Enhancement of Proximity Induced Superconductivity in Planar Germanium
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Holes in planar Ge have high mobilities, strong spin-orbit interaction and electrically tun-
able g-factors, and are therefore emerging as a promising candidate for hybrid superconductor-
semiconductor devices. This is further motivated by the observation of supercurrent transport in
planar Ge Josephson Field effect transistors (JOFETSs). A key challenge towards hybrid germanium
quantum technology is the design of high quality interfaces and superconducting contacts that are
robust against magnetic fields. By combining the assets of Al, which has a long superconducting
coherence, and Nb, which has a significant superconducting gap, we form low-disordered JoFETs
with large IcRn products that are capable of withstanding high magnetic fields. We furthermore
demonstrate the ability of phase-biasing individual JoFETSs opening up an avenue to explore topo-
logical superconductivity in planar Ge. The persistence of superconductivity in the reported hybrid
devices beyond 1.8 T paves the way towards integrating spin qubits and proximity-induced super-

conductivity on the same chip.

I. INTRODUCTION

While semiconducting and superconducting qubits
have been used to demonstrate control over quantum in-
formation, decoherence remains a crucial challenge to-
wards building a large-scale, universal quantum proces-
sor. This has prompted intense efforts for engineer-
ing Majorana Zero Modes (MZMs) in superconductor-
semiconductor (S-Sm) devices, which are predicted to en-
code quantum information non-locally resulting in pro-
tection against decoherence [1, 2]. In addition, hybrid
devices have attracted significant interest over the past
few years due to the ensuing Andreev physics and their
potential towards building electrically tunable Josepshon
junction (JJ) based qubits and long range coupling of
spin qubits [3-12].

The recent advancements in material science and fab-
rication has lead to a resurgence of interest in Ge [3, 5,
13, 14]. Ge offers several key physical properties such
as inherent spin-orbit coupling, low hyperfine interaction
and electrically tunable g-factors due to the carrier states
originating from the valence band. In particular, the
prospect of compatibility with existing Si foundry makes
planar Ge a favourable platform for future quantum tech-
nologies [15]. Indeed, the recent results with spin qubits
and hybrid S-Sm devices underline its potential [16-20].

So far Al remains the foremost choice as a supercon-
ductor in hybrid S-Sm devices due to its large super-
conducting coherence length. However, its limited mag-
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netic field resilience acts as a deterrent for exploring ex-
otic condensed matter phases. Among other common
choices, Nb and NbTiN offer a higher superconducting
gap and magnetic resilience, but forming high quality in-
terfaces with semiconductors remains a challenge. Here,
we demonstrate induced superconductivity in Ge quan-
tum wells (QWs) overcoming the main challenges of low
transparency S-Sm interfaces and limited magnetic field
resilience. Al forms high transparency and low disorder
interfaces with the Ge QW. The thin Al layer is directly
contacted by Nb, resulting in an increase in the super-
conducting gap of Al. We markedly see a higher critical
magnetic field and critical temperature in comparison to
solely Al based devices. Moreover, we show supercon-
ducting phase control over our junctions which allows
to devise @y junctions and explore low magnetic field
topological superconductivity [21]. The characterization
of different energy scales will enable the design of fu-
ture hybrid devices for quantum information processing
in planar Ge.

II. RESULTS
A. Josephson Field Effect Transistors

A Josephson Field Effect Transistor (JoFET), formed
by sandwiching a semiconductor between two supercon-
ductors, allows to observe phase coherent Andreev trans-
port reflecting the quality of the S-Sm interface and the
underlying transport in the semiconductor. We fabri-
cate JoFETs with a strained Ge/SiGe heterostructure as
a semiconducting weak-link. Densities of 6 x 10! cm™2
and mobilities up to 5 x 10° cm?/V's, leading to mean
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FIG. 1: (a) False-colored SEM of a Ge JoFET with a top gate (yellow) accumulating a 2DHG between the two superconducting

electrodes (blue). The scale bar is 500 nm.

(b) HAADF-STEM image of the cross-section of the JoOFET with the Al layer

directly contacting the Ge QW. The scale bar is 100 nm. (c¢) V measured across the JOFET versus Vo and I. The device can
be fully switched off at more positive voltages. (d) V versus I traces, extracted from (c), highlighting the switching current
at different V. (e) Dependence of the Ic Rn product on Vg as extracted from (c).

free paths [, up to 6pum, are routinely achieved in a
nominally identical wafer [22]. Figure la shows the false
colored scanning electron microscope (SEM) image of a
JoFET with the superconducting electrodes separated by
a distance L. = 150nm and a top gate electrically iso-
lated from the superconducting contacts by aluminium
oxide. Further details on the fabrication of the devices
can be found in the methods. Figure 1b shows the cross-
section High-Angle Annular Dark Field Scanning Trans-
mission Electron Microscopy (HAADF-STEM) image of
an identical JoFET where the Ge QW between two SiGe
spacers is directly contacted by a thin film of Al to form a
low-disorder and high transparency interface. Al itself is
contacted by Nb resulting in a hybrid S’-S-Sm junction.
The etching procedure produces a concave interface re-
sulting in a larger segment of semiconducting weak-link
than lithographically defined, potentially affecting the
transport. A detailed overview of the HAADF-STEM
and STEM- Electron Energy-Loss Spectroscopy (EELS)
analyses are presented in the Supplementary Material.

The JoFETSs are measured in a four-terminal current-
biased configuration at a base temperature of 20 mK. A
top gate is used to tune the density of the underlying
two-dimensional hole gas (2DHG) and we observe a gate
voltage dependent switching current Ig of about 1 pA at
a negative gate voltage of —2.5V (Figure 1c and d). The

clear dependence of Ig on the gate voltage provides the
evidence of Andreev transport occurring through the Ge
QW. We expect the critical current I¢ to be almost equal
to the experimentally measured Ig as the Josephson en-
ergy By ~ ~ kp(2 —25K) (kp is the Boltzmann con-
stant) is notably higher than the sample temperature,
for the measured gate voltage range [23]. We further
extract the characteristic Ic Ry product reaching up to
3601V in Figure le. In the Supplementary Figure S5,
we find the IRy product for the same fabrication pro-
cess with Al as the sole superconductor reaching values
up to 501V indicating a superior interface achieved be-
tween Ge and Al with our fabrication process compared
to earlier works [20, 24]. Harnessing the high quality S-
Sm interface, we enhance the superconducting properties
of Al, and the hybrid devices, by contacting the Al layer
directly with Nb [25]. Therefore, we attribute the large
Ic Ry product to the combination of enhancement of the
superconducting gap of Al due to contact with Nb and
transparent Al-Ge interfaces.

Multiple Andreev Reflections (MARs) appearing at fi-
nite voltages further allow us to characterize the hybrid
devices. They are subgap features occurring as resis-
tance peaks for transparent S-Sm junctions at energies
eV = 284 where n is the number of times a quasi-
particle is successively Andreev reflected and A is the
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FIG. 2: (a) ‘2—‘; versus B and V highlighting the presence of
MAR. The overlying line traces show the evolution of MAR
features with B1. (b) 4¥ versus V line trace from (a) show-
ing the various orders of MAR peaks observed at B; = 0mT.
The inset shows the higher order MAR features observed at
lower values of V. (c¢) Temperature dependence of Ic for
various Vg. The fitting of I to \/Texp(—QﬂkBT/ETh) al-
lows to determine Ety. (d) V-I characteristics of the JOFET
showing increasing linearity at higher temperatures.

superconducting gap of the electrodes [26, 27]. We ob-
serve multiple orders of MAR indicating a high proba-
bility of Andreev reflection and large mean free paths in
the JoFETs. From the zero magnetic field trace in Fig-
ure 2a, we deduce A = 486 neV, markedly higher than
that of bare Al (= 1801eV) but lower than that of bare
Nb (=~ 1.5meV) providing further evidence of enlarge-
ment of Al’'s gap due to proximity with Nb [28]. At very
low voltages in Figure 2b, we are able to explicitly ob-
serve MARs up to 5 order putting a lower bound on
the inelastic scattering length Iy > 5L = 750 nm. On an
application of a perpendicular magnetic field, the MAR
peaks evolve to lower voltage bias indicating the decay of
the superconducting gap due to the magnetic field [29].

The variation of Ig with temperature allows us to de-
termine different energy scales of the JoFET. We ex-
tract the Thouless energy Eryp by fitting the relation
Ic x VT exp(—2nkpT/ETy) for different top gate volt-
ages [30]. ETy values obtained from the fits range from
2951eV at Vg = —1.25V to 370neV at Vg = —2.5V in
Figure 2c. Using the extracted values of Ey,, we estimate

Ern L2
Ael

which falls in the range between 120nm and 135nm for
the respective gate voltages. As expected, the supercur-
rent diminishes with increasing temperature due to the
decrease of the superconducting gap of the electrodes.
In Figure 2d, we find the non-linearity of the current-
voltage (I-V) characteristics decreasing as the tempera-
ture increases and observe an almost linear IV curve at
a critical temperature T¢ ~ 3 K. We extract a supercon-
ducting gap A =1.76kgTc =~ 470 peV which is in close
agreement with the superconducting gap extracted from
the analysis of MAR.

Comparing the superconducting gap with the ex-
tracted energy scales gives further insight into the regime
of operation of the JoFETs. In the Supplementary Fig-
ure S7, we extract the excess current (Iexcess) and find
the ratio % to be 1.9, which is closer to the ex-

the superconducting coherence length &N =

pected ratio for the ballistic regime (%) than that for the

diffusive regime (%2 —1) [31, 32]. The Ioxcess Rn product
also allows us to infer the S-Sm interface transparency
using the Octavio-Blonder-Tinkham-Klapwijk (OBTK)
model [33, 34]. We estimate a transparency of 90 % for
our devices, a considerable improvement for the hybrid
planar Ge platform. Furthermore, we find the IcRn
product to be 0.754< deviating from the theoretically

€
expected IcRy = 2% for the clean junctions [35]. As

noted earlier, the longer channel length due to the etch-
ing procedure could result into the long junction regime
(I > &n), decreasing the value of Ic RN [36].

B. Magnetic Field Behaviour

We now turn our attention to the magnetic field be-
havior of the JoFET devices. In the presence of a mag-
netic field oriented perpendicular to the substrate plane,
a clear Fraunhofer modulation of the switching current is
observed confirming the coupling between the two super-
conducting leads through Andreev transport (Figure 3a).
The symmetry of the Fraunhofer pattern for positive and
negative values of B, indicates the low disorder achieved
with our fabrication procedure [37]. Based on the litho-
graphic dimensions of the junction, a magnetic field of
6.9 mT should correspond to one magnetic flux quantum
% threading through the junction area. From the Fraun-
hofer pattern, we extract a magnetic field of 0.8 mT, al-
most 9 times less than expected. We attribute this dif-
ference due to the flux focusing of the applied magnetic
field caused by the Meissner effect [38]. By increasing
the magnetic field to higher values in Figure 3b, we find
the critical perpendicular magnetic field B ¢ = 460 mT
for which the supercurrent vanishes. The parallel critical
magnetic field B ¢ = 1.8 T (Figure 3c) is almost 4 times
higher as the thickness of the superconducting electrodes
is much smaller than their width. The observed high
magnetic field resilience paves the way for exploring the
interplay of magnetic effects in Ge with induced super-
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FIG. 3: (a) Color map of V across the JOFET versus B, and I showing the Fraunhofer pattern. The black dashed line is

a guide to the eye highlighting the transition between the superconducting and normal state. (b) Differential resistance

av
’odrl

versus B and I showing the critical magnetic field and the overlying Fraunhofer pattern. (c) V versus Bj and I demonstrating

that the critical current (black guideline) vanishes beyond 1.8 T.

conductivity and integration of disparate qubits such as
spin qubits and gatemons on the same chip.

C. SQUID and CPR

Combining these high transparency junctions, we next
explore the interference patterns arising through the con-
trol of the superconducting phase difference using a per-
pendicular magnetic field. Figure 4a shows an asym-
metric SQUID combining JoFETSs of 150 nm (JoFET 1)
and 350nm (JoFET 2) channel length with critical cur-
rents Ic; and Igo, respectively. The asymmetric channel
lengths and individual gate voltages allow biasing the two
JoFETs in various regimes, ranging from a conventional
SQUID to a superconducting phase control device.

We investigate the operation in a four-probe configura-
tion, by applying a current and measuring the voltage dif-
ference between the SQUID arms under the application
of a perpendicular magnetic field. The behavior of each
of the individual junctions in the asymmetric SQUID can
be found in the Supplementary Figure S9. When both
top gate voltages are tuned to achieve the same critical
current in each junction, we observe periodic oscillations
of the critical current reflecting the underlying modula-
tion of the superconducting phase due to a perpendicular
magnetic field (Figure 4b). The modulation period of the
oscillations AB a370 pT corresponds to a magnetic flux
quantum through an area of 5.5 um? different from the
lithographically defined area of the superconducting ring
1.8pm?. This difference can be attributed to the sig-
nificant flux focusing due to the Meissner effect and the
different resultant area due to the penetration depth, as
already discussed before.

Tuning the ratio of the critical currents, allows phase-
biasing the individual JoFET with the lower critical cur-
rent. This allows to measure the current-phase relation-

ship (CPR) which provides information about the un-
derlying interfaces and physical phenomena at play [39-
42]. In Figure 4c, JOFET 1 and JoFET 2 are biased
using respective top gate voltages such that % ~ 9.
In this limit, the change in the superconducting phase
difference due to the magnetic field can be assumed to
drop mainly over JoFET 2. The supercurrent in S-
Sm-S JoFETs is carried by Andreev Bound States, due
to which the CPR can be significantly different from a
sinusoidal CPR expected for superconductor-insulator-
superconductor (SIS) junctions [43]. We observe a partic-
ularly skewed CPR characteristic of a highly transparent
S-N interface. We fit the relation I(¢) :Ic\/%,
taking into account the change of critical currents of
the individual JoFETs due to Fraunhofer modulation,
to extract the transparencies of our Nb-Al-Ge QW-Al-
Nb junctions. It should be noted that this expression is
derived for a single ballistic channel, however allows to
extract the average transparency over many conduction
channels as is the case for our 2D geometry [39, 41]. In
Figure 4d, we find a transparency of 88+5 % concurrent
with the excess current measurements.

IIT. CONCLUSION

In summary, our work provides evidence of highly
transparent coupling between a superconductor and holes
in a Ge QW. We find through Ioycess RN measurements
signatures of a ballistic weak link and low OBTK barrier
strengths indicating high probability of Andreev reflec-
tion. The large observed values of I¢ Ry, limited by the
long junction regime, further confirms the quality of our
interfaces. In addition, the gate tunability of the su-
percurrent and the clear Fraunhofer modulation demon-
strates Andreev transport through the underlying semi-
conducting weak link. The ability to phase-bias individ-
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FIG. 4: (a) False-colored SEM image of an asymmetric
SQUID with channel lengths of 150 nm and 350 nm and criti-
cal currents Ic1 and Ica, respectively. The scale bar is 1 pm.
(b) SQUID oscillations of the Ic with B, at Vg1 =—1.245V
and Vaz =—9V.(c) Current-phase relationship of JoFET 2
with Vg1 = —8V and Vg2 = —1.4V such that the supercon-
ducting phase drops mainly over JOFET2. (d) Ic versus ¢ as
extracted from (c). Fitting the relation I(¢) =Ic —~222

\/1—Tsin2¢

allows to extract transparencies of the S-Sm interface. The
shaded region indicates an error of 5 % in the estimated trans-
parency.

ual JJs will allow to investigate different proposals for
Majorana physics. Furthermore, the indirect enhance-
ment of induced superconductivity using the combination
of Nb-Al can be extended to other material systems tak-
ing advantage of the ease of fabrication with Al and its
large coherence length while making it more resilient to
pair-breaking effects. Our developed system thus estab-
lishes Ge as a viable platform for exploring exotic phases
and as a hybrid qubit platform for bringing together spin
and superconducting qubits on the same chip.
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Appendix A: Methods

The 16 nm Ge QW heterostructure was grown by re-
duced chemical vapor deposition. Further details on the
growth procedure can be found in Ref. [22]. The devices
are fabricated using a 100 keV ebeam lithography system.
First, a reactive ion plasma etching step, based on SFg-
05-CHF3, is used to define mesa structures of ~60nm
depth. This is followed by the deposition of the super-
conducting contacts. Before metal evaporation, the same
plasma is used to etch ~35nm of the heterostructure to
ensure a direct contact between the superconductor and
the Ge QW. Then we clean the exposed Ge QW with a
10s BHF dip which is followed by a SFg plasma based pas-
sivation to reduce the contact resistance. A 15nm thick
layer of Al and a 30nm thick layer of Nb forming the
superconducting contacts is deposited. A ~20nm thick
layer of aluminium oxide is added at 150°C by plasma
atomic layer deposition, followed by a top-gate consist-
ing of 3nm Ti and 97 nm Pd.

We fabricated ten JoFETS, out of which two were not
working due to leakage current through the gate oxide
and the rest showed qualitatively similar supercurrents
and Ic Ry products.
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