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Abstract: Alzheimer’s disease (AD) is an irreversible, age-related progressive neurological disorder,
and the most common type of dementia in aged people. Neuropathological lesions of AD are
neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ),
loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis
as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the
formation of plaque and soluble oligomers, and have an essential role in the AD pathology.
Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative
damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis
of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a
Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase
and decrease its levels in animal models, respectively, to study which one is the cause. For more than
twenty years, many in vitro studies have been devoted to identifying metals’ roles in Aβ accumulation,
oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic
approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of
strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is
an effective strategy for AD remains popular. However, some recent reports of genetic-regulating
copper transporters in AD models have shed light on treating this refractory disease. This review
aims to succinctly present a better understanding of Cu ions’ current status in several AD features,
and some conflicting reports are present herein.

Keywords: Alzheimer’s disease; amyloid plaques; copper; oxidative damages;
protein modification; neurodegeneration

1. Introduction

Alzheimer’s disease (AD) is a multifactorial, complex brain disease defined by progressive
cognitive decline, heterogeneity of behavioral presentations, and dementia in older people [1–3].
In 1907, Alois Alzheimer was the first to identify a mental decline with amyloid plaques and
neurofibrillary tangles found in most dementia symptoms [4,5]. This disorder’s main risk factor is
old age, because the elderly are more prone to diseases, affecting 10% of people aged 65, and this
proportion rises by about three times for people aged 85 and older [6,7]. AD typically destroys neurons,
and their connection with the brain regions such as the entorhinal cortex and hippocampus area,
the parts of the brain essential in forming memories [8]. This disorder disrupts processes necessary for
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healthy neurons, such as communication, metabolism, and repair [9,10]. Ultimately, the disease is fatal.
It is one of the leading causes of death [11] that we are currently unable to stop or cure because the
underlying etiology is poorly understood at present [11,12].

Unfortunately, the treatment of AD has often been delayed in general because it is diagnosed
only after prominent signs of cognitive deterioration [13], and this is all due to the lack of awareness
of cognitive problems on the part of patients and patients’ families [14]. Clinical detection of this
disorder is only possible when the symptoms are advanced enough to show visible behavior or
cognitive changes [15]. There could be enough time to halt or slow this disorder’s development with
early AD identification before complete onset [15]. Indeed, currently, there is no such treatment for
AD [16], and approved drugs that have insignificant effects at altering the pathophysiological course
of this disorder [17,18], due to the disease developing from a combination of lifestyle, environment,
and genetic risk factors that affect the brain over time [19,20].

One of the most common neuropathological hallmarks of AD is the misfolding and aggregation of
amyloid plaques-extracellular insoluble deposits of the β-amyloid peptides [21], and the intracellular
formed NFTs (neurofibrillary tangles) [22], leading to the loss of communication between nerve cells,
causes brain damage and shrinkage [23]. Posterior cingulated cortex (PCC) [24], entorhinal cortex
(EC) [25], hippocampus (HIP) [26] (the first part to be affected by AD), middle temporal gyrus (MTG)
(role in cognitive functions such as language processing), and superior frontal gyrus (SFG) (helps in
memory) [27,28] are the regions affected in this multifactorial neurological disorder. Some studies
have identified the impaired function of the middle temporal gyrus [29] and superior frontal gyrus in
AD [30].

Extracellular deposits of Aβpeptides in Alzheimer’s are the main pathological events in AD [31–34].
Senile plaques or amyloid plaques mainly consist of small amyloid beta-peptides (Aβ) (up to 42 or
43 amino acids long) [35]. These are β amyloid precursor protein (APP) metabolites, derived by
proteolytic sequential cleavage, first throughβ-secretase and then withγ-secretase, in the amyloidogenic
pathway of producing peptides (Aβ), which contain 39 to 43 amino acids [36]. The APP (main isoforms,
APP(695), APP(751), and APP(770)) is a type 1 transmembrane glycoprotein, which is essential for
neurogenesis, neurite outgrowth, neuronal guidance, synapse formation, and repair [37–39]. The reason
for neuritic plaques (senile plaques) forming in AD is due to irregularity between the production and
removal of the beta-amyloid protein that accumulates [7]. Hence, the amyloid cascade hypothesis
postulates that aggregation and accumulation of Aβ is the first pathological event in AD onset and
initiates a cycle of adverse physiological changes that lead to neurodegeneration.

Another study has investigated Aβ aggregations in the senile plaques and co-localization of
adenosine receptors in the AD [40]. Recently, some investigations have been done on adenosine,
a purine ribonucleoside, because of its neuromodulator and neuroprotection function in neurological
disorders [41,42]. It is present in all cells containing glia and neurons, initiates its biological process by
four G-protein coupled receptors (GPCRs), namely, the A1, A2A, . . . A2BAR [43,44]. It has a role in
regulating and integrating neuronal excitability, affecting many essential brain activities like sleep,
memory, and neural plasticity [45–47]. Much research has analyzed adenosine effects via its receptors
A1 and A2A in AD [48]. Nonselective blockage or modulation of these two receptors could protect
cognitive impairment, making them innovative feasible therapeutic agents for AD [49]. Hippocampus,
a brain region important for memory, learning, and neurogenesis [50–52], is one of the earliest affected
brain regions that tends to exhibit the most rapid volume loss in the disease progression, and its
pathology was found to be central to AD [50,53,54].

The hippocampus is a sensitive part of the brain to the dysfunctional homeostasis of transition
metals, more so than any other brain region. Much research has also identified another brain
part, the cortex, which is damaged by AD [55–57], linked with motor function, planning,
organization, argumentation, feeling, and language processing [58]. NFTs are mainly composed
of the microtubule-associated protein tau, predominantly expressed in the neurons under physiological
conditions. This protein is mis-sorted into the somatodendritic compartment due to the tau sorting
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process’s failure, which is another essential factor that aggregates in AD [59]. Microtubules are
essential components of a neuron’s cytoskeletal system, required for several fundamental cellular and
dendritic processes, such as neuronal migration, polarity, axonal production, and differentiation [60,61].
Abnormal Aβ production might lead to the activation of tau mis-sorting, inducing tau pathology [62,63].

Multivalent metal ions such as copper (Cu) [64–66], zinc (Zn) [67,68], and iron (Fe) [69,70]
are reported to be at higher levels in Alzheimer’s senile plaques [71,72]; while the connection
of these metal ions with Aβ aggregation is still not well known. Indeed, some evidence from
transgenic animal studies shows that Cu accumulates in senile plaques in the brains of 5 × FAD
and Tg-SwDI/NOS2−/− mice models with neurodegeneration, as compared to PSAPP, where no
Cu deposition has been seen among the mice with less neurodegeneration [73]. Much research has
accumulated on Zn and Cu ions’ altered homeostasis as the central pathological hallmark [74–76]
and shows the link of proteins related to Cu metabolism with this multifactorial AD [77].

Considerable research has suggested that Cu dyshomeostasis contributes to the onset of the most
common neurodegenerative disorders besides AD, including Parkinson’s disease, prion-mediated
encephalopathies, Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) [78–81]. Hence,
circumstances leading to a higher or lower copper concentration can be hazardous to health, such as
Menkes diseases, a genetic disorder of Cu deficiency [82,83]. Furthermore, an autosomal recessive
disorder, Wilson disease (WD), caused by defects of the ATP7B gene with excessive copper deposition
in the body and patients’ brain examinations have shown copper concentration eight times greater
than the controls [84].

Contradicting reports about the Cu concentration in AD has been reported. Some researches
indicate a copper deficiency [85–88], while the majority show its higher level in AD, and therefore,
reducing its level is required [89–95]. Investigations have grown exponentially in the neurodegenerative
disorder fields over the past two decades. However, AD’s exact etiology is still not well
understood, and as such, there is no successful therapeutic option available for this disorder to
date [96,97].This literature review aims to present current knowledge regarding Cu’s role in AD.
Towards the end, a short review of feasible therapeutics/strategies recommended for solving the
problems associated with the metal’s implication in AD has also been discussed.

2. Copper Ion Implication in AD

Like other body parts, the brain contains many necessary transition metal ions, such as cobalt,
copper, chromium, iron, zinc, and non-essential metals. Generally, the brain is the part of the body that
contains the highest amount of transition metal ions content per weight. In comparison, the content of
the copper ion in the brain is 0.004 g per kg [98]. It is an important chemical component of cell biology
because it can receive and donate electrons. Once delivered and spread in a body, the cycle of Cu ions
as the cupric ion (Cu2+) in its higher oxidation state and cuprous (reduced) form (Cu+), often joined to
cuproenzymes with a small proportion as labile Cu, which was named as free or unbound Cu [99].
As a redox catalyst, Cu is necessary for many enzymes’ catalytic activity, regulating various cellular,
biochemical, and regulatory processes. This metal plays an essential role in the catalytic centers of
metalloproteins, electron transfer (ET) sites, and structural components.

Many studies have provided information concerning high serum levels of non-Cp–Cu,
which results in reduced cognitive function, and the rate of mild cognitive impairment (MCI) to AD
increased [90,100,101]. Postmortem biochemical analyses of the AD brain have revealed the reduced
total soluble Cu levels, while its content within insoluble neuritic plaques is raised [102–104]. However,
despite the decreased total Cu level in the central nervous system (CNS), elevated levels of redox-active
exchangeable Cu are found in the Brodmann (BA46) and the temporal lobe (BA22) areas. AD cortical
tissue has an increased propensity to bind exchangeable Cu2+ with increasing oxidative damage and
neuropathological alterations, which have been seen in Alzheimer’s cases [105].
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2.1. Copper and Amyloid-Beta Precursor Protein

Many authors have cited several models on copper implication in AD. Indeed, the most
approved have put forward the “gain-of-function” of Aβ after binding Cu2+ ions [106]. Alternatively,
current hypotheses suggesting “loss-of-function” of Aβ as the pathology of this disorder [94,107].
However, APP exports metal from neurons and a lower level of the soluble, functional Aβmonomer
may lead to copper accumulation in the cell [107].

APP can bind to Cu2+ and reduce it to Cu1+ through its copper-binding domain (CuBD). APP can
strongly bind Cu2+ to the N-terminal resulting in the decrement of copper ions [108]. Genetic studies of
animal models have suggested that the APP-induced conversion of Cu2+ to Cu+ increases copper ion
removal from the brain; this process could justify the point of why Alzheimer cases show lower brain
level and higher Cu content in their serum-plasma [100,101,103,109,110]. However, Cu-binding with
the N-terminal domain of APP may manage other functions of this protein, including synaptogenic
function, stability, and metabolism [111–114]. Interestingly, the lower the copper content of the
brain, the higher the ratio of endocytosed APP, and the generation of Aβmaybe works as a defense
mechanism to stop the unnecessary loss of Cu [114,115]. Though newly produced intracellular Aβ
can remove Cu, it probably leads to dyshomeostasis of copper ions and Aβ peptide deposition into
plaques. This process results in neuritic plaques formation because Cu ions increase Aβ accumulation
and cell damage due to the production of reactive oxygen species in AD [116–118].

Amyloid plaques or senile plaques mostly consist of the Aβ peptides, the essential peptide
whose presence at a nanomolar concentration is shown by numerous studies in the cerebrospinal fluid
(CSF) as well as in serum [119,120]. However, the TASTPM animal model study pointed out that the
concentration of Cu in the Alzheimer’s brain does not link to plaques deposition [121]. The affinity of
Cu2+ ions for Aβ peptides is very high [122,123], and it also increases the portion of beta-sheet and
alpha-helix in Aβ proteins, which may be the cause of its aggregation [124]. So, β-amyloid deposition is
the reason behind pathological alterations in AD, and its clearance when patients are immunized does
not stop this disorder [125–129]. However, some scientific studies reported the presence of neuritic
plaques in the brains of cognitively healthy elderly [130–133].

The soluble oligomers obtained from the culturing of cells possess high chemical resistance
and protect against its conversion into monomers via several degrading factors and maintain the
presence of covalent cross-links in them [134,135]. Binding of Cu2+ ions increases dityrosine-linked
β-amyloid dimers as observed in vitro studies of this neurological disorder [136–139]. This dimer
structure switches from parallel to anti-parallel in the presence of Cu2+ and this process is regulated
with the occupied binding sites of Cu [140]. Moreover, the same scholars later demonstrated that the
nanomolar content of Cu2+ has no impact on peptide–peptide bonds of dityrosine-linked β-amyloid
dimers [141]. Another study has shown that Cu2+ ions binding results in structural variations in
the β-amyloid dimers, causing oligomer-defining interactions, including N-terminal interaction in
them [142]. The mutant dimer does not make dityrosine cross-links because of tyrosine10 (Y10)
mutation to alanine on Aβ, and it is not linked to neurotoxicity (Figure 1) [143].

A meta-analysis [144] and the following investigations [105,145] revealed a lower total Cu in
AD, while the level of labile Cu is higher in most of the brain areas affected by this disease [105].
Alzheimer’s brain tissues and the cortexes of transgenic animals with severe brain damage showed the
high Cu2+ ions-binding capacity [105,146]. Additionally, the APPsw/0 mouse model study reported
parenchymal Aβ plaques, but no damage to neurons has been observed (Table 1) [147,148].
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via degrading agents. 
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Figure 1. Copper’s role in the aggregation of Aβ peptides in the neuritic plaques of AD.
(A) Cu2+ complexes with beta-amyloid peptides lead to dityrosine-linked β-amyloid dimer formation,
which is neurotoxic and resists degradation into monomers. (B) Cu binding with the Y10A
mutant peptide causes no neurotoxicity, dityrosine cross-linking, and degrades to monomers via
degrading agents

Table 1. Copper ions’ effects on selected metal-binding proteins implicated in Alzheimer’s disease.

Protein. Effect Animal and Cell Model

Amyloid-β

Cu plays a role in modulating the
aggregation of amyloid-β and

decreases toxicity; nevertheless,
the presence of copper insoluble
amyloid-β accelerate apoptotic
cell death. Sub-stoichiometric

levels of copper(II are rendered
Aβ aggregation and cause more

neurotoxicity.

A synthetic peptide (Aβ2535),
HEK293 cell,PC-12,and primary

hippocampal cells [149–154].

Tau
Plays in modulating

phosphorylation. Plays in
modulating Aβ aggregation.

Triple-transgenic mice model of AD
(3xTg-AD), SHSY5Y human

neuroblastoma cells, and
Alzheimer’s disease transgenic

mouse model [155,156]. A peptide
from tau possesses a repeat

microtubule-binding domain [157].

Amyloid precursor protein

Increase expression levels and
distribution of APP and

amyloid-β, respectively. Copper
has promoted traffic and

redistribution of APP. Increases
Cu2+ mediated oxidative stress as
well as APP ectodomain neuronal

cell death.

APP/PS1transgenic mice, N2a cells,
primary cortical neurons,

MDCK-APP-cherry cells, polarized
epithelial cells, SH-SY5Y cells

[112,115,156,158]. Recombination of
amyloid precursor protein (APP),
APP mutant cells, and primary

neuronal cell lines [159].

In relation to neuroinflammation, copper performs essential roles in the activation of microglia.
However, there is insufficient data present about this. Scientific studies have suggested that Cu increases
Aβ toxicity, and the microglia with fibrillar Aβ results in phenotypic activation, and the activated
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microglia is neurotoxic and causes neurodegeneration [160]. Cu-Aβ complex causes activation of
microglia and the release of tumor necrosis factor-α (TNF-α) and nitric oxide (NO) in an NF-kappa B
dependent pathway [89,161]. Recently, the study by Kitazawa (2016) [162] indicated that copper-Aβ
complex attenuated microglial phagocytosis of BV2 and improved the release of TNF-α and interleukin-1
beta (IL-1β), which results in reducing expression of lipoprotein receptor-related protein-1 (LRP-1).
Reduction in the level of LRP-1 leads to further impairment in the transcytotic Aβ clearance and
increased neuroinflammation [163]. Indeed, a study showed that a trace level of Cu increases the Aβ
induced neurotoxicity in the cholesterol-fed mouse through the inflammatory pathway; but, no effects
of inflammation have been seen when treated with copper or cholesterol only [164]. Activated microglia
expresses the ATP7A, also known as the Menkes protein (MNK), which is indicated to be gathered
around the plaques by histological investigations.

Interestingly, the expression of ATP7A has been determined to be increased by interferon-gamma
(IFN-γ), which is a pro-inflammatory cytokine but not by TNF-alpha or IL-1beta [165]. The inflammatory
process linked with AD has been shown accompanied by the altered microglial copper homeostasis
in the disease. Remarkably, the copper-deficient diet-fed mice showed symptoms of activated
microglia and astrocytes, proposing Cu homeostasis is required under physiological conditions to
stop neuroinflammation [166]. Moreover, some studies have suggested that copper homeostasis
controls pro-inflammatory and anti-inflammatory phenotypes shift in microglia cell, by the nitric oxide
regulation and disruption of S-nitrosothiol signaling [167,168]. However, further study is needed to
understand the underlying etiology of how Cu controls the CNS immune responses, especially its
function in the clearance of pathological hallmarks of AD, such as β-amyloid and tau, which may
provide a new drug target for AD.

Cu2+ induced fibril formation at physiological pH because it is a highly pH-dependent process.
However, amorphous aggregation occurs under the acidic environment [142,169]. Hence, the misfolding
of Aβ40 and Aβ42 in the brain are neuropathological hallmarks of AD. Moreover, the molecular
mechanism of its aggregation in vivo is still unclear. However, metal ions affect their deposition in vitro.
Aβ42 aggregates much faster than the most common form Aβ40, and more toxic to neurons than Aβ40,
even though Aβ42 differs from Aβ40 by only two (IA) amino acid residues at the C-terminal end.
As Aβ40 contains more than one binding site of Cu, the second Cu2+-binding site interferes with the
aggregation of Aβ40 to the amyloid fibrillar state in a proton-rich environment [152].

2.2. Copper and Tau Protein

Autophagic-lysosomal flux is a lysosome-dependent cellular degradation program that plays
an essential role in the clearance process of abnormally modified cellular proteins. Much data have
suggested that endo-lysosomal/autophagic dysfunction is responsible for soluble oligomeric forms
and insoluble forms of tau aggregation (Figure 2) [170,171].

The tau protein has also been investigated for its Cu binding, which plays an essential role in NFTs
production [157,172,173]. Tau protein shows redox activity when it binds to copper, causing oxidative
damage to the brain tissues [174]. However, despite tau as the main pathological hallmark of AD, only a
small proportion of research has been done to check its link with Cu’s dyshomeostasis. Further studies
are needed to evaluate Cu function in tau kinases and phosphatases and their role in cognitive
impairment. These works will also increase our knowledge of the neuropathology of AD (Table 1).
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Figure 2. Dysfunction of autophagy and tau protein neurofibrillary tangles (NFTs) in the hippocampus
of AD. Oligomeric Aβ-induced ROS production results in oxidative damage and mitochondrial
dysfunction, in which hyperphosphorylated tau protein and NFTs produce through an imbalance of
various protein kinases and phosphatases. These events lead to autophagic dysfunction and aggregated
tau protein to neuronal loss in Alzheimer’s disease.

2.3. Copper and ROS Production

Reactive oxygen species (ROS) generation is associated with a redox-active copper ion complex
with aggregated Aβ, which has been identified to contribute to oxidative stress and damage to neuronal
cells in AD [175].Copper-Aβ fibrils complex produces hydrogen peroxide (H2O2) in the presence
of ascorbic acid, a biological reductant [175,176]. Increment in the ratio of (Cu-Aβ) leads to the
production of H2O2, hydroxyl radicals (OH•), and misfolding of proteins (aberrant aggregates) shifts
from amyloid fibrils to amorphous aggregates [116]. While initial studies have shown ROS being
dangerous to causing neurodegeneration, the recently gathered data suggest some ROS action is
necessary for cognition function and memory development [177–181]. According to some results,
it has been suggested that the Cu-Aβ complex generates less ROS than unbound Cu ions [182]. Cu ions
interaction with Aβ results in its accumulation under a slightly acidic environment and promotes ROS
production in Alzheimer’s patients [183]. The production of ROS due to metal ions such as Cu leads to
oxidative damages to Aβ peptide. This oxidized β-amyloid has been seen in senile or amyloid plaques
during in vivo studies [184]. Some in vitro data imply that oligomeric and fibrillar forms of Aβ prevent
hydrogen peroxide production at high concentrations of Cu2+. Additionally, amyloid fibrils produce
less hydrogen peroxide than that in the oligomeric state [185].

However, the pro-oxidant function of the Cu-Aβ complex is not confirmed yet, because this
complex is more effective in ROS generation than several tested biological relevant Cu-peptides and
Cu-binding proteins [186] but less efficient than loosely-bound Cu [182,187–189]. It is usually stated
that hydrogen peroxide production is a two-electron oxidation process; however, current research has
indicated the production of superoxide (O2−) as an intermediate in hydrogen peroxide formation via
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Cu-Aβ complex and oxygen [190]. Cu is redox-active and, when bound to Aβ, catalytically cycles
between the Cu+1 and Cu+2 oxidative states to generate ROS such as O•−2, OH•, and H2O2. Thus,
the coordination of amyloid-β with Cu ions plays a significant role since ROS generation is a
metal-catalyzed process, termed as a catalytic in-between state [191]. Therefore, computational studies
have also examined Cu’s role in that state and its reactivity to the substrates such as oxygen or hydrogen
peroxide [192–194].

Toxicity due to Cu ions in AD has been linked with the oxidant form of Cu ions such as
Cu2+ [65,195]. Considerable studies found that the elimination of Cu+ from Aβ inhibits the production
of Aβ oligomers and oxidative damage [196], and Cu1+ has a stronger affinity to monomeric Aβ
peptide than Cu2+, which leads us to propose that Cu1+ cation is principal in the oxidation state
in vivo [197].

Contrarily, the same metal ions also exist as catalytic metal ions, like Cu in SOD1, where they stop
producing the H2O2. This also proves the value of coordination compounds. Copper can be in both
pro-oxidants and antioxidants, which depends on its coordination position in compounds. However,
in AD, higher production of ROS or less activity of the enzymes which degrade ROS results in an
imbalance of pro-oxidants and antioxidants form, which cause oxidative damage on biomolecules [176].
Therefore, it is now clear how important it is to regulate copper ions’ metabolism in terms of content,
transportation, storage, and association with active sites.

Abnormal Cu homeostasis increases the levels of free or loosely bound copper, which often
produces ROS [98]. These ions can also attach to off-target biomolecules and disrupt their functional
roles, leading to higher chances of oxidative damage.

Perhaps the Cu-Aβ complex is directly linked with ROS generation, so most of the studies have
been associated with Cu-Aβ complex, suggesting a direct link between AD and oxidative damage [182].
Remarkably, all of the above data highlights the point that Cu is highly toxic in excess amounts and
responsible for its participation in a redox-cycling reaction, which produces ROS that results in much
damage to biomolecules such as carbohydrates, nucleic acids, lipids, and proteins. So, a higher level of
free Cu ions causes more toxicity to the cells and eventually leads to cell death. Therefore, cellular Cu
should be tightly controlled (Figure 3) [99].
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Figure 3. Redox cycling of Cu2+/Cu+ with Aβ peptides leads to the production of hydrogen peroxide.
Unstable reactive oxygen species (ROS) production from H2O2 results in oxidative stress, leading to
mitochondrial dysfunction, oxidative cellular damage, and neuronal loss. Cytotoxic end-products of
lipid peroxidation malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE) promote cell death.
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2.4. Copper Deficiency and Cholesterol Rich in AD

A lower level of net copper was observed in the TgCRND8 mice model, with parenchymal amyloid
aggregation but no loss of neurons [148,198]. The reason for early-onset familial AD is mutations in
genes of proteins essential for mammalian systems in copper ion uptake [199]. As discussed before,
a meta-analysis indicates a copper deficiency in the brain of Alzheimer’s cases [144]. Another study
also showed a copper deficiency in the deceased Alzheimer’s brain’s defective regions with dementia
symptoms [18]. Cu concentration of the elderly has a direct relation with Aβ aggregation [86].
While proteolytic cleavage of APP is a two-step pathway; non-amyloidogenic APP processing pathway
and amyloidogenic pathway, in the presence and deficiency of Cu, respectively. Some results suggest
the interaction of copper ions with a γ-secretase complex can inhibit amyloid production [200].

Based on the results of comparing blood copper levels of AD patients with healthy controls,
which shows a significant reduction in copper ion, it has been hypothesized that Cu deficiency can
lead to pathological hallmarks of AD [201,202]. An alternative study, which describes meta-analyses
results of the copper quantification in serum-plasma and the brain, suggested Cu deficiency in the
brain is a symptom of Cu dyshomeostasis, which relates to Wilson’s disease [203]. While, the dietary
copper addition leads to an increase of intracellular copper concentration in APP/PS1 AD mice [155],
which has been shown in parenchymal Aβ plaques, a decrease of AD pathology, but no loss of neurons
seen [147,148]. Interestingly, some results showed that in AD patients, Cu deficiency does not have
any link to their diet [201].

There is substantial proof about the amyloidogenic pathway’s connection with lipid raft, which is
a particular cholesterol-rich microdomain. Although the deposition of Cu ions is associated with their
cellular deficiency, the Cu level in lipid rafts has been inversely associated with the cellular Cu level,
the simultaneous enrichment of Aβ and Cu within lipid rafts leads to higher redox-active Cu-Aβ
complex formation in the absence of Cu conditions of AD [114,204]. Seemingly, a high-cholesterol
rich diet plays an essential role in the AD pathology. Indeed, many investigations determined
that lipids are a necessary part of this disorder [205–207]. Higher Cu2+ and lipid content in the
neurodegenerative diseases have also been described by some recent scientific studies [208,209].
When the transgenic AD mice treated with Cu and cholesterol-fed diet, the ratio of Aβ42/Aβ40
increased, and a significant difference in the visuospatial memory was identified [208]; furthermore,
in the rabbit brain, Aβ accumulation increases with the feeding of cholesterol food and Cu containing
water (Cu ion in the form of Cu sulfate) [210].

Cholesterol-rich regions have also been detected for the enzyme activity of the cleavage of APP to
amyloid proteins in AD brains [114,211]. Amyloid proteins attached to the plasma membrane surface
and the Ca2+ ions help to penetrate the phospholipid bilayer [212]. The formation of Aβ22-35 channels
is a cholesterol-dependent process and regulated with small cholesterol (~30 mol%) in phospholipid
membranes. However, these channels cause an imbalance in Ca2+ homeostasis in neuronal cells and
result in the bring-up of the Ca hypothesis of Alzheimer’s disease (Figure 4) [213,214]. Contrarily,
Cu ions do not cause neurotoxicity in the absence of amyloid peptides [153]. Earlier unsuccessful
therapeutic efforts and recent results about the aggregation of Aβ peptides in the cholesterol-rich
regions (lipid rafts) lead to a different hypothesis that soluble Aβ oligomers (AβOs) associated with
the cell membrane are responsible for neurotoxicity in AD [215–217].
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Figure 4. Schematic representation of the effects and correlation between Cu and cholesterol-rich lipid
rafts in Alzheimer’s disease. (A) The enzymes that are present in lipid rafts are responsible for the
cleavage of APP to Aβ peptide. (B) Cu deficient AD brains lead to copper accumulation in lipid rafts,
and rising concentrations of Cu results in higher Aβ production due to an increase in β-secretase
activity. (C) Calcium-permeable pores formed by small oligomers of Aβ peptides. These pores are
calcium channels and disrupt cellular Ca2+ homeostasis, eventually leading to neuronal death.

3. Contradictory Results about Copper Level in AD

In the body cells, Cu is absorbed through a high-affinity copper transporter Ctr1,
incorporating cuprous (Cu+) ions from the intestinal microvilli’s surface. Little is known about
Cu2+ absorption, which is probably absorbed by divalent metal transporter 1 (DMT1) or other shared
metal transporters [218]. Ctr1is responsible for the majority (~70%) of Cu import into mammalian cells,
from which Cu is passed to glutathione, which carries Cu through the cytoplasm [219]. The absorbed
copper ions will be targeted to Cu-binding chaperones and enzymes in different cell compartments
such as cytosolic, mitochondrial, and Golgi. In the cytosol, Cu chaperone for superoxide dismutase
1 (SOD1), CCS, mediates Cu+ loading. A recent study suggested that the direct transfer of copper
from Ctr1 to chaperones and then passing it to SOD1 is via forming a Ctr1-CCS-SOD1 complex [218].
Besides CCS, soluble copper chaperones such as Atox1 and Cox17 can also escort Cu+ from Ctr1 in the
cytosolic pool to facilitate copper supply to their specific target compartments [220].
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Consequently, in the absence of Ctr1, other pathways to absorbed Cu ions are unavailable to the
organism because of the sequestration of copper in the sub-apical vesicles. This has been confirmed by
making the intestinal epithelial cell-specific knockout of the Ctr1 (Ctr1int/int) mice, which manifested
severe Cu deficiency, and the majority died within three weeks of post-birth [221]. A considerable
portion of ingested cuprous ions are passed into circulation in enterocytes to reach different tissues by
Atox1/ATPase routes. The mouse model with inactivated ATOX1/ATP7A routes showed defects in Cu
distribution, which leads to pathological variations in many organs, especially the brain [222].

In the CNS, Cu deficiency has been found in the hippocampus and amygdala regions of Alzheimer’s
patients, which causes severe histopathologic alterations in AD. Additionally, scientific research has
put forward that the frontal cortex tissue of Alzheimer’s patients had an increased susceptibility for
exchangeable copper (CuEXC), which is associated with the overproduction of free radicals (ROS) in
AD [223].

In the CSF of the AD patients, there is no significant change in Cu concentration as compared to
that of the healthy cases (HC) [224]. Furthermore, within peripheral fluids, abnormal homeostasis
of copper ions has been intensively investigated. The relevant data point to increased [224,225],
decreased [88,226], or unchanged [227] serum or plasma Cu in Alzheimer’s patients. Many other
scientific analyses have also reported excessive free or diffusible copper in serum [224,226,228].
However, Rembach (2013) has suggested the possibility of decreased non-CP copper levels-copper
that is not bound to ceruloplasmin in mild cognitive impairment (MCI) and AD, which leads to a
decline of copper-dependent biochemical activities in AD [229], such as reducing SOD1 activity of
erythrocytes [88].

Cu association for AD is ambiguous as some substantial researches showed Cu deficiency in AD
and, hence, it is required to increase Cu levels [86–88]. In contrast, many different scientific pieces of
evidence demonstrated Cu overload, and thus it is necessary to reduce it [90–95]. The main updated
explanation so far is that the abnormal Cu homeostasis is due to an increment in the labile Cu ions and
a reduced attachment to proteins [107,174].

Until 2012, the published contradictory scientific researches fueled the debate of copper
concentrations in AD. So far, to check Cu levels in various biological specimens of AD patients,
such as serum, plasma, and CSF, six meta-analyses have been done during the past six years.
Studies published from 1984 to 2017 have been included in these meta-analyses [100,101,224,230–232],
which give unambiguous results: overall and unbound Cu both are present in higher concentrations in
the serum-plasma samples of the AD patients compared to that in the healthy cases [230]. According to
the very recent meta-analysis, which includes a total of 35 pieces of research: eighteen report an
increase, fourteen show no change, and one reports a decrease in Cu level in the serum-plasma of this
disorder [232]. Subsequently, three more studies have been published, stating increased Cu2+ ions
level in Alzheimer’s compared to that in the healthy controls [233–235].

These recent researches have contributed considerably to the explanation of the previous
controversy. In blood, a higher level of free plasma Cu, which has been identified in 50–60% of
Alzheimer’s patients, can explain the higher level of serum Cu in AD [145,174,233,236]. Another earlier
research also observed an increased concentration of serum copper ions in a special kind of AD
(Alzheimer’s disease epsilon four apolipoprotein E allele carriers) [237]. According to some scientific
investigation, a genetic basis may be the reason for this particular type of AD [237–240].

4. Therapeutics to Tackle Copper Ions in AD

Despite the exponential growth of scientific literature published in the neurodegenerative disorders
area, especially for AD, the exact etiology of AD is still not well understood. To date, there is no
successful therapeutic option available for this disorder [96,241]. While there is no cure, there are five
FDA-approved medications to cope with the symptoms of AD, which may prevent this disease from
getting worse over time [242].
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In vitro, removal of Cu2+ from Aβ prevents its accumulation [243–245], leads to its degradation,
stops hydroxyl radical (•OH) production and oxidative damage, and finally reduces cell death [245].
For the effects as mentioned above, researches have suggested potential metal chelation therapy for
AD [246–252]. Nevertheless, the challenge is to build selective and specific metal chelators, as metal
ions play crucial roles in Alzheimer’s brains. The first metal chelator made for arsenic toxicity in
the 1940s was 2,3-Dimercaptopropanol (BAL) [253,254]. Much later, followed by the same approach,
the first-generation of metal chelator, a lipophilic small molecule clioquinol (5-chloro-7-iodo-8HQ
or CQ) was introduced at the end of the 1990s [244,255]. Transgenic mouse models treated with CQ
showed promise by reducing Aβ accumulation by 50%. CQ reduced Aβ aggregation during Phase II
trials and improved cognitive behavior, but failed to provide sufficient evidence of a positive clinical
benefit in a larger clinical trial [256,257]. Furthermore, patients exhibited some severe side effects,
including neurotoxicity and mutagenicity; therefore, further clinical trials of CQ were stopped.

The most progressive chelator so far is PBT2 (5,7-dichloro-2-((dimethylamino)methyl)) [258],
a second-generation of scaffold-based chelator, which has been inspired by CQ and also showed
excellent antioxidant properties [259–261]. It is a more effective Zn/Cu ionophore than CQ, which could
decrease H2O2 formation, have greater BBB (blood-brain barrier) permeability, higher solubility,
and could also inhibit Cu and Zn induced Aβ accumulation in vitro [261,262]. PBT2 treatment targets
metal-induced damage [263], and most importantly, it prevents the loss of necessary metal ions from
the body such as the kidney, liver, lungs, and brain [241,264]. It also shifts the Alzheimer’s phenotype
within days by reducing insoluble Aβ levels by ~30% [261] and alters tau and synaptophysin protein
levels’ phosphorylation. Interestingly, a lowered level of insoluble total and elevated levels of the
soluble total tau has been shown in the treatment with PBT2 [259]. Despite the effects mentioned above,
the results of human clinical trials are not up to the mark according to some studies [241,265]. However,
some scholars have denied this idea [266]. Results from the phase IIb, the randomized clinical trial,
were not as promising even though phase Ib/IIa preclinical trials demonstrated significant reductions
in Aβ levels and improvement in various aspects of cognitive functioning.

The research in the Tg 2576 transgenic mice model has shown parenchymal plaque [147,148],
indicating that metal chelators help slow disease progression and remove Cu ions only helpful in the
initial stages of the AD [267]. While PS1 and PS2 play roles in Cu2+ uptake, tissue-specific knocking
down of the single presenilins ortholog (PSN) in Drosophila reduces Cu2+ levels and increases its
susceptibility to oxidative insult [199]. It was observed that the silencing of PSN in flies had less
sensitivity to excess dietary Cu due to the reduced copper uptake. BLOC-1 physically interacts with
ATP7A, and disruption of the Drosophila’s dysbindin/BLOC-1 complex affects copper homeostasis in
both mammalian cells and Drosophila [268].

Different approaches have been used to treat the pathological hallmarks of the multifactorial
AD due to Cu dyshomeostasis, including the metal chelation therapy [261,269–271]. Restoring the
intracellular copper decreases β-amyloid production, which was found through a mechanism that
depends on the activation of phosphatidylinositol 3-kinase (PI3K)/PI3K-Akt pathway, and JNK
(Jun N-terminal kinase) [200,272]. Moreover, lately, studies have observed increased intracellular Cu
inhibited AD-causing Aβ peptide by direct targeting of presenilin (PS1 or PS2) subunits and nicastrin
(NCT) in the γ-secretase complex [64,200,273]. Hence, higher intracellular Cu levels can improve
cognitive function as well, by preventingβ-amyloid aggregation and tau phosphorylation [155,274,275].
There is proof of the bis(thiosemicarbazone) copper(II) complex having the immunomodulatory
potential [276,277], and greater BBB permeability. It inhibits microglial as well as astrocytic
inflammatory responses and also has a role in the decrement of bacterial lipopolysaccharide (LPS)
induced inflammation [278]. Some researchers have suggested that excess dietary Cu intake increases
AD risks, and diets with measured copper should be supported. Additionally, a study conduct
with a small amount of Cu in drinking water results in rising levels of amyloid peptides in the
brain [162,207], a process that appears to be linked with dysfunction of LRP1-mediated efflux of Aβ
from the brain [279] in vascular smooth muscle cells [280,281]. The median intake of copper from
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food among children and adolescents aged 2–19 years, the recommended daily allowance (RDA)
ranges from 800 to 1000 mcg/day. In adults aged 20 and older, 1400–1700 mcg/day is recommended.
Despite the difficulties, balancing Cu homeostasis has numerous advantages, and can be a potential
drug target for this progressive, neurological disorder [89,156,282–284].

For other neurological disorders, such as Wilson’s disease (WD), a different chelating agent,
tetrathiomolybdate (TTM, an ammonium salt), appears to be a promising alternative, which can
act by inhibiting copper uptake. TTM had the advantages of being fast-acting and did not lead to
neurological deterioration in WD patients. It can restore normal copper balance without increasing
serum “free copper” within several weeks compared to other copper chelators or zinc salts requiring
several months [285]. However, the ammonium formulation has been proven too unstable for routine
use, so clinical experience with them remains limited. Of note, bis-choline salt of TTM, WTX101,
has recently become available on a named patient basis in the USA and Europe. This complex is more
stable than TTM and phase III FOCUS study compared to standard of care (SoC) in WD patients was
started in 2018, with results expected in 2020 [286].

5. Multifunctional Chelators (MFCs) to Control Metal Mediated Abnormalities

Because multiple pathological variables are involved in the pathology of AD, therapeutics or
drugs target a single mechanism that is not enough to treat this disorder. New therapeutics or
medicines that can target multiple factors at the same time can be beneficial for patients suffering from
neurodegenerative disorders. It is now undeniable that the next generation of therapies should have the
ability to target the different causes of disease progression at the same time [287]. Neurodegenerative
disorder drugs must have more than one of the following properties to be useful for these diseases
such as control of the production of ROS, the ability of metal chelating, and greater BBB permeability,
a decrease of β-Amyloid peptide deposition (Figure 5), and last but not least, of regulating enzymes
associated with the mechanism of the disease, for example, acetylcholinesterase [288,289].
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Bifunctional metal chelators (BFCs) were suggested to treat multifactorial AD because they have
the ability of both metals chelating and binding with amyloids. Substantial research has been made
in this field in the last decade [259,263,290,291]. The fluorescent dye thioflavin T (ThT), also known
as Basic Yellow 1 or CI 49005, has been widely used to detect amyloid fibrils [292] in both in vivo
and in vitro studies. The first bifunctional chelator designed was XH1 (Figure 6), connecting various
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molecular fragments of different specificities to make a hybrid molecule [293]. Its structure is composed
of two-terminal thioflavin-T-derived moieties, which are attached by a DTPA (diethylene triamine
penta-acetic acid) binding unit.
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in the text.

Besides metal ions’ chelation role in Alzheimer’s, new chelating molecules such as phenyl
benzotriazole followed by the same design principle of thioflavin-T(ThT), correlating them with
dipicolylamine or pyrinophane type metal chelators have been reported by the studies [263,287,291,294].
Several studies have analyzed the deposition of Aβ1-42 in the deficiencies and presence of essential
metal ions [291,295]. Franz and co-workers have used persuasive strategies to design prochelators
in 2006. These chelators only work in the presence of oxidative stress and inhibit essential ion loss
like Cu and Zn of metalloproteins. Followed by the same approach, boronic ester (BSIH), an excellent
first-generation prochelator metal affinity group, was composed. It works as an iron chelation with
salicylaldehyde isonicotinoyl hydrazone (SIH), in the presence of H2O2 [296].
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Various analogs of boronic ester, such as boronic esters (BSIH, BSBH) and acids (BASIH),
have been investigated to check their performance as metal chelators [297]. Currently, many promising
molecular scaffolds using the same strategy are exploring their effect on the multifactorial AD [298–301].
Choi (2011) and Hindo (2009) [302,303] reported the derived compounds and analyzed their impact
on metal-binding properties, β-amyloid deposition both in deficiency and the presence of metal
ions. Currently, small novel compounds such as 2,2-bipyridine (bpy) derivatives (1–4) and other
N,N-dimethylaniline including novel N-bidentate ligands, have been described to show good results
for the treatment of multifactorial AD [304,305]. The effects of several flavonoids such as myricetin
and EGCG (epigallocatechin gallate) have also been tested for this disorder [306–308].

While Orvig described salen-type Schiff-bases in addition to other chelating agents for the first
time, it has also been connected with carbohydrate moieties [259,309–312]. In vivo investigation of
the diacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(ATSM)) (Figure 6) compound has
seen its protection against nitrosative damage of peroxynitrite and an increase of survival in the
ALS mouse models [313]. Unfortunately, it was not studied much for metal chelation and protection
against oxidative damage in AD. Many multifunctional molecules have been rationally designed to
simultaneously resist and target various pathological hallmarks of the brain disorders, and their effects
have been checked and reviewed by many studies [290,314]. Finally, despite all tremendous efforts
that have been made for the success of multifunctional molecules as a potential therapy, only a handful
of them show promising results in human clinical trials. Indeed the usage of these compounds to
target the multi-mechanisms of the neurodegenerative diseases, its potential causes of failure also need
to be understood, which has been reviewed elsewhere [122,265]. Overall, it is an effective strategy and
will hopefully provide a better therapeutic option for Alzheimer’s cases when the compounds made
become more tissue targeting specific.

6. Efficacy of Therapeutic Chelation

There are a large number of metal chelators that have been developed to cure AD. Indeed, only a
few of them made their way to clinical trials [315,316]. To discriminate the bulk of chelation therapies,
which mostly link with the release of heavy metal poisoning, these used therapeutic chelators have
been named ionophores, metallochaperones, and MPACs (metal-protein attenuating compounds).
CQ (PBT1) and PBT2 are the most popular MPACs for AD, both were designed based on old chemistry
with different applications, and the term MPACs was popularly used because it was a belief that
PBT1 and PBT2 cause deaccumulation of β-amyloid plaques loaded with Cu and Zn ions [317,318].
Terdendate ligands (L), such as PBT2, make bonds in a 1:1 ratio (Cullin 1), and a distortion occurs at
5-coordinate 1:2 ratio (Cullin 2) form, while the copper(II)-bound form of this class terdentate 8HQ,
comprising peptides and side chains of proteins is predicting a ternary metal ion complex.

The word “ionophore” was used for a large number of cellular metal uptake experiments
in vitro [261,319,320], while the name “metallochaperone” has now been suggested most of the times.
Ionophores constitute a distinct subset of metal-binding drugs capable of moving multiple members of
a given ion across cell membranes. The main difference lies between chelator and ionophores is in
the functional result of the metal complex. Traditional medicinal chelating agents result in excretion
of the absorbed metal from its receptor site into the system where it cannot exert toxicity and can
make them bio-unavailable. In contrast, ionophores generally form lipophilic metal complexes that
make the membrane permeable to specific ions, creating a more or less selective channel to particular
ions. Hence, there is a possibility that 8HQs as carrier ionophores can work in the hydrophobic
environment of several plasma membranes (PMs), and the Cu, which is not removed from 8HQs
ligands, causes localization to phospholipid bilayer, and this results in 8HQs interference with bonds
of heavy metals of essential regulatory enzymes [321–323] due to the formation of the ternary complex.
Interestingly, the generation of ROS can be detected by adding such ligands to the culture of neural
stem cells [324], in contrast to the founding principle of therapeutic chelation therapy [325].
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Some therapeutic benefits of 8HQ therapeutic chelators have been suggested by transgenic
animal studies of AD [261,319]. Indeed, chelation therapy in human clinical tests has not provided
any satisfactory results so far. Chelation therapy using D-penicillamine has also not presented any
proof of improving disease pathology and has to stop earlier in initial phases due to its side effects,
causing some to question the usage of 8HQs [326]. Independent evaluation of the human clinical trials
from 2006 to 2014 using 8HQs, frequently reported no advantage to AD patients [327–329]. Despite all
these discouraging signs, the hypothesis is that 8HQs was successful in two human clinical trials.
Post-hoc study of the Phase 2A trials claimed that PBT2 improves cognition in AD [330], though,
the results of this clinical trial are in question. Another study by Ayton (2013) [331] also claimed the
positive outcome of clinical trials. Therefore, some researchers were still showing promise for these
compounds [325,332].

In short, according to Drew (2017) [265], there is a preference in describing results of clinical trials
of Cu chelation as positive and helpful for Alzheimer’s cases, which results in continued checking of
different chelators for the well-defined targets to treat the dyshomeostasis of metals in AD.

7. Conclusions

Collectively, studies strongly advocate that dyshomeostasis of Cu, leads to the onset and
progression of AD. Earlier researches have recognized amyloid plaques as toxic factors in AD.
Though 20–40% of healthy cases have amyloid plaques, as illustrated by some studies [333].
Furthermore, cell death often leads to amyloid plaque formation in the brain. While mounting
evidence implicates ROS in the AD etiology, loosely bound copper ions are very efficient catalysts for
ROS generation by a copper-amyloid complex [105,334].

Some studies indicate an increased liable pool of Cu in the brain [105,230] responsible for Cu
deficiency. The reason of Cu deficiency seems to be an essential factor in AD. Copper deficiency
leads to Cu enrichment in lipid rafts, so maybe an elevation in lipid raft domains could be the
reason for Cu deficiency in the brain; thus, lipid raft domains could be an efficient drug target.
Studies indicated that the disrupted lipid rafts (by omega-3 fatty acids) slowed the progression of
AD [215,335]. Another direction for research depends on the feasibility of developing novel therapeutic
approaches to work against this disease.

The proposal for direct chelation therapy of Cu ions to work in this disorder is still in
discussion [265]. Support for the lowering cellular Cu levels comes from the Drosophila model of AD,
where although copper chelation or genetic knockdown of copper transporters (Ctr1C) decreased the
expression of Aβ degrading proteases but rescued the toxic phenotype [336]. Similar results were also
observed by silencing the expression of Ctr1B, or when copper exporter DmATP7 [336] and dMTF-1 or
MtnA [94] were overexpressed in the nervous system of the Aβ transgenic flies. These flies exhibited
improved neurodegeneration, locomotion, longevity, and a reduction in Cu-Aβ complex-induced
oxidative stress.

Furthermore, in parallel, antibody-based treatment for Aβ aggregation is now developing and
providing safe results as well [337]. Research organizations should come to the same standpoint
regarding the experimental requirements and procedures to be used, to avoid different and ambiguous
results for such serious matters. In this context, all the struggles for a better understanding of
AD pathology’s molecular mechanisms and developing innovative therapeutic approaches should
be appreciated.
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