lines and bulks 

within the QTLregion (36 Mbp – 69 Mbp) on chromosome 2A. KASP primers of all 

polymorphic SNP markers were ordered by Mycrosynth AG in Switzerland and used for 

genotyping of the RIL-population.  
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c. Genotyping-by-sequencing  

For the creation of the required genomic libraries, DNA samples consisting of 10 resistant 

and 10 susceptible DH-lines and the parental lines of the original mapping population, 

were compiled. The samples were prepared for sequencing at MiSeq (Illumina Inc.) 

following the protocol of WENDLER ET AL. (2014). The genomic library was then 

sequenced using the MiSeq Reagent Kit v3 (Illumina Inc., San Diego, USA) according to 

the instructions of the manufacturer. Obtained results were evaluated using Galaxy 

implemented bioinformatical pipelines. Adapter and quality trimming was done with trim 

galore: https://github.com/FelixKrueger/TrimGalore, version 0.4.0, non default 

parameter: quality > 30, read length > 50. Then, sequence data of every individual line 

were aligned with the sequence of chromosome 2A of Triticum aestivum v1.0 Chinese 

spring using BWA-mem (v0.7.15-r1140) (LI 2013). The results were further filtered to 

get informative SNP markers for the target region using SAMtools Mpileup:                    

(v1.2 using htslib 1.2.1) (LI ET AL. 2009), SNPSift filter (CINGOLANI ET AL. 2012) and 

BCFtools_call:https://samtools.github.io/bcftools/bcftools.html. With these, bi-allelic 

SNPs were detected, that mapped within the QTL inverval of 36 Mbp to 69 Mbp 

(BREIDENBACH ET AL. 2020, in prep.), show a polymorphism between susceptible and 

resistant lines and have a minimum coverage of five reads per SNP.   

 

3.3. KASP analyses  

The GBS markers and the SNP markers from the genetic map of Triticum monococcum 

in this study were converted into KASP assays by LGCgenomics und run on a real-time-

PCR-system (Bio-Rad Laboratories, München) with a protocol already described by 

BREIDENBACH ET AL. (2020, in prep.). The SNP markers from the 90K iSelect Chip were 

also converted into KASP-markers, but they were applied by Mycrosynth AG (Schweiz) 

and run on the same system.   

 

3.4. Construction high-resolution map/ linkage analyses 

All 333 RILs were genotyped with the newly developed KASP markers and results 

transferred in an A/B matrix, where A indicates the allele of the resistant parents and B 



Chapter III | 

51 

 

of the susceptible one. Linkage analyses for the development of a high-resolution map 

was performed by counting the recombinations between two marker loci and multiplicate 

them with the genetic resolution provided by the high-resolution mapping population. 

The genetic resolution was corrected due to losses of plants or seed during cultivation in 

field and greenhouse, by dividing the % recombination by the number of remaining RILs. 

A precise procedure for the implementation of linkage analyses for high-resolution maps 

was described by LÜPKEN ET AL. (2013). The genetic marker loci of the high-resolution 

map were subsequently compared to the physical positions in the reference maps of 

Triticum aestivum (APPELS ET AL. 2018). SNP sequences were blasted as fasta files 

against the T. aestivum reference sequence: IWGSC RefSeq CS v1.0 (URGI 2018). The 

best hit (expected threshold = 0.0001) was chosen to determine physical marker positions. 

However, the SNP-markers derive from T. monococcum and if there was no match for 

one SNP marker on the wheat reference map (URGI 2018), the expected threshold was 

continously increased up to 1. 

 

3.5. Phenotyping field  

 

a. Field 2017  

In 2017, 37 RILs plus 17 sister lines, the parental lines (mon10-1, A37, A39, B22, C35, 

C42, Sinskayae) and wheat controls 

(Alsen, Bobwhite, Remus, 

CM82036) were sown in the 

beginning of April in double-rows 

with 60 seeds per genotype in the 

field at Quedlinburg (51.7694 N, 

11.147 E, 140 m altitude)  (Figure 

11) and Leopoldshöhe (52.0160 N, 

8.700 E, 113 m altitude). Infection 

of spikes started at 50% anthesis 

with a conidia suspension of 300.000 C/ml. The inoculum was produced as described by 

BREIDENBACH ET AL. (2020, in prep.) The suspension was applied with a backsprayer for 

Figure 11 | Field trial in Quedlinburg 2017 
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two times (Figure 12). The second application was done three to four days after the first 

infection to compensate different flowering times of each genotype. The infected plant 

were irrigated shortly before inoculation in the early morning using a field syringe and 

the days between the infection period, depending on the respective weather situation to 

ensure humid conditions. The scoring started 10 days after the infection (dpi) and was 

repeated 14 dpi, 18 dpi and 22 dpi. FHB resistance was recorded by measuring percentage 

infestation of each double-row/genotype as described by MOLL ET AL. (2010). AUDPC- 

and AO-values were calculated following VATTER ET AL. (2017).   

 

 

 

 

 

 

 

 

 

 

 

 

b. Field 2018  

In 2018, 165 RILs plus 61 sister lines, the crossing parents (A37, A39, B22, C35, C42, 

mon10-1, Sinskayae) and wheat controls (Alsen, Remus, Bobwhite, CM80362) were 

sown in the beginning of April in single-rows with one replication following a complete 

randomized design in Quedlinburg (51.7694 N, 11.147 E, 140 m altitude) and in 

Leopoldshöhe (52.0160 N, 8.700 E, 113 m altitude). Further infection and scoring 

procedure are described above.  

 

Figure 12 | Artificial inoculation of T. monococcum with F. culmorum Fc46 using a 

backsprayer 
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3.6. Phenotyping greenhouse  

The RILs were evaluated for type I and type II resistance in the greenhouse from July 

2017 to March 2018. Six plants per genotype were potted in two 5l clay pots, three plants 

in one pot for an infection using the spray inoculation method (Type I, Figure 13 (left)) 

method and three plants in another pot for the point inoculation (Type II, Figure 13 

(right)) method. Until flowering time, plants were grown in the greenhouse with 16 h 

period of light, 20°C day temperature and 16°C night temperature. At BBCH65, at least 

three spikes per plant were inoculated with Fusarium culmorum isolate Fc46 by applying 

a conidia suspension of 150.000 C/ml. Inoculum was produced according to 

BREIDENBACH ET AL. (2020, in prep.) To generate equal infection conditions, an approach 

of 10 ml suspension for each infection time point was used. For spray inoculation, the 

conidia suspension was sprayed on two sides of the ear and from above, while for point 

inoculation, the conidia suspension was injected directly with a syringe into two faced 

central spikelets. Inoculated heads were bagged with a plastic bag for two days to ensure 

high moisture for pathogens growths. The pots were then placed in a growth chamber 

with 22°C during the day and 17°C during night and a light period of 16 h, to get optimal 

infection conditions. The scoring started 7 days after the inoculation (dpi) and was 

repeated at 10 dpi and 14 dpi. The number of all spikelets per ear and those infected was 

counted to calculate the percentage infestation and out of this the area under the disease 

progress curve (AUDPC) followed by the calculation of the average ordinate (AO) as 

described by VATTER ET AL. (2017).   

 

 

 

 

 

 

 

 

 

Figure 13 | Spray inoculation method (left) and point inoculation method (right) 
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3.7. Statistical analyses  

Analysis of Variance (ANOVA) was performed using the software program SAS 9.4 

(SAS Institute Inc. Cary, NC, USA) and the procedure proc mixed.  RILs were set as fixed 

and replications as random effects. Pearson’s correlation coefficient for the inoculation 

methods was calculated with proc corr. 

 

3.8. QTL analysis  

QTL analysis was performed with MapQTL v.5 (IM/MQM mapping procedure), using 

phenotypic greenhouse data 2017/2018 (spray inoculation) and genotypic data of the 

high-resolution mapping population. For verification of the QTL interval from the 

original DH mapping population (BREIDENBACH ET AL. 2020, in prep.), a new QTL 

analysis (MQM mapping procedure) was performed with physical positions of a reduced 

marker set and phenotypic data from fieldtrials 2008/2009. When selecting the markers, 

care was taken to ensure that they are evenly distributed over chromosome 2A and that 

they could be assigned to the wheat reference sequence CS v1.0 (APPELS ET AL. 2018), 

which resulted in 46 markers.  

 

3.9. Correlation of morphological traits with FHB resistance  

Mon10-1 and Sinskayae as well as the parental lines from the HRM-population (A37, 

A39, B22, C45, C42) show different spike morphology (BREIDENBACH ET AL. 2020, in 

prep.). 94 DH-lines were grown in the greenhouse until ear emergence to record their ear 

shape. They were scored in the m-group, when they have the ear shape of the parental 

line mon10-1 (elongated spike, tenacious glumes, glaucouness) while they were classified 

in the s-group, when they show the ear shape of the susceptible Sinskayae  (compact 

spike, soft glumes). FHB severity (mean AO-values from field trials 2008/2009) for each 

ear shape-group (m/s) was then tested for significant differences using software program 

SAS 9.4 (SAS Institute Inc. Cary, NC, USA) with the procedure proc ttest.  
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4. Results  

4.1. Phenotypic evaluation  

Sprouting difficulties at Leopoldshöhe in 2017 and unfavorable climatic conditions at 

both sites in 2018 resulted in a low FHB infection. Therefore, only the greenhouse data 

were considered for analyses. Due to losses of plants during cultivation in the greenhouse 

and growth chamber or because of an unsufficient infection, a different number of 

genotypes was scored for both inoculation methods. In total, 101 RILs were scored for 

FHB resistance after point inoculation (resistance type II) and 124 RILs plus three 

resistant (mon10-1, C35, C42) and three susceptible (Sinskayae, A37, B22) parental lines 

were assessed after spray inoculation (resistance type I). ANOVA revealed highly 

significant effects of the genotype for both inoculation methods (Table 7). A continuous 

variation was observed for spray and point inoulation (Figure 14, Figure 15).   

 

 

Table 7 | Analysis of variance (ANOVA) for FHB severity for RILs evaluated with two inoculation methods (spray 

incoulation/point inoculation)  

 

Inoculation  Effect  DF  F-value  P  

Spray Genotype  129 4.85 <0.0001 

Point Genotype  100 5.33 <0.0001  
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Figure 15 | Frequency of distribution for mean AO-values of 100 RILs using point inoculation method and F.culmorum 

Fc46- isolate  
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Figure 14 | Frequency of distribution for mean AO-values of 124 RILs and the six parental lines (res.: mon10-

1, C35, C42; susc.: Sinskayae, A37, B22) using spray inoculation method and F. culmorum Fc46- isolate  
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Disease severity for spray inoculation ranged between 9.07 % and 69.14 % with an 

average of 35 %. Resistant parents (mon10-1, C35, C42) show a mean level of infection 

between 31 % - 35 %, whereas the susceptible parents (Sinskayae, A37, B22) are highly 

susceptible with AO-values between approximately 50 % and 70 % disease severity. Due 

to losses of plants during cultivation, parental lines were not tested by point inoculation. 

For point inoculation, disease severity ranged between 15.38 % and 79.48 % and is on 

average 37 %, which indicates that RILs are a bit more susceptible when the Fusarium-

isolate is injected directly into the ear. To check for a correlation between both inoculation 

methods, Pearson correlation coefficient was calculated and resulted in r=0.61 (p<0.0001) 

(Figure 16).  

 

 

 

 

 

 

 

 

 

 

 

Figure 16 | Correlation between AO-values of 91 RILs inoculated in one case using point inoculation method and in 

the other case with spray inoculation method  

 

4.2. Marker development for marker saturation  

Nine polymorphic SNPs were selected from the original genetic map of Triticum 

monococcum (BREIDENBACH ET AL. 2020, in prep.) and converted into co-dominant PCR-

based KASP markers. The other markers in the interval were either not polymorphic on 

the parental lines chosen for the construction of the high-resolution mapping population, 

could not be converted into KASP assays or the KASP primers did not work well in the 

RIL-population. The marker order of two markers SNP_1315 and SNP_1453 is inverted 

on the genetic and physical map. The other markers are in collinearity (Figure 17). The 
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genotyping of Triticum monoccoum resistant and susceptible lines with the 90K iSelect 

Chip resulted in only 27 polymorphic markers between or parental lines as well as 

susceptible and resistant bulks, that were mapped outside the target interval and were 

therefore excluded from further analyses (data not shown).  
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Figure 17 | Genetic and physical map positions of flanking markers (SNP_1216, SNP_0667, 

SNP_0833) plus selected markers from the original genetic map of chromosome 2A and their 

collinearity  
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GBS was also applied to generate new saturating markers for the respective QTL interval. 

With this approach, 52 markers, that were polymorphic between the parental lines and 

susceptible and resistant bulks and mapped within the target interval were developd. Out 

of these, 13 informative markers were selected for genotypic analyses, that were well 

distributed over the interval to achieve sufficient coverage of the high-resolution map 

between the flanking markers SNP_1216 and SNP_0833 (Table 8). GBS_9 did not 

perform well in PCR analyses and was therefore excluded from further analyses.  

 

Table 8 | Selected GBS-marker, their physical positions and respective polymorphism  

 

Chromosome Marker 
Position 

T.aestivum (Mbp) 
Reference Alternative 

2A GBS_1 36.8 A C 

2A GBS_2 38.2 G A 

2A GBS_3 38.7 A G 

2A GBS_4 38.9 A G 

2A GBS_5 38.9 T A 

2A GBS_6 39.3 A G 

2A GBS_7 42.1 G C 

2A GBS_8 58.9 G A 

2A GBS_10 61.4 A G 

2A GBS_11 61.4 A G 

2A GBS_12 62.2 C T 

2A GBS_13 62.2 C T 

 

 

4.3. Construction high-resolution mapping population/high-resolution map  

The RIL-population (BREIDENBACH ET AL. 2020, in prep.) initially comprised 333 lines, 

but has to be corrected to 268 lines due to losses of plants during cultivation in the 

greenhouse or removal of RILs showing heterozygosity for the saturating markers. This 

led to a corrected genetic resolution of 0.066 % rec.. The genotyping of the population 

with the newly 21 markers for the target interval (Figure 17, Table 8) resulted in the 

following high-resolution map (Figure 18).  
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4.4. QTL analysis for localization of the resistance locus  

The phenotypic data from the greenhouse trial did not allow a classification into an A/B-

matrix, making it difficult to map the resistance locus within the high-resolution map. A 

QTL analysis with phenotypic data from the spray inoculation method in the greenhouse 

and the high-resolution genetic map (Figure 18) was conducted to map the locus. Either 

with IM nor with MQM-mapping, a significant peak with LOD > 3 was observed (Figure 

19). From these results it was concluded that the resistance to FHB is not located within 

the previously detected interval.   

Figure 18 | High-resolution map (HR-map) with a 

genetic resolution of 0.066 % based on 268 RILs 

marker % rec.  
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4.5. QTL analysis for verification of the interval  

To get more detailed information on this unexpected result, a new QTL analysis was 

conducted with a reduced set of markers and their physical marker positions instead of 

genetic positions as well as original phenotypic data. One QTL was mapped after 

IM/MQM-mapping between marker SNP_0796 (499.58 Mbp) and SNP_0123 (607.96 

Mbp) on chromsome 2AL and explains 86 % of phenotypic variance (Figure 20). The 

closest markers are SNP_0797 and SSR wmc0644, which also have been the peak markers 

in the original QTL analysis (BREIDENBACH ET AL. 2020, in prep.) This result shows that 

the peak markers, causing the major QTL effect, switched from the former location, the 

short arm of Chromosome 2A (36.72 Mbp – 68.17 Mbp) towards the centromeric region 

on the long arm of the chromosome, which may be an explanation for the fact that the 

phenotypic data of the RILs did not allow mapping of the resistance locus within the 

target interval.  

 Figure 19 | QTL analysis for FHB resistance in the RIL-population comprising 124 genotypes and phenotypic 

greenhouse data for spray inoculation method 
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4.6. Correlation of ear shape with FHB resistance  

94 DH-lines from the original mapping population as well as the parental lines, mon10-1 

and Sinskayae, were grown in the greenhouse for the characterisation of the ear. Out of 

these, 40 plants germinated and were examined for the ear type at BBCH51-59. 22 DH-

lines show the ear shape of the resistant parent mon10-1 and were sorted in the m-group. 

All of these lines, except of three (monA42, mon A50, monC5) were resistant in the field 

trials 2008/2009 and show mean AO-values below 20.00 %. The other 18 lines show the 

ear shape s of the susceptible parent Sinskayae and were also very suscepible in the field 

with mean AO-values higher 25.00 % (Suppl. Data 3). A significant difference 

(p<0.0001) concerning the AO-values with respect to the ear shape was observed  (Figure 

21).  

 

Figure 20 | QTL analysis for the DH-mapping population with a reduced marker set (physical positions) and phenotypic 

field data from 2008/2009 
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5. Discussion  

This study was conducted to reduce the large QTL interval and to identify candidate genes 

for FHB resistance on chromsome 2A in a Triticum monococcum DH-population using a 

map-based cloning approach. The study made use of new genomic tools like the 90K 

iSelect Chip and genotyping-by-sequencing (GBS) for the development of new markers, 

which saturate the target interval. In the last years NGS-technologies enabled the 

construction of high-density genetic maps for fine mapping, elucidating their importance 

for genomics based breeding research (JAGANATHAN ET AL. 2020). Especially GBS offers 

a high SNP coverage throughout the whole genome, even in telomeric and some 

centromeric regions in a highly cost-effective manner. Nevertheless a higher SNP density 

in gene-rich regions was reported (DEDONATO ET AL. 2013, SONAH ET AL. 2013). In this 

m  

(p < 0.0001)  

s 

Figure 21 | Results of the t-test of grouped AO-values with respect to the ear shape 
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study, GBS was successfully applied using the two-restriction-enzyme procedure of 

POLAND ET AL. (2012) and 52 markers were detected, that are polymorphic between the 

parental lines of the high-resolution mapping population and mapped within the target 

interval. Out of these, 12 informative markers were used for further analyses (Table 8). 

For the generation of new markers, the GBS results were aligned with the reference 

sequence of T. aestivum Chinese spring v1.0 (APPELS ET AL. 2018). Nevertheless, at the 

end of the project, the reference sequence of T. urartu (LING ET AL. 2018) was even 

published and may be used in new studies for further marker development. In comparison, 

the analysis with the 90K iSelect chip was not so efficient, because only a small number 

of polymorphic SNPs was detected between the susceptible and resistant T. monococcum 

lines. That is because the 90K iSelect chip has main representation from bread wheat and 

is thus not an efficient tool to find polymorphisms in wild relatives like einkorn wheat 

(RASHEED & XIA 2019). It would have been better to screen T. monococcum lines with 

the recently developed 820K array or with the smaller subset array, the Axiom 35K SNP, 

which are based on the characterisation of 475 wheat accessions and wild relatives and 

therefore may serve as a powerful substitution to the 90 K array in case of the analyses of 

genetic resources of wheat (WINFIELD ET AL. 2016, ALLEN ET AL. 2017, RASHEED & XIA 

2019).  

All 21 SNP markers obtained from GBS and the genetic map of T. monococcum were 

converted into KASP markers for genotpying of the high-resolution mapping population. 

KASP markers are commonly used nowadays for high-throuput genotyping approaches, 

because KASP technology is very efficient and fast (RASHEED ET AL. 2018). KASP 

analyses consists of two forward primers with each being specific for a particular allele 

that is associated with one flourophore and one reserve primer and discrimination is 

achieved by real-time PCR or a flourescence microplate reader (JAMANN ET AL. 2015). In 

comparison to e.g. TaqMan®, KASP achieve higher success in assay design rates and 

conversion into working assays (SEGMAN ET AL. 2014). They are developed from SNP 

sequences and serve as an effective tool in genomics breeding research, as shown in our 

study, and may also be easy implemented in wheat breeding for MAS of specific traits. 

(CHHETRI ET AL. 2017, WU ET AL. 2017, VAGNDORF 2018, YANG ET AL. 2019).   

Reliable phenotypic data are a prerequisite for developing closely linked markers. 

Greenhouse data show a continous distiribution and thus underline the polygenic, 
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quantitative behavior of FHB reistance (MA ET AL. 2006). In 2017 and 2018 field trials 

were conducted in Quedlinburg und Leopoldshöhe to test the resistance of the RILs. Both 

trials were artificially inoculated, which is necessary to get reliable resistance data 

(BUERSTMAYR ET AL. 2003). While too little seed was available in 2017, there were 

problems with low infection pressure in 2018 due to extreme weather conditions. 

Especially Central and North-Eastern Germany experienced severe drought due to 

abnormally high temperatures and low precipitation events (MEINERT & SCHUBE 2018), 

resulting in early ripening and a restricted development of Fusarium culmorum. The 

dependence of Fusarium growth on climatic conditions was also observed in other studies 

(SIMÓN ET AL. 2005, OSBORNE & STEIN 2007, GORZCZYCA ET AL. 2017). The weather 

conditions were so exceptional and disadvantageous for F.culmorum so that even 

artificial irrigation could not improve the infection rate in Quedlinburg und 

Leopoldshöhe. This observation supports the common view that optimale infection 

conditions for the pathogen are always of prime importance to get informative phenotypic 

results in field trials. Because of difficult conditions in the field, additional greenhouse 

trials were conducted in 2017/2018. Greenhouse trials provide resistance evalutation 

under highly controlled conditions and are therefore not dependend on environemental 

interactions, which lead to an advanced reproducibility of results. The infection rate in 

our experiment was assessed until the beginning of ripening, which is usually 21 days 

after infection in wheat (MIEDANER ET AL. 1996, YANG ET AL. 2003). Our assessment 

finished after 14 dpi, because the ears of T. monococcum are smaller than wheat ears and 

lost chlorophyll already after this time point. For T. monococcum, we try to implement 

the spray inoculation method in the greenhouse to get comparable results with field trials 

and natural epidemic conditions. Spray inoculation method display all possible resistance 

mechanisms contributing to the respective genotype, although no clear separation in 

respective mechanisms is possible when using spray incoulation (BUERSTMAYR ET AL. 

2000, BUERSTMAYR ET AL. 2003). However, the handling is easier compared to point 

inoculation, especially when a large amount of ears has to be infected. In accordance with 

STEINER ET AL. (2004), the variation of FHB symptoms was quantitative for both 

inoculation techniques, but more phenotypic variation was observed after spray 

inoculation.  
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Although phenotypic greenhouse data showed a broad variation, the FHB resistance locus 

could not be integrated in the genetic map. So, the high phenotypic variance of 81.8 % 

and 34.7 % respectively, which was explained from the original QTL study of the T. 

monococcum DH-population (BREIDENBACH ET AL. 2020, in prep.) could not be 

recovered in the HRM-population. A new QTL analysis with genotypic data from the 

HRM-population and respective phenotypic data from greenhouse trials does not  result 

in a reliable mapping. It is not an unkown phenomenon that cloning projects are 

unsuccesful on the basis of a so-called QTL fractionation, i.e. that the QTL effect is based 

on linked genes that co-segregate, but break-down with the identification of recombinant 

plants resulting in a loss of the respective effect (ASINS ET AL. 2009, JAMANN ET AL. 2015). 

Other possibiltes are an unsufficient selection of suitable recombinants or a loss of the 

QTL effect due to a different genetic background (JAMANN ET AL. 2015, SALVI & 

TUBEROSA 2007). In our case, however, it is likely that the error can be attributed to an 

incorrect construction of the genetic linkage map due to a false marker order. The first 

QTL interval ranged on the physical map of T. aestivum in an interval between 36.72 – 

68.17 Mbp, but the responsible peak marker for the QTL, SNP_0797 and wmc0644, were 

located at 504.25 and 574.93 Mbp, respectively in the physical map and were thus 

incorrectly mapped in the original gentic map of chromosome 2A. Genotyping errors or 

a limited number of informative meioses were regarded as possible causes for inaccuricies 

in genetic maps that can affect marker-trait linkage studies (DEWAN ET AL. 2002). 

Moreover, considerable discrepancies between the genetic map and the acutal marker 

positions on the physical map even to the extent of an incorrect ordering of genes were 

already demonstrated in yeast, a model organism, in the early 1990s (BROWN 2002). 

Genetic map distances are based on recombination events between two loci, while 

physical maps are constructed on the actual nucleotide number. And although genetic 

maps clarify mutual relationships between marker loci or genes, they do not reflect the 

real physical distance and position of marker loci (AZHAGUVEL ET AL. 2010), which may 

lead to an incorrect mapping of QTL. Nowadays, the availabilty of fully sequenced 

reference genomes of cereal crop species, e.g. barley (MASCHER ET AL. 2017) or wheat 

(APPELS ET AL. 2018) lead to a more reliable and accurate QTL mapping, because they 

can be mapped not soley by genetic positions but also by phsyical positions (WARD ET 

AL. 2019). Therefore today’s studies made use of physical marker positions to get more 

convincing results (NOVAKAZI ET AL. 2019, LI F ET AL. 2019). In our study, the 
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verification of the QTL interval was also conducted with physical marker positions and 

demonstrate the switch of the peak markers contributing to the major QTL effect, to a 

more proximal region of chromosome 2A (Figure 20). As the construction of the HRM-

population was based on an incorrect selection of recombinant plants due to a wrong 

interval, the main QTL effect was probably not considered. This may explain why 

phenotypic and genotypic data could not be linked in this study.  

The parental lines of the DH-population are not only segregating in FHB resistance, but 

also in their spike morphology. Mon10-1 is non free-threshing and has an elongated, 

glaucousness spike with tight glumes, whereas Sinskayae has a semi-compact spike, 

reduced length, softer glumes and is free-threshing. A significant difference in AO-values 

concerning the ear shape was determined in the DH-population (Figure 21). Lines with 

ear type m, like the resistant parent mon10-1, are more resistant to FHB than lines, that m 

have the same ear type s from Sinskayae. Responsible for the Sinskayae phenotype is a 

soft glume-gene (sog), which was  mapped on chromosome 2A near the centromere. Sog 

is responsible for soft glumes and threshability and it is assumed that soft glume, free-

threshing and compact ear type are closely linked (GONCHAROV ET AL. 2007, 

KONOPATSKAIA ET AL. 2016). SOOD ET AL. (2009) mapped the sog-gene between SSR 

marker gwm71 and RFLP marker xbcd120 in an interval of 6.8 cM, while AMAGAI ET AL. 

(2017) located sog also on chromosome 2A in the same region between SSR markers 

gwm558 and wmc644 in an interval of 13.6 cM. These flanking markers were anchored 

to the wheat reference sequence CS v1.0 to identify the exact pysical position of sog. It 

was not possible to characterize the precise interval of sog, as indicated by SOOD ET AL. 

(2009). The distal position of marker gwm71 is at 230.8 Mbp, while physical position of 

proximal RFLP-marker xbcd20 could not be determined. By AMAGAI ET AL. (2017), the 

sog-gene was located between 361.16 Mbp and 574.93 Mbp on the physical map, while 

our QTL is also located in the same region, between 499.58 Mbp and 607.96 Mbp. 

Contrary to authors primary assumptions, that the sog-gene is located on the short arm of 

the chromosome, physical positions indicate that the sog-gene is rather placed on the long 

arm of chromosome 2A (URGI 2018, APPELS ET AL. 2018). This fact and the 

demonstration of the significant correlation between FHB severity and ear shape of T. 

monococcum DH-lines give hint that the large QTL effect may probably no active 

resistance factor, but resulted rather from passive resistance mechanism, caused by the 
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different spike morphology. Nevertheless, it remains unclear, if the sog-gene has a 

pleiotropic effect on FHB resistance or if both genes are in close linkage in the same 

genetic block. Further analyses are necessary to identify the responsible genes causing 

the major QTL effect detected in this study.  
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Chapter IV | General discussion  

 

Active resistance response vs. passive resistance factors  

Genetic resources are commonly used in wheat breeding to broaden genetic diversity and 

to improve resistance. Next to the primary genepool of hexaploid wheat, comprising 

landraces, breeding lines and cultivars, the secondary and tertiary genepools are used for 

improving FHB resistance (BUERSTMAYR ET AL. 2019). Triticum monoccoum belongs to 

the secondary genepool of wheat and was already subject of resistance studies for FHB 

(WIWART ET AL. 2016, GÓRAL & OCHODZKI 2017). This project also tried to make use of 

the genetic variation present in einkorn wheat concerning FHB resistance. In this respect, 

a Triticum monoccoum DH-population was analysed for FHB resistance and two 

neighbouring QTLs were detected on the short arm of chromosome 2A, which were fine 

mapped in a next step following a map-based cloning approach. QTL analysis was based 

on two years field trials and a genetic linkage map with a length of 1987.55 cM. The 

QTLs explain 81.8 % and 34.7 % of the phenotypic variance, respectively and spannend  

an interval on the genetic map of 45.1 cM and 31.45 Mbp on the physical maps of T. 

aestivum. There are quite more QTL mapping studies published than studies about 

successful cloning of QTL, indicating that map-based cloning of quantitave traits remains 

a challenging task (SALVI & TUBEROSA 2005). Especially minor QTLs and QTLs, in 

which multiple genes affect the trait are key limitations in the cloning procedure 

(REMINGTON ET AL. 2001).  

Only nine QTLs for FHB were despite many efforts successfully fine-mapped in the last 

years: Fhb1, Fhb2, Fhb4, Fhb5, Fhb7, Qfhs.ifa-5A, Qfhs.ndsu-3AS, Qfhb.nau-2B, 

Qfhb.mgb-2A, of which only Fhb1, Fhb7 and Qfhb.mgb-2A are cloned (BUERSTMAYR ET 

AL. 2019, WANG ET AL. 2020). Nevertheless, possible candidate genes are described for 

Fhb2 (DHOKANE ET AL. 2016), for which six candidate genes involved in structural 

resistance by cell wall reinforcement and DON detoxification are mentioned. The same 

holds true for Qfhs.ifa-5A (SCHWEIGER ET AL. 2013), for which a lipid transfer protein 

and an uridine diphosphate (UDP)-glycosyltransferase gene was obtained. Moreover, it 

is still not unequivocally known which is the causative candidate gene for Fhb1. RAWAT 

ET AL. (2016) reported a pore-forming toxin-like (PFT) gene, that encodes a chimeric 

lectin with two agglutinin domains and an ETX/MTX2 toxin domain. Plant lectins are a 
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heterogenous group of proteins, that are able to bind to carbohydrates and play a role in 

pathogen defence mechanisms, although the biochemical mechanism for PFT-mediated 

FHB resistance remains currently unknown (RAWAT ET AL. 2016). However, PFT is 

present in highly susceptible accessions without mediating FHB resistance, therefore SU 

ET AL. (2019) and LI ET AL. (2019) claimed a histidine-rich calcium-binding protein 

(TaHRC) as responsible for FHB resistance encoded by Fhb1. TaHRC is a nuclear 

protein, but the detailed biological functions and resistance mechanisms has to be 

characterizd in the future (SU ET AL. 2019). For Fhb7, a glutathione S-transferase (GST) 

is described as the encoding gene, that confers broad resistance by detoxifying 

trichothecenes via de-epoxidation (WANG ET AL. 2020). In addition, Qfhb.mgb-2A 

encodes for a wall-associated receptor-like kinase gene (WAK2) that is involved in FHB 

resistance (GADALETA ET AL. 2019).  

WAKs detect damage-associated molecular patterns (DAMPs) that emerge through cell 

damage during the infection process by necrotropic pathogens. Thus this proteinfamily is 

responsible for pathogen detection together with pattern recognition receptores (PRRs), 

that detect pathogen-associated molecular patterns (PAMPs) for hemibiotrophs and 

necrotrophs and receptores with nucleotide-binding (NB) domains and leucin-rich repeats 

(LLR) (NBS-LRR), which identify pathogens effectors from biotrophic pathogens 

(ANDERSEN ET AL. 2018, KUSHALAPPA ET AL. 2016). This is the first step in the defense 

cascade that is activated in plants by pathogen attack. Next step is the signal transduction, 

where resistance responses are regulated by mitogen-activated protein kinases (MAPKs), 

G-proteins, calcium, ubiquitin, transcription factors or hormones like giberellin, salicylic 

acid or jasmonic acid followed by a plant response like hypersensitive response (HR, 

programmed cell death), cell wall modification, closure of stomata or production of 

reactive oxygen compounds (ROS), that are toxic for pathogens (ANDERSEN ET AL. 2018). 

A PAMP/pattern triggered immunity (PTI) leads to e.g. activation of phytohormones as 

well as the generation of Ca2+ and oxidative burst and contribute to a non-specific, broad 

resistance, whereas an effector triggered immunity (ETI) recognizes pathogen effectors 

(avirulence genes) through specific plant resistance proteins e.g. nucleotide-binding site 

leucin rich repeats (NBS-LRR), which are encoded by disease resistance genes (R-genes), 

and often lead to a hypersensitive response (HR, cell death) (CHEVAL ET AL. 2013). The 

former one describes an unspecific horizontal resistance (quantitative), while the latter 
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one correspond to a vertical, race-specific resistance (JONES & DANGL 2006), which is 

considered to be monogenic and follows the gene-for-gene hypothesis (FLOR 1971, 

KUSHALAPPA ET AL. 2016). The resistance response switches depending on which 

pathogen attacks. Biotrophic and hemibiotrophic pathogens need living material, 

therefore the ETI pathway is activated, that usually leads to HR. While necrotrophic 

organisms live from dead tissue and need an alternative strategy, the PTI pathway is 

activated, because ETI leads to HR (hypersensitive cell death) and would therefore rather 

promote pathogen growth (VLEESHOUWERS & OLIVER 2014, ANDERSEN ET AL. 2018).  

Lots of genes and molecular pathways are activated during an infection not only in the 

plants but also in the fungal pathogens. Understanding the mechanisms involved in plant-

pathogen-interactions provides important knowledge to develop broad resistant wheat 

cultivars by pyramiding all types of resistance effects that may lead to a more durable and 

efficient resistance. Therefore a lot of transcriptomic analyses were conducted in the last 

years to study wheat-F. graminearum pathosystem, with main focus on the analyses of 

transcriptome profiles from FHB resistant and susceptible wheat lines (KAZAN & 

GARDINER 2018, SARI ET AL. 2019). Thus, GOTTWALD ET AL. (2012) reported, that 

especially ATP binding cassette (ABC)-transporters, UDP-glucosyltransferasen and 

protease inhibitor genes are activated by defense response of the resistant wheat cultivar 

Dream and Sumai 3 after an infection with F. graminearum. ABC-transporter genes, bind 

and hydrolyse ATP and use the energy released from this process to transport substances 

across cells and next to this, they are associated with e.g. detoxification processes and ion 

channel regulation in plants (SÁNCHEZ-FERNÁNDEZ ET AL. 2001, VERRIER ET AL. 2008) 

They are divided into different subfamilies (A-G) while ABC subfamily C transporters 

are mainly involved in plant-pathogen interactions (DASSA & BOUIGE 2001, KANG ET AL. 

2011). This was already reported in previous studies by WALTHER ET AL. (2008,2015), 

who showed that a TaABCC-gene is up-regulated by DON and linked with FHB 

resistance, mediated by the Fhb1-QTL on chromosome 3BS. The same was stated by 

HANDA ET AL. (2008), who identified a wheat TaABCC-gene as a responsible one for the 

enhancement of FHB resistance by a QTL on chromosome 2D of wheat. On the other 

hand, an ABC-C transporter in F. graminearum accounts for fungal mycelial growth, 

response to tebucoanzole and pathogenicity towards wheat (QI ET AL. 2018). In addition, 

members of ABC-transporter genes, here subfamily ABC-G, are even associated with 
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broad-spectrum disease resistance to multiple fungal pathogens (KRATTINGER ET AL. 

2009b). In general, UDP-glucosyltransferases glycosylate different phytohormone and 

metabolites as response to biotic and abiotic stresses (REHMAN ET AL. 2018) They 

contribute to DON tolerance, a component of FHB resistance, by  conversion of DON 

into less toxic DON-3-O-glucoside (D3G) (POPPENBERGER ET AL. 2003, GATTI ET AL. 

2018). Next to these, cytochrom P450 has also shown to enhance host resistance to DON 

in wheat (GUNUPURU ET AL. 2018).  Lots of more genes are expressed in wheat after F. 

graminearum infection, involved in e.g. Ca2+ -signaling, antioxidative stress, salicylate 

(SA)/ jasmonic acid (JA)/ ethylene (ET) biosynthesis or signaling pathways (JIA ET AL. 

2018). SA/JA/ET are phytohormones, that play a criticial role in regulating signaling 

networks in pathogen defense. In general, SA is inolved in the activation of defense 

responses against biotrophic and hemibiotrophic pathogens, while JA and ET are more 

responsible for defence aginst necrotrophic pathogens (BARI & JONES 2009). 

Transcriptome analyses show that SA and JA play an important role in defense response 

and antifungal activity to Fusarium graminearum, because Fusarium graminearum is a 

hemibiotrophic species, that switch from the biotrophic phase in the initial infection phase 

to a necrotrophic interaction afterwards (STEINER ET AL. 2009, QI ET AL. 2012, 2016). At 

the early infection state, where F. graminearum is in the biotrophic growth, defense 

reaction starts with Ca2+ and SA signaling followed by JA signaling, when F. 

graminearum switches to the necrotrophic growth stage (STEINER ET AL. 2009, BUHROW 

ET AL. 2016). RLK-LLR (receptor-like kinase containing leucin rich repeats) are involved 

in the detection of elicitors, like chitin, mainly produced by hemobiotrophs and 

necrotrophs and contribute also to an early infection response in FHB resistance  (THAPA 

ET AL. 2018, KUSHALAPPA ET AL. 2016) 

In summary, plant lack adaptive immune systems, but possess a lot of components to 

protect themselves against pathogens (LEE ET AL. 2017). Active resistance underlies a 

complex regulatory system of pathogen detection, signal transduction and defense 

responses like hypersensitive response, oxidative burst induction or fortification of cell 

walls depending on the respective pathogens (JIA ET AL. 2018, ANDERSEN ET AL. 2018). 

Whereas passive resistances represent rather structural defenses of the plants and are not 

induced by pathogens stimuli. Structural barriers are e.g. cell wall composition or a waxy 
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cuticula hindering the pathogen to penetrate (PARRY 1990). FHB infection is also 

influenced by e.g. plant height or spike morpology (BUERSTMAYR & BUERSTMAYR 2015).  

FHB resistance vs. sog-gene  

Although the QTL in this study seems to be appropiate for map-based cloning due to the 

major effect it explains, a break down of the effect was observed in the HRM-population. 

The shift of the peak markers, causing the QTL effect, from the original location on the 

short arm of chromosome 2A to the long arm of chromosome 2A as well as the significant 

correlation of the ear shape with FHB resistance of the original DH-population give hint, 

that either the major effect originates from the sog-gene and is therefore rather a structural 

barrier or the effect results from pleiotropy or tight linkage of a Fusarium resistance gene 

and the sog-gene. It is possible that spike related traits modify FHB infection and severity, 

as FHB is a floral infection disease (BUERSTMAYR ET AL.2019). In general, numerous 

QTL studies have shown that FHB QTLs are coincident with QTLs linked to various 

agronomic and morphological traits (ZHU ET AL. 1999, MESFIN ET AL. 2003, HORSLEY ET 

AL. 2006). Moreover, the identification of FHB QTLs can be confounded by agronomic 

traits, like plant height, heading date or spike morphology (OGRODOWICZ ET AL. 2020). 

Some studies have shown that the ear shape or the compactness of the spike correlate with 

FHB resistance. A study of BUERSTMAYR ET AL. (2011) investigate the correlation 

between FHB resistance and ear traits, like compactness, threshability and glaucousness 

in a Tiritcum macha x Tricium aestivum population. Both are segregating concerning ear 

morphology. T. macha is non free-threshing, has waxy glumes and a non-compact 

phenotype. The results gave hint that plants with elongated, lax and more glaucousness 

spikes as well as non free-threshing ability also have an enhanced FHB resistance 

(BUERSTMAYR ET AL. 2011). This reaction is generated through the wild allele q of the 

major domestication Q-locus, which is located on chromosome 5A. Q is responsible for 

the free-threshing character and a square head spike genotype and pleiotropically effect 

glume shape and tenacity, spike length and rachis fragility. The wild q-allele, which was 

also found in T. monococcum, cause non-freethreshing seed and tenacious glumes, as well 

as fragile rachis and thus probably a higher FHB resistance (SIMONS ET AL. 2006, 

BUERSTMAYR ET AL. 2011). Other studies also suggest that genotypes with compact 

spikes tend to have an increased FHB susceptibiltiy and could therefore be a passive 

resistance factor (STEINER ET AL. 2004, GIANCASPRO ET AL. 2016). Already STEFFENSON 
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ET AL. (1996) reported a higher Fusarium resistance of lax spike types in barley NILs 

than dense spike types. This result was supported by MA ET AL. (2000), who also found 

strong associations between lax spikes and FHB resistance. Thus spike compactness may 

serve as one factor for enhanced FHB susceptibilty, as lax spikes are less moist than dense 

spikes, which make it difficult for Fusarium spp. to spread up-and downwards on the 

spike resulting in less infected plants. This was also observed by OGRODOWICZ ET AL. 

(2020), who identified a negative correlation between spike density and FHB resistance, 

too, indicating that spike compactness may enhance FHB susceptibility. The same strong 

correlation between spike compactness and FHB susceptibilty was also observed in our 

study (Figure 21, Suppl. Data 3).   

WOLDE ET AL. (2019) investigated spike morphometric traits, like spike length (SL), 

internode length (IL) or node density (ND) in a tetraploid wheat (Triticum turgidum L.) 

RIL-population and mapped one QTL QND.ipk-2AL for IL and ND on chromosome 2AL 

near the centromere, which roughly resides within 617.7 – 674.0 Mbp (WOLDE G., pers. 

com.) on Chinese Spring. This could probably be a homoeolocus of the hexaploid wheat 

compactum-gene C, that was also mapped on chromosome 2D near the centromere, 

although no compact spike type for T. turgidum was previously described (JOHNSON ET 

AL. 2008, FELDMANN 2001). The compactum C-gene causes a more compact spike type 

in club wheat (Triticum aestivum ssp. compactum). Thus, it is a good indication that the 

sog-gene of diploid wheat and QND.ipk-2AL of tetraploid wheat cause the same spike 

morphology and are probably identical. The QTL position in our study and QND.ipk-2AL 

are not overlapping, but this may be due to the reduced amount of markers in both regions 

and could be further refined with new analyses and a higher marker density, so that the 

locations of the QTLs are better represented on the map. That could next serve as a good 

starting point for further investigation in spike morphology genes and their comparison 

between diploid, tetraploid and hexaploid wheat as well as their influence on FHB 

resistance. Next to spike related traits, this region also contains QTLs for FHB resistance. 

Thus, a  QTL for FHB susceptibility was located on the long arm of chromosome 2A in 

a wild emmer wheat population between SSR marker gwm558 (pysical position: 361.1 

Mbp) and gwm445 (physical position: 682.6 Mbp) (GARVIN ET AL. 2009). This is exactly 

in the same region as the sog-gene (AMAGAI ET AL. 2017) and the QTL detected in this 

study. In addition, even a newer study detected a QTL for FHB resistance on chromosome 
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2AL in close linkage to marker BS00022896_51, which is located at 612 Mbp and thus is 

also very close to the QTL detected in our study (YI ET AL. 2018). They also show with a 

multivariate conditional QTL mapping approach that spike compactness contributes to 

FHB resistance, but the QTL on chromosome 2AL is apparently independent from this 

trait. Also in barley (Hordeum vulgare L.) a large number of FHB QTLs were described 

on the long arm of chromosome 2H (OGRODOWICZ ET AL. 2020).  

In summary, it is probable, that the variation in resistance to FHB detected in this study 

may be due to the sog-gene that have a pleiotropic effect on FHB resistance as assumed 

in the study concerning the Q/q-alleles (BUERSTMAYR ET AL. 2011) or a FHB-resistance 

gene is closely linked. It is known, that mapping and identification of traits, that are 

characterized by strong phenotypic correlations are very challenging due to pleiotropy or 

linkage (OGRODOWICZ ET AL. 2020). To identify the responsible gene for the phenotypic 

variance observed in this study, it is necessary to shorten the large QTL interval, as our 

QTL region spans an interval of 108.3 Mbp resulting in 619 annotated genes of T. 

aestivum CS v1.0 (URGI 2018), which is quite large to identify the responsible ones.  

Future gene cloning  

To meet problems and challenges of climate change, lots of effort was done in the past to 

identify genes in wheat and other cereal crop species, that may enhance resistance against 

biotic stresses, tolerance against abiotic factors as well as quality parameters for 

improvement of wheat. The method of choice in the past was map-based cloning 

(KRATTINGER ET AL. 2009a), although it was very challenging in wheat to clone genes 

and lasted up to a decade, due to the large and complex genome with highly repetitive 

sequences (WICKER ET AL. 2018) and the limitations of a low number of molecular 

markers. There are only ~25 cloned resistance genes in wheat until now (THIND 2018). 

Today, map-based cloning is facilitated through high-througput NGS technologies, 

providing thousands of SNP markers, that were used for rapid and cost-efficient 

genotyping of large mapping populations and association panels and result in the 

construction of highly saturated genetic maps (JAGANATHAN ET AL. 2020). Moreover, 

available high-quality reference sequences for many crop species simplify the anchoring 

of markers linked to a specific trait, on the genetic map with physical maps and accelerate 

the straightforward search for candidate genes. In addition, they help to understand the 

genetic and molecular control of important traits (BETTGENHAEUSER & KRATTINGER 
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2019). But next to the traditional map-based cloning approach, lots of novel technologies 

have been developed, e.g. MutMap, RenSeq/MutRenSeq, MutChromSeq and TACCA 

that lead to a faster cloning of genes.  

Mutational mapping (MutMap) identifies gene sequences by gene mapping, mutagenesis 

and whole-genome sequencing and is therefore suitable mainly in crops with small 

genomes like rice, because there is no reduction of genome complexity, which is a need 

for inexpensive and fast cloning in large genome and polyploid species ((PERIYANNAN 

2018). In this method, a cultivar with a reference genome sequence, is mutagenized with 

EMS (ethyl methane sulfonate) and subsequently crossed to a wild-type plant of the same 

cultivar, used for mutagensis. Bulked DNA of all mutant F2 phenotypes is than subjected 

for whole genome sequencing and in the end, sequences of mutants and reference cultivar 

are aligned for SNP identification (ABE ET AL. 2012). This method was used to identify 

loss-of-function mutations in genes conferring semi-dwarfism and pale green leaves (ABE 

ET AL. 2012), as well as high salt tolerance in rice (TAKAGI ET AL. 2015).  

Another novel technology to idenify and annotate resistance gene family members of 

nucleotide binding leucin rich repeat (NB-LRR)-class is Resistance gene enrichment and 

Sequencing (RenSeq). Hereby the genome complexity is reduced by enrichment of target 

sequences of this specific gene family from the whole genome followed by sequencing 

(JUPE ET AL. 2013, PERIYANNAN 2018). RNA-probes are designed for hybridization to all 

nucleotide binding site leucin rich repeat (NLR)-genes and thus to capture and enrich 

homologous DNA sequences from the resistant genotye (PERIYANNAN 2018). It was first 

applied in combination with bulked segregant analysis (BSA) in two biparental potato 

populations to identify SNPs linked to resistance genes for Phytophtera infestans (JUPE 

ET AL. 2013, HATTA ET AL. 2019). Another possibility is a combination with EMS 

mutagenesis, called Mutagenesis Resistance gene enrichment and Sequencing 

(MutRenSeq) that was recently deployed to clone stem rust resistance genes Sr22 and 

Sr45, that encode for resistance NLR-genes (NOD-like receptors), from hexaploid bread 

wheat (STEUERNAGEL ET AL. 2016). To achieve this, sequences of six loss-of-function 

mutant lines (susceptible), that derived from EMS mutagenesis, were compared with the 

wild-type sequence from the resistant parent and looked up for polymorphisms/mutations 

(BETTGENHAEUSER & KRATTINGER 2019, HATTA ET AL. 2019). MutRenSeq can be 

applied in cereal crops, like e.g. wheat, barley, maize and rice and especially in wild 
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relatives. Thus this method seems even appropriate for gene cloning in T. monococcum.  

This method is fast (<24 months) and cheap, because the genome complexity is reduced 

resulting in reduced sequencing costs, e.g. the gene complement, sequenced by 

STERUNAGEL ET AL. (2016) consisted of 8235 NLR-contigs that span an overall interval 

of 14.5 Mbp that correspond to 00.9 % of the hexaploid wheat genome 

(BETTGENHAEUSER & KRATTINGER 2019). Moreover, it is independent of fine-mapping 

and is used to rescue genes from alien introgression, that are not involved in breeding 

before due to linkage drag (STEUERNAGEL ET AL. 2016). 

In addition, another option to reduce genome complexity is to purify individual 

chromosomes by flourescent labelling of its DNA repeat sequences and though to isolate 

genes using flow cytometry for chromosome sorting in combination with mutagenesis 

(GIORGI ET AL. 2013, PERIYANNAN 2018). This technology is called mutant chromosome 

sequencing (MutChromSeq) and was proofed by SÁNCHEZ-MARTÍN ET AL. (2016) by 

cloning powdery mildew resistance gene Pm2 in wheat. Before chromosome sorting the 

target gene has to be assigned to the respective chromosome, which is usually done with 

genetic and physical mapping, although recombination-per-se and fine-mapping is not 

required. Moreover the influence of the target gene on the phenotype should be 

determined in advance (SÁNCHEZ-MARTÍN ET AL. 2016). Mutants are genereated using 

EMS and their chromosomal sequences mapped to the refernce wild-type, e.g. for the 

isolation of Pm2, six Pm2 loss-of-function mutants were chosen, sequenced on the 

Illumina platform and then aligned to the resistance wild-type parent. The technology is 

suitable for  crops, where chromosome isolation is possible and it is easy and inexpensive, 

but bioinformatic skills and laboratory equipment is needed (PERIYANNAN 2018).  

One bottleneck in gene cloning may be the production of high-quality genome sequence 

information from the region containing the gene of interest for every studied cultivar, 

which may be overcome by a newly developed method called TACCA (targeted 

chromosome-based cloning via long-range assembly). With this method broad-spectrum 

leaf rust resistance gene Lr22a was recently cloned  (THIND ET AL. 2017). Advantages are 

on the one hand a rapid cloning of genes even from large genome and polyploid species 

as well as from species that show partial resistant phenotypes. On the other hand, this 

technology seems to be even suitable for gene cloning in low recombination rate regions 

and without the requirement of loss-of-mutants identification, except in gene-dense and 
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low-recombination rate regions (THIND 2018, HATTA ET AL. 2019). But it is only suitable 

for crops where chromosome isolation is possible and preliminary map informations of 

the genes are available and furthermore, the technique requires much expertise and costly 

equipment (PERIYANNAN 2018, THIND 2018, HATTA ET AL. 2019).  

Nevertheless, all these mentioned technologies are mainly usable for qualitative traits or 

major effect QTLs. For most of the quantitative trait studies, map based cloning remins 

the best method of choice, even for the QTL in this study (BETTGENHAEUSER & 

KRATTINGER 2019). RenSeq or MutRenSeq are no appropriate methods although they are 

concentrating on the identification of R-genes. But resistance to FHB is usually not R-

gene mediated as this often reults in a hypersensitive response (HR), which is not the best 

defense strategy for the hemibiotrophic Fusarium spp.. TACCA and MutChromSeq may 

be good alternatives, because our QTL is already mapped to a specific region on 

chromosome 2A, which is a prerequisite for e.g. MutChromSeq. Moreover both methods 

are not restricted on the identification of resistance genes, as it is not yet known where 

our QTL effect is based on. But specific lab material is needed to isolate particular 

chromosomes, which may be an obstacle for many research institutions.   

Next to these new sequence-based technologies, also new omics-procedures like 

transcriptome, proteome, epigenome and metabolome studies are used nowadays to 

dissect loci, that are associated with complex traits and to understand their regulatory 

network (MOCHIDA & SHINOZAKI 2011). Those omics technologies can support positional 

cloning attempts and recognize candidate genes by explaining biological processes that 

determine the genetic effect (LANGRIDGE & FLEURY 2011). Even process in reverse 

genetic approaches lead to a faster and efficient determination of candidate genes like 

site-directed mutagenesis, e.g. CRISPR/Cas9 (BAO ET AL. 2019). Another important step 

to date in determining candidate genes is the international ongoing effort in developing a 

pan-genome for wheat. A pan-genome displays a collection of all DNA-sequences 

occuring in one species and not only from one cultivar and thus enhance the identification 

of genes or phenotypically consequential variants (SHERMAN & SALZBERG 2020). 

Moreover, progress is done in phenotyping technologies, that are very essential especially 

for the detection and cloning of quantitative traits, from e.g. small-scale applications in 

the greenhose (CZEDIG-EYSENBERG ET AL. 2018) up to fully automated robotic 

phenotyping platforms in the field (VIRLET ET AL. 2017).  
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Finally, gene cloning nowadays is no obstacle anylonger due to the high progress in NGS-

technologies, whole-genome sequencing, genome complexity reduction, marker systems 

and genomic analyses as well as phenotyping technologies. Therefore cloning and 

cataloguing of many agronomically important traits should be an international effort in 

the future to support genomics-assisted breeding (BETTGENHAEUSER & KRATTINGER 

2019).  

Outlook  

This study was conducted to get information on the genetics of FHB resistance in Triticum 

monococcum. A DH-population was constructed based on crosses between two parents 

Triticum monococcum (mon10-1) and Triticum monococcum L. conv. sinskayae 

(Sinskayae) that differ not only in their resistance to FHB but also in their spike 

morphology. In a first step, QTL mapping was performed with two years field data and a 

genetic map of 1987.55 cM. Two neighbouring QTLs were mapped on chromosome 2A 

in the distal region of the chromosome in a genetic interval of 45.1 cM corresponding to 

a physical location between 36 Mbp and 69 Mbp. Further analyses aimed at saturating 

this interval with markers and in the identification of the resistance locus within this 

interval. Nevertheless, analyses reveal a switch of the peak markers SNP_0797 and 

wmc0644, causing the major QTL effect, to the long arm of chromosome 2A. Future 

studies may deal with the question, wether this effect derives from the sog-gene, which 

is also located in the same region as our QTL and may pleitropically influence FHB 

resistance, or from Fusarium resistance genes, that are closely linked to sog. The DH-

population seems to be very suitable for further investigation in spike related traits in T. 

monococcum as well as for the mapping of the sog-gene and the probably linked FHB 

resistance, because of the highly contrasting crossing parents. It is well known that 

mapping populations, constructed from genetic diverse crossing parents allow high 

performance QTL analysis (OGRODOWICZ ET AL. 2020). The QTL analysis for FHB 

resistance should be replicated with the whole original DH-population and a higher 

marker density as well as an additional assessment of spike architecture to identify the 

exact location of the sog-gene. Moreover, the recently published sequence of T. urartu 

(LING ET AL. 2018) could be used in further studies for candidate gene identification on 

chromosme 2A for spike related traits or FHB resistance genes.   
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SNP Sequence 

SNP_1315 
ACTGCTGCGCATGTGGATGCTTGACCTGCAGGGAGCTGCTGTGTTTGCCT[T/C]GCATGGTGATG

AGTCAGTGAAGCAGAGAGATCTTGCCCGGTCGGTTGGTT 

SNP_1453 
ATTTACATACAGTTGCAGTTCAGTTTACTGAACCACTATCTCTTTCTTGA[T/A]AATCAAATGAC

AAATTATAGCGTACTGCAGTGTTGAGCGCGTACATTGGC 

SNP_0531 
AGTGTGTGTTTTTGGAAAGCAATGAAAGGAAGCAACACATGGATCATCCA[C/T]GGACCTCATGG

ATCTGATTAGTTAACTACTCAAAGCTGATGACAATTAGA 

SNP_0157 
CAGAACACATATGAGGAGTGCCTGGAGCTCTTCAGCTCGCTCCGGGAGAG[T/C]GGCGTTCTTGT

GCATCAGTGGTTTTGATTGCTGCCATACACATTCAGAGT 

SNP_1552 
GTCTGCAGGCTCTTCCTGCGGTCATCCGAGCTGCTCCCCATCATCGTGCA[T/C]CTCAGGCAGTC

GCCTGACCAAACGATCTCCGAGTACGCCTCCGCCATCGC 

SNP_0987 
TCATAAGAAAAACATGTGTTAATGCGTGCGCGCCGCGTCAATTGGGAAGA[T/C]GACAAAGAACG

CAAGACTGACCTGCAGAAATAAATGGCAGGCATGTAGAT 

SNP_0148 
GAGGAGGAGAGCGAGGAGGAGGAGGAGGACGACGACGTGGACGGCATCGA[G/A]GAGCTGGAGCG

CCGCATGTGGCGCGACCGCATGAGGCTCAAGCGCCTCAA 

SNP_0836 
GCTGGCTGGCTGAAAGTTCCATGCACGCGTGACAAGAAACTGCAGCCAAC[C/T]TTTTCCTTGCC

GTAATCGTGCCATTTTGTTTGACAAAAAGCTGTCGTTCC 

SNP_1643 
CGGTGTCAGCTAGGCGTACAGTTCAGAGGAAGACGAGGAGGAGGGAGCGG[A/G]ATGAGAGATTA

CCATGGTTGCGCGGTGGTGGCTGCAGCAGCGGCGAGGGT 

 

  

SNP Sequence 

SNP_1216 
ATGGAATCTCTGGGCTGCAGTAGCAAAAAGCACAAAGCCCAGAAGCTAAACAAAAAAGGTCCTCTT

GTTTCTACAGGCTC[G/A]TAAAACCACCCGGCCCTCTTACCAGCGCAGCGACAAAAAGGCCAGAA

GTTCGAGCCAGCCTACACATGCACACGAATCTT 

SNP_0667 CTCTCCTCTCCTCCCATTTTAACCACGTCGGCAATAGAAAAATGCACAAG[T/G]GAAGGTCACTG

CTGATTGGCATGTGCGCCCATGACTGCAGCGGCGACGTC 

SNP_0833 CAAGGAGAAGAGGAAGAACAGGATGTACGTGAGATATAATCAGAGACCAA[C/T]GCCGCAACACC

ACCAGAGATTCTCTTTAGCTCGTAGTGCTGATTACTGGG 
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Markers: Genotyping-by-Sequencing (GBS)  

 

 

SNP Sequence 

GBS_1 
CTATAATTGTGTTTGCTTCCCTTCTTTCCGCACTTGATGGTTTATAATTGGTATCTGATGACCCTA

TGGACTGCCAATTTTTTCGTTTATGCATAGGATA[A/C]CTAGGCAAGAGACAAATGCCAAAATTA

TCATTCCAGAATTGCTGCAATGCATTTTATCACATGATACCTACATACTCGAGCGGCTGTTTATTA

TCCCATC 

GBS_2 
GCAGCTTTGAAAATGTTTTGTTAACATGTGTGGTGAACTGGTCATTGGATCTTCGCCCTGCTGCAG

CAGTGTCACGGATCAGCCAAAGCCTCATTTCTTT[G/A]GACCCAACTATATCCATCGTTCATTTA

CGTGACCTGGCCTCAACATTATTTGATTCTAAGAGCATCTCTAGCATATCCATCAACCGGCCGTCC

CGCAAAA 

GBS_3 
GTTGTATTGTAGTGTCTCTCAGTCGCCATGTGCCTGCAGAAATGAAAAGCTCTAATTGTCATCAGC

TTTGAGTAGTTAACTAATCAGATCCATGAGGTCC[A/G]TGGATGATCCATGTGTTGCTTCCTTTC

ATTGCTTTCCAAAAACACACACTTTATCATCCTGTCACCCAACCATTCCTTGCGGCTCAAAGCAAT

GTCCCCT 

GBS_4 
AGGCAGACAGCCACAGCCTGTGGTCAGCAATGAACCAACATTGCATTCTGAAGAGGACAACTGACC

AACCACTAGGACAGATGCAACAAAATTCACGACA[A/G]CGACAACACGCGTAAATTCGGTTTCAC

ATGTTAGTGCAAATATCTGGAGTTAAGCAGAGATCTTCACAGCAGTAGTATATGCATATGGACCGG

CTGACAT 

GBS_5 
GTGATGATGAATGAACGCATTGGTTTAGTAGGTTTTTGCCGAGAGATATGGTAATGATGATGGAGT

GGCAATTTAATTTGCCTGCAGATATCTAGTTTCA[T/A]CTGCTTCCTGTGGTATGCGCCTGTATT

TTCGTCATATTGGAAGTTCTCACCTCAGTGAGTATGTCTTCGAGTTTTTCTTATAGATAAGTATAT

CTATATA 

GBS_6 
GGCTCCTAAAACCGTAAAAAAGAAACCGGCTAGACACACCATAGAAGGTTCCAAAAACGGGATCGC

TGAAACGCTAAACAGACCGGCCCACGCCTCGAAC[A/G]CTGGGTTGATCGCCCAAACAAAATCCA

CAGACAACATCTGCAACAGATATGCAAATTTATTCAGTTTTCAACCTCATCTCACAAACACATTAC

CCTTTCC 

GBS_7 
CAGACTAGCGGAAGTAAACCGACACGAGGGGGATGTCGACGTCGTTCTCGTCCTCGTCCTCGCAGG

CCACGCCGATGTCCAGGTGCCTCCGGTACTCGGG[G/C]ACGTCCACCTTGGCCACCTCCCTGGCG

ATGTCGACCACCTTCTTGGTCAGCCGGTCCTTGTGCCTCGCAAACATGTTGTTGTACAGCAGGGAG

GTGCCGC 

GBS_8 
GCTTAGGCTAAACATGGAATATGACTACGACTACGAACGCAAGATCGGGAATATGGGCGGTGGACC

CTTCGCTCAATCCATGGAAAGGTTCAATAGGCTG[G/A]CCCCCATGTCCTCGGCACATCGCGACA

TGGTGCAGCTCGGCGGCGTCTCAGAGCTCCCGGGTTCTTTGACCAACAACAACTGCGCGTTCAGCT

GCCTGCA 

GBS_10 
CCGATCGGTCGAGCTGGTCCCCCTGGATCGGCAACCTCGATCTTCTGCACGCACCGACACATAGAT

TCGTCTGAGTACTGTAGGTTGCCAAACAGTGAGC[A/G]CTCGTCCAGTGGAGGGCAACACCTAGC

ACATGCATGCACGCCTTTCACACCAGAAAGCAAGTCCTTATCGTTGGCAATACTCATGTTAAGCAA

GAGGAGC 

GBS_11 
GTTGCGGCCGCCGGCGACGAGGTCGATACCCTGGGTGCCACGGGAACGGACGGTGTCAGCTAGGCG

TACAGTTCAGAGGAAGACGAGGAGGAGGGAGCGG[A/G]ATGAGAGATTACCATGGTTGCGCGGTG

GAGGCTGCAGCAGCGGCGAGGGTCAGGGCGGCAGCGGCGGCGGCGGGACTGGTGCTAGGGTTTTGG

ATGGAGT 

GBS_12 
GCACTTGTCGGCCTGGCACACCAGGTTGGGCCCGTTGCTGCAGGAGAATGACAACGGCACGTTGAA

GCCGTCGATGACAGAGATGTCGTAAAAGTCCTGG[C/T]CGTTGCCGATGGTGGACTCGGCCAGGG

TCAGCGGCGGCTGCCCGGACAGCGTGCACGTCAGCGCACCGCCGCAGTCGGCAGTCTGGCAGCTCC

CGGAGTT 

GBS_13 
TGACCGTGGGCGTACCATAGTCTACGCCAAGCCTGGCGACCAGCGGTGGGCTGTGATTGAGCATGA

CGAGATCGGGAGACCCAATCGCTACGCATCATAT[C/T]GGCTATCGTCGGCATCAACCCTGCAGG

GGCGCTTCTACTTTGCGACTCTTGAGGGGAATATAATGCATGTGAGGCTCTGCCCTGAGCCTCAGT

TGGTGCC 
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Supplemental data 3: 40 DH-lines plus parental lines (mon10-1/Sinskayae (mon10-2)) 

with mean AO-values from 2008/2009 and their classification in the respective group 

according to their ear shape (m/s)  
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